1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Golabi M, Kazemi D, Chadeganipour AS, Fouladseresht H, Sullman MJM, Ghezelbash B, Dastgerdi AY, Eskandari N. The Role of Cobalamin in Multiple Sclerosis: An Update. Inflammation 2025; 48:485-500. [PMID: 38902541 DOI: 10.1007/s10753-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition that results in axonal and permanent damage to the central nervous system, necessitating healing owing to autoimmune reactions and persistent neuroinflammation. Antioxidant and anti-inflammatory drugs are essential for the management of oxidative stress and neuroinflammation. Additionally, multivitamin supplementation, particularly vitamin B12 (cobalamin), may be beneficial for neuronal protection. Although there is no documented connection between vitamin B12 deficiency and MS, researchers have explored its potential as a metabolic cause. This review highlights the therapeutic benefits of cobalamin (Cbl) in patients with MS.
Collapse
Affiliation(s)
- Marjan Golabi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Yeganegi Dastgerdi
- Department of Cell and Molecular Biology, Falavarjan Branch, Islamic Azad University of Science, Isfahan, Iran
| | - Nahid Eskandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Kashyap S, Gowda P, Pasanna RM, Sivadas A, Sachdev HS, Kurpad AV, Devi S. The Oral Bioavailability of Vitamin B 12 at Different Doses in Healthy Indian Adults. Nutrients 2024; 16:4157. [PMID: 39683551 PMCID: PMC11643782 DOI: 10.3390/nu16234157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The bioavailability of crystalline vitamin B12 (B12) through active absorption is reported to have a maximum capacity of 1.5-2.5 µg per dose. A small passive bioavailability has also been suggested at high doses. The present study aimed to determine the dose-dependency of active B12 absorption and to quantify its passive absorption at higher doses. METHODS The dose-dependency of crystalline B12 bioavailability was determined in nine healthy adults, using oral [13C]-cyanocobalamin, in a cross-over design at doses of 2.5, 5, and 10 µg. The dose order was randomised, with a washout of one month. Literature data from was added to the present study data in a meta-analysis of the relation between B12 bioavailability and dose, to evaluate its pattern at different doses. RESULTS Bioavailability, as a function of dose, was significantly different between 2.5, 5, and 10 µg doses of [13C]-cyanocobalamin at 50.9 ± 32.5%, 26.7 ± 22.3%, 15.4 ± 13.6%, respectively, (p < 0.01), while the absolute bioavailability trended upward, at 1.16 ± 0.74 µg, 1.22 ± 1.02 µg, and 1.39 ± 1.23 µg (p = 0.46). The meta-analysis showed two distinct phases of bioavailability. Up to a dose of 2.6 µg, there was a significant steep positive correlation, with a slope (bioavailability) of 43%/µg suggesting an active process with a maximum of 1.2 µg. At higher doses, the slope was 1%/µg, not significantly different from zero, possibly a passive process. CONCLUSIONS The active bioavailability of crystalline B12 is not dose-dependent, saturating at ~1.2 µg.
Collapse
Affiliation(s)
- Sindhu Kashyap
- Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, India; (S.K.); (R.M.P.)
| | - Poorvikha Gowda
- St. John’s Medical College, St. John’s National Academy of Health Sciences, Bangalore 560034, India;
| | - Roshini M. Pasanna
- Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, India; (S.K.); (R.M.P.)
| | - Ambily Sivadas
- Department of Molecular Biology and Genetics, St. John’s Medical College Hospital, St. John’s National Academy of Health Sciences, Bangalore 560034, India;
| | - Harshpal S. Sachdev
- Department of Paediatrics, Sitaram Bhartia Institute of Science and Research, New Delhi 110016, India;
| | - Anura V. Kurpad
- Department of Physiology, St. John’s Medical College, St. John’s National Academy of Health Sciences, Bangalore 560034, India;
| | - Sarita Devi
- Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, India; (S.K.); (R.M.P.)
| |
Collapse
|
4
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
5
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
7
|
Kubant R, Cho CE, Pannia E, Hammoud R, Yang NV, Simonian R, Anderson GH. Methyl donor micronutrients, hypothalamic development and programming for metabolic disease. Neurosci Biobehav Rev 2024; 157:105512. [PMID: 38128771 DOI: 10.1016/j.neubiorev.2023.105512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Nutriture in utero is essential for fetal brain development through the regulation of neural stem cell proliferation, differentiation, and apoptosis, and has a long-lasting impact on risk of disease in offspring. This review examines the role of maternal methyl donor micronutrients in neuronal development and programming of physiological functions of the hypothalamus, with a focus on later-life metabolic outcomes. Although evidence is mainly derived from preclinical studies, recent research shows that methyl donor micronutrients (e.g., folic acid and choline) are critical for neuronal development of energy homeostatic pathways and the programming of characteristics of the metabolic syndrome in mothers and their children. Both folic acid and choline are active in one-carbon metabolism with their impact on epigenetic modification of gene expression. We conclude that an imbalance of folic acid and choline intake during gestation disrupts DNA methylation patterns affecting mechanisms of hypothalamic development, and thus elevates metabolic disease risk. Further investigation, including studies to determine translatability to humans, is required.
Collapse
Affiliation(s)
- Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Neil Victor Yang
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Rebecca Simonian
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
van der Vaart A, de Borst MH, Bakker SJL, Connelly MA, van Dijk PR, Dullaart RPF. Higher betaine is associated with lower incidence of microvascular complications in type 2 diabetes (Zodiac-61). Eur J Clin Invest 2023; 53:e13873. [PMID: 36102283 PMCID: PMC10078367 DOI: 10.1111/eci.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Amarens van der Vaart
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, North Carolina, USA
| | - Peter R van Dijk
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
10
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
11
|
Zhou R, Lu G, Yan Z, Jiang R, Sun Y, Zhang P. Epigenetic mechanisms of DNA methylation in the transgenerational effect of ethylhexyl salicylate on zebrafish. CHEMOSPHERE 2022; 295:133926. [PMID: 35150701 DOI: 10.1016/j.chemosphere.2022.133926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a 120-day whole-life cycle exposure and oviposition experiment on zebrafish with maternal and paternal mixed mating strategy was conducted to investigate the epigenetic mechanism of DNA methylation in ethylhexyl salicylate (EHS, 1, 10, 100 μg/L)-induced transgenerational effects. Results showed that EHS could induce the decrease of DNA methyltransferase 1 (DNMT1) activity and average global DNA methylation level in maternal parents and the increase of the above indexes in paternal parents, while the change of glycine N-methyltransferase activity was opposite to DNMT1. The average global DNA methylation levels were significantly increased in the offsprings of both parents exposed and father-only exposed to EHS, suggesting that EHS-induced epigenetic modifications may be stable and heritable. Hierarchical clustering analysis of promoter at different methylation sites showed that the DNA methylation pattern of offsprings were similar to that of the paternal parents, meaning that the offsprings may have inherited paternal DNA methylation pattern with eya2, pcdh2g5 and pcdh2g1 as key genes and lead to high locomotor activity in offsprings. KEGG pathway analysis showed that parental exposure to EHS may interfere with the central nervous system, insulin function system, melanogenesis system and the normal development of somatic axis of offsprings.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
12
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
13
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Zhang Y, Yu H, Zhang J, Gao H, Wang S, Li S, Wei P, Liang J, Yu G, Wang X, Li X, Li D, Yang W. Cul4A-DDB1-mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine. J Clin Invest 2021; 131:146187. [PMID: 34720086 DOI: 10.1172/jci146187] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Although serine metabolism plays a crucial role in the proliferation and survival of tumor cells, how it supports tumor cell migration remains poorly understood. Phosphoglycerate dehydrogenase (PHGDH) catalyzes the oxidation of 3-phosphoglycerate to 3-phosphonooxypyruvate, the first committed step in de novo serine biosynthesis. Here we show that PHGDH was monoubiquitinated by cullin 4A-based E3 ligase complex at lysine 146 in colorectal cancer (CRC) cells, which enhanced PHGDH activity by recruiting a chaperone protein, DnaJ homolog subfamily A member 1, to promote its tetrameric formation, thereby increasing the levels of serine, glycine, and S-adenosylmethionine (SAM). Increased levels of SAM upregulated the expression of cell adhesion genes (laminin subunit gamma 2 and cysteine rich angiogenic inducer 61) by initiating SET domain containing 1A-mediated trimethylation of histone H3K4, thereby promoting tumor cell migration and CRC metastasis. Intriguingly, SAM levels in tumors or blood samples correlated with the metastatic recurrence of patients with CRC. Our finding not only reveals a potentially new role and mechanism of SAM-promoted tumor metastasis but also demonstrates a regulatory mechanism of PHGDH activity by monoubiquitination.
Collapse
Affiliation(s)
- Yajuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hua Yu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jie Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyao Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuxian Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ji Liang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guanzhen Yu
- Medical Artificial Intelligence Laboratory, Zhejiang Institute of Digital Media, Chinese Academy of Sciences, Shaoxing, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
15
|
Huff TC, Sant DW, Camarena V, Van Booven D, Andrade NS, Mustafi S, Monje PV, Wang G. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes. J Neurochem 2021; 157:1759-1773. [PMID: 32219848 PMCID: PMC7530063 DOI: 10.1111/jnc.15015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.
Collapse
Affiliation(s)
- Tyler C. Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David W. Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadja S. Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V. Monje
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Meng L, Lu C, Wu B, Lan C, Mo L, Chen C, Wang X, Zhang N, Lan L, Wang Q, Zeng X, Li X, Tang S. Taurine Antagonizes Macrophages M1 Polarization by Mitophagy-Glycolysis Switch Blockage via Dragging SAM-PP2Ac Transmethylation. Front Immunol 2021; 12:648913. [PMID: 33912173 PMCID: PMC8071881 DOI: 10.3389/fimmu.2021.648913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The excessive M1 polarization of macrophages drives the occurrence and development of inflammatory diseases. The reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Taurine promotes for the balance of energy metabolism and the repair of inflammatory injury, preventing chronic diseases and complications. However, little is known about the mechanisms underlying the action of taurine modulating the macrophage polarization phenotype. In this study, we constructed a low-dose LPS/IFN-γ-induced M1 polarization model to simulate a low-grade pro-inflammatory process. Our results indicate that the taurine transporter TauT/SlC6A6 is upregulated at the transcriptional level during M1 macrophage polarization. The nutrient uptake signal on the membrane supports the high abundance of taurine in macrophages after taurine supplementation, which weakens the status of methionine metabolism, resulting in insufficient S-adenosylmethionine (SAM). The low availability of SAM is directly sensed by LCMT-1 and PME-1, hindering PP2Ac methylation. PP2Ac methylation was found to be necessary for M1 polarization, including the positive regulation of VDAC1 and PINK1. Furthermore, its activation was found to promote the elimination of mitochondria by macrophages via the mitophagy pathway for metabolic adaptation. Mechanistically, taurine inhibits SAM-dependent PP2Ac methylation to block PINK1-mediated mitophagy flux, thereby maintaining a high mitochondrial density, which ultimately hinders the conversion of energy metabolism to glycolysis required for M1. Our findings reveal a novel mechanism of taurine-coupled M1 macrophage energy metabolism, providing novel insights into the occurrence and prevention of low-grade inflammation, and propose that the sensing of taurine and SAM availability may allow communication to inflammatory response in macrophages.
Collapse
Affiliation(s)
- Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Bin Wu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Chunhua Lan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Laiming Mo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Chengying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Lan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Qihui Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Zeng
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
[6 S]-5-Methyltetrahydrofolic Acid and Folic Acid Pregnancy Diets Differentially Program Metabolic Phenotype and Hypothalamic Gene Expression of Wistar Rat Dams Post-Birth. Nutrients 2020; 13:nu13010048. [PMID: 33375730 PMCID: PMC7823556 DOI: 10.3390/nu13010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
[6S]-5-methyltetrahydrofolic acid (MTHF) is a proposed replacement for folic acid (FA) in diets and prenatal supplements. This study compared the effects of these two forms on maternal metabolism and hypothalamic gene expression. Pregnant Wistar rats received an AIN-93G diet with recommended FA (1X, 2 mg/kg, control), 5X-FA or equimolar levels of MTHF. During lactation they received the control diet and then a high fat diet for 19-weeks post-weaning. Body weight, adiposity, food intake, energy expenditure, plasma hormones, folate, and 1-carbon metabolites were measured. RNA-sequencing of the hypothalamus was conducted at parturition. Weight-loss from weaning to 1-week post-weaning was less in dams fed either form of the 5X vs. 1X folate diets, but final weight-gain was higher in 5X-MTHF vs. 5X-FA dams. Both doses of the MTHF diets led to 8% higher food intake and associated with lower plasma leptin at parturition, but higher leptin at 19-weeks and insulin resistance at 1-week post-weaning. RNA-sequencing revealed 279 differentially expressed genes in the hypothalamus in 5X-MTHF vs. 5X-FA dams. These findings indicate that MTHF and FA differ in their programing effects on maternal phenotype, and a potential adverse role of either form when given at the higher doses.
Collapse
|
18
|
Magazi D, Longombenza B, Mda S, Van der Meyden K, Motshwane M, Nanjoh M, Towobola O. HIV infection, seasonality and younger age predicting incident Bell's palsy among black South Africans. BMC Neurol 2020; 20:381. [PMID: 33087095 PMCID: PMC7576736 DOI: 10.1186/s12883-020-01965-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Although South Africa (SA) is facing a high prevalence of HIV infection, there is no literature from this region on a link between Bell’s palsy and HIV. The aim of this study was to identify the occurrence of Bell’s palsy in relation to demographics, seasons and HIV status among black South Africans. Methods This retrospective cohort was conducted among adult black patients, without Bell’s palsy in 2003, presenting to the neurology outpatients department at Dr. George Mukhari Academic hospital, Pretoria, South Africa, between 2004 (study baseline) and 2012 (end test). Gender, age, HIV status, and seasons were potential predictors of Bell’s palsy using Cox regression model and Kaplan Meier curves. Results From the baseline of 1487 patients, 20.9% (n = 311) experienced Bell’s palsy onset by the end of the study. In univariate analysis, male gender (RR = 2.1 95% CI 1.7–2.5; P < 0.0001), age less than 30 years (RR = 2.9 95% CI 2.4–3.6; P < 0.0001), HIV seropositivity (RR =2.9 95% CI 2.3–4.9; P < 0.0001). The highest incidence in winter (30.3% n = 136/450) vs. incidences during other seasons with Intermediate values during Summer (25.3% n = 136/450) and Autumn (20.7% n = 64/308) and the lowest incidence in Spring (23.7% n = 16/353) P < 0.0001) were predictors of Bell’s palsy. In multivariate analysis at adjusting for gender, the most significant and independent predictors of incident Bell’s palsy were HIV seropositivity (HR = 6.3 95% CI 4.8–8.3; P < 0.0001), winter (HR = 1.6 95% CI 1.2–2.1; P < 0.0001) vs. other seasons, and younger age < 30 years (HR = 7.1 95% CI 5.6–9.1; P < 0.0001) vs. older age groups. Conclusion Seasonality, younger age and HIV positivity are important and independent risk factors of Bell’s palsy. Education and awareness programs on the possible effects of HIV and seasons on the development of Bell’s palsy are necessary. This would lead to a better understanding and even a possible development of avoidance measures for this condition amongst young black South Africans.
Collapse
Affiliation(s)
- Dali Magazi
- Department of Neurology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| | - Benjamin Longombenza
- Department of Internal Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Siyazi Mda
- Department of Paediatrics, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Kees Van der Meyden
- Department of Neurology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Marcus Motshwane
- Department of statistics, Tshwane University of technology, Pretoria, South Africa
| | - Mirabel Nanjoh
- Faculty of health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Olakunle Towobola
- Department of Internal Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
19
|
Wu B, Cai H, Tang S, Xu Y, Shi Q, Wei L, Meng L, Zhang N, Wang X, Xiao D, Zou Y, Yang X, Li X, Lu C. Methionine-Mediated Protein Phosphatase 2A Catalytic Subunit (PP2Ac) Methylation Ameliorates the Tauopathy Induced by Manganese in Cell and Animal Models. Neurotherapeutics 2020; 17:1878-1896. [PMID: 32959271 PMCID: PMC7851222 DOI: 10.1007/s13311-020-00930-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.
Collapse
Affiliation(s)
- Bin Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yilu Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
20
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
21
|
Anand RS, Ganesan D, Selvam S, Rajasekaran S, Jayavelu T. Distinct utilization of biotin in and between adipose and brain during aging is associated with a lipogenic shift in Wistar rat brain. Nutr Res 2020; 79:68-76. [PMID: 32650222 DOI: 10.1016/j.nutres.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Abstract
Tissue-specific metabolism determines their functions that collectively sense and respond to numerous stress cues to achieve systemic homeostasis. Chronic stress skews such metabolic profiles and leads to failure of organs as evidenced by a bias towards lipid synthesis and storage in the aging brain, muscle, and liver under Alzheimer's disease, sarcopenia, and non-alcoholic fatty liver disease, respectively. In contrast, the tissue destined for lipid synthesis and storage, such as adipose, limits its threshold and develops diabetes mellitus. However, the underlying factors that contribute to this lipogenic shift between organs are unknown. From this perspective, differential biotin utilization between lipid-rich tissues such as adipose and brain during aging was hypothesized owing to the established role of biotin in lipogenesis. The same was tested using young and aged Wistar rats. We found that adipose-specific biotin content was much higher than the brain irrespective of aging status, as well as its associated cues. However, within tissues, the adipose fails to maintain its biotinylation levels during aging whereas the brain seizes more biotin and exhibits lipid accumulation. Furthermore, mimicking the age-related stress cues in vitro such as high glucose and endoplasmic reticulum stress deprive the astroglial biotin content, but not that of adipocytes. Lipid accumulation in the aging brain was also correlated with increased S-adenosylmethionine levels and biotin utilization by astrocytes. In summary, differential biotin utilization between adipose and brain under aging and their respective cell types like adipocytes and astrocytes under age-associated stress cues connects well with the lipogenic shift in rat brain.
Collapse
|
22
|
Finnegan AI, Kim S, Jin H, Gapinske M, Woods WS, Perez-Pinera P, Song JS. Epigenetic engineering of yeast reveals dynamic molecular adaptation to methylation stress and genetic modulators of specific DNMT3 family members. Nucleic Acids Res 2020; 48:4081-4099. [PMID: 32187373 PMCID: PMC7192628 DOI: 10.1093/nar/gkaa161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Cytosine methylation is a ubiquitous modification in mammalian DNA generated and maintained by several DNA methyltransferases (DNMTs) with partially overlapping functions and genomic targets. To systematically dissect the factors specifying each DNMT's activity, we engineered combinatorial knock-in of human DNMT genes in Komagataella phaffii, a yeast species lacking endogenous DNA methylation. Time-course expression measurements captured dynamic network-level adaptation of cells to DNMT3B1-induced DNA methylation stress and showed that coordinately modulating the availability of S-adenosyl methionine (SAM), the essential metabolite for DNMT-catalyzed methylation, is an evolutionarily conserved epigenetic stress response, also implicated in several human diseases. Convolutional neural networks trained on genome-wide CpG-methylation data learned distinct sequence preferences of DNMT3 family members. A simulated annealing interpretation method resolved these preferences into individual flanking nucleotides and periodic poly(A) tracts that rotationally position highly methylated cytosines relative to phased nucleosomes. Furthermore, the nucleosome repeat length defined the spatial unit of methylation spreading. Gene methylation patterns were similar to those in mammals, and hypo- and hypermethylation were predictive of increased and decreased transcription relative to control, respectively, in the absence of mammalian readers of DNA methylation. Introducing controlled epigenetic perturbations in yeast thus enabled characterization of fundamental genomic features directing specific DNMT3 proteins.
Collapse
Affiliation(s)
- Alex I Finnegan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Somang Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA
| | - Jun S Song
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Komatsu T, Urano Y. Chemical toolbox for 'live' biochemistry to understand enzymatic functions in living systems. J Biochem 2020; 167:139-149. [PMID: 31553443 DOI: 10.1093/jb/mvz074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 11/12/2022] Open
Abstract
In this review, we present an overview of the recent advances in chemical toolboxes that are used to provide insights into 'live' protein functions in living systems. Protein functions are mediated by various factors inside of cells, such as protein-protein interactions, posttranslational modifications, and they are also subject to environmental factors such as pH, redox states and crowding conditions. Obtaining a true understanding of protein functions in living systems is therefore a considerably difficult task. Recent advances in research tools have allowed us to consider 'live' biochemistry as a valid approach to precisely understand how proteins function in a live cell context.
Collapse
Affiliation(s)
- Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Core Research for Evolutional Science and Technology (CREST) Investigator, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
24
|
Ogihara S, Komatsu T, Itoh Y, Miyake Y, Suzuki T, Yanagi K, Kimura Y, Ueno T, Hanaoka K, Kojima H, Okabe T, Nagano T, Urano Y. Metabolic-Pathway-Oriented Screening Targeting S-Adenosyl-l-methionine Reveals the Epigenetic Remodeling Activities of Naturally Occurring Catechols. J Am Chem Soc 2020; 142:21-26. [PMID: 31869215 DOI: 10.1021/jacs.9b08698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methyl transfer reactions play important roles in many biological phenomena, wherein the methylation cofactor S-adenosyl-l-methionine (SAM) serves as the important currency to orchestrate those reactions. We have developed a fluorescent-probe-based high-throughput screening (HTS) system to search for the compounds that control cellular SAM levels. HTS with a drug repositioning library revealed the importance of catechol-O-methyltransferase (COMT) and its substrates in controlling the SAM concentrations and histone methylation levels in colorectal tumor cells.
Collapse
Affiliation(s)
| | | | - Yukihiro Itoh
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan
| | - Yuka Miyake
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan.,The Institute of Scientific and Industrial Research (ISIR) , Osaka University , 8-1 Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan.,The Institute of Scientific and Industrial Research (ISIR) , Osaka University , 8-1 Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | | | | | | | | | - Hirotatsu Kojima
- Drug Discovery Initiative , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Yasuteru Urano
- Core Research for Evolutional Science and Technology (CREST) , Japan Agency for Medical Research and Development (AMED) , 1-7-1 Otemachi , Chiyoda-ku , Tokyo 100-0004 , Japan
| |
Collapse
|
25
|
Burdeos GC, Blank R, Wolffram S. Influence of quercetin on the global DNA methylation pattern in pigs. Food Funct 2020; 11:7421-7426. [DOI: 10.1039/d0fo00896f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The plant flavonol quercetin causes multiple health-promoting effects in human and animals.
Collapse
Affiliation(s)
- Gregor C. Burdeos
- Institute of Animal Nutrition and Physiology
- Christian-Albrechts-University Kiel
- Kiel
- Germany
| | - Ralf Blank
- Institute of Animal Nutrition and Physiology
- Christian-Albrechts-University Kiel
- Kiel
- Germany
| | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology
- Christian-Albrechts-University Kiel
- Kiel
- Germany
| |
Collapse
|
26
|
Hooshmand B, Refsum H, Smith AD, Kalpouzos G, Mangialasche F, von Arnim CAF, Kåreholt I, Kivipelto M, Fratiglioni L. Association of Methionine to Homocysteine Status With Brain Magnetic Resonance Imaging Measures and Risk of Dementia. JAMA Psychiatry 2019; 76:1198-1205. [PMID: 31339527 PMCID: PMC6659152 DOI: 10.1001/jamapsychiatry.2019.1694] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Impairment of methylation status (ie, methionine to homocysteine ratio) may be a modifiable risk factor for structural brain changes and incident dementia. OBJECTIVE To investigate the association of serum markers of methylation status and sulfur amino acids with risk of incident dementia, Alzheimer disease (AD), and the rate of total brain tissue volume loss during 6 years. DESIGN, SETTING, AND PARTICIPANTS This population-based longitudinal study was performed from March 21, 2001, to October 10, 2010, in a sample of 2570 individuals aged 60 to 102 years from the Swedish Study on Aging and Care in Kungsholmen who were dementia free at baseline and underwent comprehensive examinations and structural brain magnetic resonance imaging (MRI) on 2 to 3 occasions during 6 years. Data analysis was performed from March 1, 2018, to October 1, 2018. MAIN OUTCOMES AND MEASURES Incident dementia, AD, and the rate of total brain volume loss. RESULTS This study included 2570 individuals (mean [SD] age, 73.1 [10.4] years; 1331 [56.5%] female). The methionine to homocysteine ratio was higher in individuals who consumed vitamin supplements (median, 1.9; interquartile range [IQR], 1.5-2.6) compared with those who did not (median, 1.8; IQR, 1.3-2.3; P < .001) and increased per each quartile increase of vitamin B12 or folate. In the multiadjusted model, an elevated baseline serum total homocysteine level was associated with an increased risk of dementia and AD during 6 years: for the highest homocysteine quartile compared with the lowest, the hazard ratios (HRs) were 1.60 (95% CI, 1.01-2.55) for dementia and 2.33 (95% CI, 1.26-4.30) for AD. In contrast, elevated concentrations of methionine were associated with a decreased risk of dementia (HR, 0.54; 95% CI, 0.36-0.81) for the highest quartile compared with the lowest. Higher values of the methionine to homocysteine ratio were significantly associated with lower risk of dementia and AD: for the fourth methionine-homocysteine quartile compared with the first quartile, the HR was 0.44 (95% CI, 0.27-0.71) for incident dementia and 0.43 (95% CI, 0.23-0.80) for AD. In the multiadjusted linear mixed models, a higher methionine to homocysteine ratio was associated with a decreased rate of total brain tissue volume loss during the study period (β [SE] per 1-SD increase, 0.038 [0.014]; P = .007). CONCLUSIONS AND RELEVANCE The methionine to homocysteine status was associated with dementia development and structural brain changes during the 6-year study period, suggesting that a higher methionine to homocysteine ratio may be important in reducing the rate of brain atrophy and decreasing the risk of dementia in older adults.
Collapse
Affiliation(s)
- Babak Hooshmand
- Aging Research Center, Karolinska Institute, Stockholm, Sweden,Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom,Institute of Nutrition, University of Oslo, Oslo, Norway
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden,Theme Aging, Karolinska University Hospital, Stockholm, Sweden,Stockholms Sjukhem, Research & Development Unit, Stockholm, Sweden,Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom,Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
27
|
Nakamura T, Matsuo M. Reply to the Letter, "Methotrexate myelopathy: A mimicker of subacute combined degeneration of the spinal cord". Brain Dev 2019; 41:646. [PMID: 31027652 DOI: 10.1016/j.braindev.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Takuji Nakamura
- Department of Pediatrics, National Hospital Organization Ureshino Medical Center, 2436 Ureshino, Saga 843-0393, Japan.
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
28
|
Zhang CH, Lv X, Du W, Cheng MJ, Liu YP, Zhu L, Hao J. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy. Exp Cell Res 2019; 383:111502. [PMID: 31323191 DOI: 10.1016/j.yexcr.2019.111502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotropic factor (BDNF) deficiency in Schwann cells plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). Little is known about the mechanism involved in BDNF downregulation in Schwann cells in DPN. In this study, we first confirmed downregulation of BDNF and neurotrophin 3 expression in the sciatic nerves of diabetic mice, which was accompanied by myelin sheath abnormalities. Moreover, in vitro, high glucose was revealed to cause downregulation of BDNF, but not neurotrophin 3, expression in RSC96 cells, which was accompanied by DNA hypermethylation of BDNF promoters I and II. DNMT1 was subsequently revealed to be enhanced at the mRNA and protein levels in high glucose-stimulated RSC96 cells, and inhibition of DNMT1 with 5-Aza treatment or shRNA vector transfection reversed high glucose-induced reductions in BDNF expression. Furthermore, the mTOR and upstream Akt pathways were indicated to mediate high glucose-induced DNMT1 and BDNF expression in RSC96 cells. Taken together, our results suggest that the Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in DPN.
Collapse
Affiliation(s)
- Cui-Hong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Xin Lv
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Mei-Juan Cheng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ya-Ping Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
29
|
Vilella E, Gas C, Garcia-Ruiz B, Rivera FJ. Expression of DDR1 in the CNS and in myelinating oligodendrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118483. [PMID: 31108116 DOI: 10.1016/j.bbamcr.2019.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by fibrillar collagens. Here, we review the expression and role of DDR1 in the central nervous system (CNS). In a murine model, DDR1 is expressed in oligodendrocytes in the developing brain and during remyelination. In human adult brain tissue, DDR1 is detected in a similar pattern as other classical myelin proteins such as myelin basic protein (MBP). Up to 50 transcripts of DDR1 have been detected in human tissues, of which 5 isoforms have been identified. In the human brain, all 5 isoforms are detectable, but DDR1b is the most highly expressed, and DDR1c is coexpressed with myelin genes. DDR1 sequence variants have been associated with psychiatric disorders, and upregulation of this gene occurs in gliomas. Moreover, mutations in DDR1 have been found in tumors of Schwann cells, which are the myelinating cells of the peripheral nervous system. All these data suggest that DDR1 plays a role in myelination and is relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n, 43206 Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Avda. Josep Laporte, 1, 43204 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain; Centro de investigaciòn biomedical en red en Salud Mental (CIBERSAM), Spain.
| | - Cinta Gas
- Institut d'Investigació Sanitària Pere Virgili, Avda. Josep Laporte, 1, 43204 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain.
| | - Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/n, 43206 Reus, Spain; Universitat Rovira i Virgili, C/ Sant Llorenç, 21, 43201 Reus, Spain.
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, 5090000 Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
30
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 2019; 133:409-423. [PMID: 29122967 DOI: 10.1042/cs20171039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.
Collapse
|
32
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
33
|
Amino Acid Biosignature in Plasma among Ischemic Stroke Subtypes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8480468. [PMID: 30800679 PMCID: PMC6360633 DOI: 10.1155/2019/8480468] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
Ischemic stroke is a neurovascular disorder caused by reduced or blockage of blood flow to the brain, which may permanently affect motor and cognitive abilities. The diagnostic of stroke is performed using imaging technologies, clinical evaluation, and neuropsychological protocols, but no blood test is available yet. In this work, we analyzed amino acid concentrations in blood plasma from poststroke patients in order to identify differences that could characterize the stroke etiology. Plasma concentrations of sixteen amino acids from patients with chronic ischemic stroke (n = 73) and the control group (n = 16) were determined using gas chromatography coupled to mass spectrometry (GC-MS). The concentration data was processed by Partial Least Squares-Discriminant Analysis (PLS-DA) to classify patients with stroke and control. The amino acid analysis generated a first model able to discriminate ischemic stroke patients from control group. Proline was the most important amino acid for classification of the stroke samples in PLS-DA, followed by lysine, phenylalanine, leucine, and glycine, and while higher levels of methionine and alanine were mostly related to the control samples. The second model was able to discriminate the stroke subtypes like atherothrombotic etiology from cardioembolic and lacunar etiologies, with lysine, leucine, and cysteine plasmatic concentrations being the most important metabolites. Our results suggest an amino acid biosignature for patients with chronic stroke in plasma samples, which can be helpful in diagnosis, prognosis, and therapeutics of these patients.
Collapse
|
34
|
Cui D, Xu X. DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. Int J Mol Sci 2018; 19:E1315. [PMID: 29710796 PMCID: PMC5983821 DOI: 10.3390/ijms19051315] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing, a leading cause of the decline/deficits in human learning, memory, and cognitive abilities, is a major risk factor for age-associated neurodegenerative disorders such as Alzheimer’s disease. Emerging evidence suggests that epigenetics, an inheritable but reversible biochemical process, plays a crucial role in the pathogenesis of age-related neurological disorders. DNA methylation, the best-known epigenetic mark, has attracted most attention in this regard. DNA methyltransferases (DNMTs) are key enzymes in mediating the DNA methylation process, by which a methyl group is transferred, faithfully or anew, to genomic DNA sequences. Biologically, DNMTs are important for gene imprinting. Accumulating evidence suggests that DNMTs not only play critical roles, including gene imprinting and transcription regulation, in early development stages of the central nervous system (CNS), but also are indispensable in adult learning, memory, and cognition. Therefore, the impact of DNMTs and DNA methylation on age-associated cognitive functions and neurodegenerative diseases has emerged as a pivotal topic in the field. In this review, the effects of each DNMT on CNS development and healthy and pathological ageing are discussed.
Collapse
Affiliation(s)
- Di Cui
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.
| | - Xiangru Xu
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Lee HJ, Jedrychowski MP, Vinayagam A, Wu N, Shyh-Chang N, Hu Y, Min-Wen C, Moore JK, Asara JM, Lyssiotis CA, Perrimon N, Gygi SP, Cantley LC, Kirschner MW. Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. Cell Rep 2018; 20:721-736. [PMID: 28723573 DOI: 10.1016/j.celrep.2017.06.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 06/25/2017] [Indexed: 12/28/2022] Open
Abstract
There exist similarities and differences in metabolism and physiology between normal proliferative cells and tumor cells. Once a cell enters the cell cycle, metabolic machinery is engaged to facilitate various processes. The kinetics and regulation of these metabolic changes have not been properly evaluated. To correlate the orchestration of these processes with the cell cycle, we analyzed the transition from quiescence to proliferation of a non-malignant murine pro-B lymphocyte cell line in response to IL-3. Using multiplex mass-spectrometry-based proteomics, we show that the transition to proliferation shares features generally attributed to cancer cells: upregulation of glycolysis, lipid metabolism, amino-acid synthesis, and nucleotide synthesis and downregulation of oxidative phosphorylation and the urea cycle. Furthermore, metabolomic profiling of this transition reveals similarities to cancer-related metabolic pathways. In particular, we find that methionine is consumed at a higher rate than that of other essential amino acids, with a potential link to maintenance of the epigenome.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Ning Wu
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, S138672 Singapore, Singapore
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Chua Min-Wen
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, S138672 Singapore, Singapore
| | - Jodene K Moore
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Costas A Lyssiotis
- Division of Gastroenterology, Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Matsuoka H, Tanaka H, Sayanagi J, Iwahashi T, Suzuki K, Nishimoto S, Okada K, Murase T, Yoshikawa H. Neurotropin ® Accelerates the Differentiation of Schwann Cells and Remyelination in a Rat Lysophosphatidylcholine-Induced Demyelination Model. Int J Mol Sci 2018; 19:ijms19020516. [PMID: 29419802 PMCID: PMC5855738 DOI: 10.3390/ijms19020516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/21/2018] [Accepted: 02/03/2018] [Indexed: 12/23/2022] Open
Abstract
Neurotropin® (NTP), a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs) in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT) activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junichi Sayanagi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Medical Center for Translational and Clinical Research, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
37
|
Grunt TW. Interacting Cancer Machineries: Cell Signaling, Lipid Metabolism, and Epigenetics. Trends Endocrinol Metab 2018; 29:86-98. [PMID: 29203141 DOI: 10.1016/j.tem.2017.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer-specific perturbations of signaling, metabolism, and epigenetics can be a cause and/or consequence of malignant transformation. Evidence indicates that these regulatory systems interact with each other to form highly flexible and robust cybernetic networks that promote malignant growth and confer treatment resistance. Deciphering these plexuses using holistic approaches known from systems biology can be instructive for the future design of novel anticancer strategies. In this review, I discuss novel findings elucidating the multiple molecular interdependence among cancer-specific signaling, cell metabolism, and epigenetics to provide an insightful understanding of how major cancer machineries interact with each other during cancer development and progression, and how this knowledge may be used for future co-targeting strategies.
Collapse
Affiliation(s)
- Thomas W Grunt
- Signaling Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
38
|
Abstract
The journey of Schwann cells from their origin in the neural crest to their ensheathment and myelination of peripheral nerves is a remarkable one. Their apparent static function in enabling saltatory conduction of mature nerve is not only vital for long-term health of peripheral nerve but also belies an innate capacity of terminally differentiated Schwann cells to radically alter their differentiation status in the face of nerve injury. The transition from migrating neural crest cells to nerve ensheathment, and then myelination of large diameter axons has been characterized extensively and several of the transcriptional networks have been identified. However, transcription factors must also modify chromatin structure during Schwann cell maturation and this review will focus on chromatin modification machinery that is involved in promoting the transition to, and maintenance of, myelinating Schwann cells. In addition, Schwann cells are known to play important regenerative roles after peripheral nerve injury, and information on epigenomic reprogramming of the Schwann cell genome has emerged. Characterization of epigenomic requirements for myelin maintenance and Schwann cell responses to injury will be vital in understanding how the various Schwann cell functions can be optimized to maintain and repair peripheral nerve function.
Collapse
Affiliation(s)
- Ki H Ma
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Svaren
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018; 15:156-175. [PMID: 29340929 PMCID: PMC5794704 DOI: 10.1007/s13311-017-0593-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-Adenosyl methionine (SAMe), as a major methyl donor, exerts its influence on central nervous system function through cellular transmethylation pathways, including the methylation of DNA, histones, protein phosphatase 2A, and several catecholamine moieties. Based on available evidence, this review focuses on the lifelong range of severe neuropsychiatric and neurodegenerative diseases and their associated neuropathologies, which have been linked to the deficiency/load of SAMe production or/and the disturbance in transmethylation pathways. Also included in this review are the present-day applications of SAMe in the treatment in these diseases in each age group.
Collapse
Affiliation(s)
- Jin Gao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Mora MI, Molina M, Odriozola L, Elortza F, Mato JM, Sitek B, Zhang P, He F, Latasa MU, Ávila MA, Corrales FJ. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism. J Proteome Res 2017; 16:4506-4514. [PMID: 28944671 DOI: 10.1021/acs.jproteome.7b00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).
Collapse
Affiliation(s)
- María Isabel Mora
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Manuela Molina
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Leticia Odriozola
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - José María Mato
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pumin Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China
- National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China
- National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - María Uxue Latasa
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Matías Antonio Ávila
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Fernando José Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC , Proteored-ISCIII, CIBERehd. 28049 Madrid, Spain
| |
Collapse
|
41
|
Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R, Jessen KR, Aitman TJ. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury. Cell Rep 2017; 20:2719-2734. [PMID: 28903050 PMCID: PMC5608958 DOI: 10.1016/j.celrep.2017.08.064] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/17/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022] Open
Abstract
Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair.
Collapse
Affiliation(s)
- Peter J Arthur-Farraj
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Medicine, Imperial College, London W12 0NN, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Claire C Morgan
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Martyna Adamowicz
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 2XU, UK
| | - Jose A Gomez-Sanchez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Shaline V Fazal
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Anthony Beucher
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Bonnie Razzaghi
- Department of Medicine, Imperial College, London W12 0NN, UK
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Timothy J Aitman
- Department of Medicine, Imperial College, London W12 0NN, UK; Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 2XU, UK.
| |
Collapse
|
42
|
Jacob C. Chromatin-remodeling enzymes in control of Schwann cell development, maintenance and plasticity. Curr Opin Neurobiol 2017; 47:24-30. [PMID: 28850819 DOI: 10.1016/j.conb.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023]
Abstract
Gene regulation is essential for cellular differentiation and plasticity. Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), develop from neural crest cells to mature myelinating SCs and can at early developmental stage differentiate into various cell types. After a PNS lesion, SCs can also convert into repair cells that guide and stimulate axonal regrowth, and remyelinate regenerated axons. What controls their development and versatile nature? Several recent studies highlight the key roles of chromatin modifiers in these processes, allowing SCs to regulate their gene expression profile and thereby acquire or change their identity and quickly react to their environment.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
43
|
Forster VJ, McDonnell A, Theobald R, McKay JA. Effect of methotrexate/vitamin B 12 on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity. Epigenomics 2017; 9:1205-1218. [PMID: 28809129 PMCID: PMC5638018 DOI: 10.2217/epi-2016-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) is administered to treat childhood acute lymphoblastic leukemia (ALL). It acts by inhibiting dihydrofolate reductase which reduces methyltetrahydrofolate, a key component in one carbon metabolism, thus reducing cell proliferation. Further perturbations to one carbon metabolism, such as reduced vitamin B12 levels via the use of nitrous oxide for sedation during childhood ALL treatment, may increase neurotoxicity risk. With B12 as an enzymatic cofactor, methyltetrahydrofolate is essential to produce methionine, which is critical for DNA methylation. We investigated global and gene specific DNA methylation in neuronal cell lines in response to MTX treatment and vitamin B12 concentration individually, and in combination. Results: MTX treatment alone significantly increased LINE-1 methylation in SH-SY5Y (p = 0.040) and DAOY (p < 0.001), and increased FKBP5 methylation in MO3.13 cells (p = 0.009). Conclusion: We conclude that altered DNA methylation of brain/central nervous system cells could be one mechanism involved in MTX treatment-related neurotoxicities and neurocognitive late effects in ALL survivors.
Collapse
Affiliation(s)
- Victoria J Forster
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Alex McDonnell
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Theobald
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Jill A McKay
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, Lavin JL, Mayo R, Ilisso CP, de Juan VG, Iruarrizaga-Lejarreta M, delaCruz-Villar L, Mincholé I, Robinson A, Crespo J, Martín-Duce A, Romero-Gomez M, Sann H, Platon J, Van Eyk J, Aspichueta P, Noureddin M, Falcón-Pérez JM, Anguita J, Aransay AM, Martínez-Chantar ML, Lu SC, Mato JM. Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. Gastroenterology 2017; 152:1449-1461.e7. [PMID: 28132890 PMCID: PMC5406239 DOI: 10.1053/j.gastro.2017.01.015] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. METHODS We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. RESULTS Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. CONCLUSIONS In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients.
Collapse
Affiliation(s)
- Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio,
Spain
| | | | - Marta Varela-Rey
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio,
Spain
| | | | - Nicolás Navasa
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio,
Spain
| | | | - José L Lavin
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio,
Spain
| | - Rebeca Mayo
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio,
Spain
| | | | | | | | | | - Itziar Mincholé
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio,
Spain
| | - Aaron Robinson
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai
Medical Center, Los Angeles, CA, USA
| | - Javier Crespo
- Gastroenterology and Hepatology Department. Infection, Immunity and
Digestive Pathology Group. IDIVAL, Instituto de Investigación Valdecilla.
Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Antonio Martín-Duce
- Hospital Universitario Príncipe de Asturias. Faculty of
Medicine and Health Science. Alcalá University, Madrid, Spain
| | - Manuel Romero-Gomez
- Unidad de Enfermedades Digestivas. Hospital Virgen de Valme.
Hospital Universitario Virgen Macarena y Virgen del Rocío. Instituto de
Biomedicina de Sevilla, Universidad de Sevilla, CIBERehd, Seville, Spain
| | - Holger Sann
- Abbott Laboratories GmbH, Freundallee 9A, 30173 Hannover,
Germany
| | - Julian Platon
- Abbott, Hegenheimermattweg 127, 4123 Allschwil, Switzerland
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai
Medical Center, Los Angeles, CA, USA
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country,
Biocruces Research Institute, Spain
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | | | - Juan Anguita
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio,
Spain
| | - Ana M Aransay
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio,
Spain
| | | | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - José M Mato
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain.
| |
Collapse
|
45
|
Röhr D, Halfter H, Schulz JB, Young P, Gess B. Sodium-dependent Vitamin C transporter 2 deficiency impairs myelination and remyelination after injury: Roles of collagen and demethylation. Glia 2017; 65:1186-1200. [PMID: 28456003 DOI: 10.1002/glia.23152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022]
Abstract
Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2+/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2+/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters.
Collapse
Affiliation(s)
- Dominik Röhr
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany.,Department of Biology, University of Muenster, Muenster, Germany
| | - Hartmut Halfter
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany
| | - Burkhard Gess
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
46
|
Comparison of DNA Methylation in Schwann Cells before and after Peripheral Nerve Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5393268. [PMID: 28459064 PMCID: PMC5385226 DOI: 10.1155/2017/5393268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023]
Abstract
This study aims to find the difference of genomewide DNA methylation in Schwann cells (SCs) before and after peripheral nerve system (PNS) injury by Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) and seek meaningful differentially methylated genes related to repairment of injured PNS. SCs harvested from sciatic nerve were named as activated Schwann cells (ASCs), and the ones harvested from brachial plexus were named as normal Schwann cells (NSCs). Genomic DNA of ASCs and NSCs were isolated and MeDIP-Seq was conducted. Differentially methylated genes and regions were discovered and analyzed by bioinformatic methods. MeDIP-Seq analysis showed methylation differences were identified between ASCs and NSCs. The distribution of differentially methylated regions (DMRs) peaks in different components of genome was mainly located in distal intergenic regions. GO and KEGG analysis of these methylated genes were also conducted. The expression patterns of hypermethylated genes (Dgcr8, Zeb2, Dixdc1, Sox2, and Shh) and hypomethylated genes (Gpr126, Birc2) detected by qRT-PCR were opposite to the MeDIP analysis data with significance (p < 0.05), which proved MeDIP analysis data were real and believable. Our data serve as a basis for understanding the injury-induced epigenetic changes in SCs and the foundation for further studies on repair of PNS injury.
Collapse
|
47
|
Moyon S, Casaccia P. DNA methylation in oligodendroglial cells during developmental myelination and in disease. NEUROGENESIS 2017; 4:e1270381. [PMID: 28203606 DOI: 10.1080/23262133.2016.1270381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 (Dnmt1) we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative Advanced Science Research Center, CUNY, New York, NY, USA
| |
Collapse
|
48
|
Ye Q, Bai F, Zhang Z. Shared Genetic Risk Factors for Late-Life Depression and Alzheimer's Disease. J Alzheimers Dis 2017; 52:1-15. [PMID: 27060956 DOI: 10.3233/jad-151129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Considerable evidence has been reported for the comorbidity between late-life depression (LLD) and Alzheimer's disease (AD), both of which are very common in the general elderly population and represent a large burden on the health of the elderly. The pathophysiological mechanisms underlying the link between LLD and AD are poorly understood. Because both LLD and AD can be heritable and are influenced by multiple risk genes, shared genetic risk factors between LLD and AD may exist. OBJECTIVE The objective is to review the existing evidence for genetic risk factors that are common to LLD and AD and to outline the biological substrates proposed to mediate this association. METHODS A literature review was performed. RESULTS Genetic polymorphisms of brain-derived neurotrophic factor, apolipoprotein E, interleukin 1-beta, and methylenetetrahydrofolate reductase have been demonstrated to confer increased risk to both LLD and AD by studies examining either LLD or AD patients. These results contribute to the understanding of pathophysiological mechanisms that are common to both of these disorders, including deficits in nerve growth factors, inflammatory changes, and dysregulation mechanisms involving lipoprotein and folate. Other conflicting results have also been reviewed, and few studies have investigated the effects of the described polymorphisms on both LLD and AD. CONCLUSION The findings suggest that common genetic pathways may underlie LLD and AD comorbidity. Studies to evaluate the genetic relationship between LLD and AD may provide insights into the molecular mechanisms that trigger disease progression as the population ages.
Collapse
|
49
|
Walker AK. 1-Carbon Cycle Metabolites Methylate Their Way to Fatty Liver. Trends Endocrinol Metab 2017; 28:63-72. [PMID: 27789099 PMCID: PMC5183509 DOI: 10.1016/j.tem.2016.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 01/19/2023]
Abstract
Fatty liver is a complex disease often accompanying metabolic syndrome and Type 2 diabetes mellitus (T2DM). Hepatosteatosis may have roots in multiple metabolic abnormalities. However, metabolic dysfunction in the 1-carbon cycle (1CC), which produces the methyl donor S-adenosylmethionine (SAM) and phosphatidylcholine (PC), induces hepatic lipogenesis in model systems. Human diseases where 1CC or PC synthesis is disrupted, such as alcoholism, congenital lipodystrophy, or cystic fibrosis, often present with fatty liver. Given that the 1CC is clearly linked to this disease, it is critical to understand how the individual metabolites drive mechanisms increasing stored hepatic lipids. In this review, I summarize evidence that ties the 1CC to fatty liver disease along with data proposing mechanisms for increased lipogenesis or decreased lipid export by phosphatidylcholine.
Collapse
|
50
|
Weng YL, Joseph J, An R, Song H, Ming GL. Epigenetic regulation of axonal regenerative capacity. Epigenomics 2016; 8:1429-1442. [PMID: 27642866 DOI: 10.2217/epi-2016-0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation of neuronal growth ability upon injury. In this review, we summarize the latest findings implicating epigenetic mechanisms, including histone and DNA modifications, in axon regeneration and discuss differential epigenomic configurations between neurons in the adult mammalian CNS and PNS.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ran An
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|