1
|
Moreira P, Pocock R. Functions of nuclear factor Y in nervous system development, function and health. Neural Regen Res 2025; 20:2887-2894. [PMID: 39610092 PMCID: PMC11826454 DOI: 10.4103/nrr.nrr-d-24-00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024] Open
Abstract
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes, one of the most common motifs found in gene promoters and enhancers. Over the last 30 years, research has revealed that the nuclear factor Y complex controls many aspects of brain development, including differentiation, axon guidance, homeostasis, disease, and most recently regeneration. However, a complete understanding of transcriptional regulatory networks, including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive. In this review, we explore the nuclear factor Y complex's role and mode of action during brain development, as well as how genomic technologies may expand understanding of this key regulator of gene expression.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Mace K, Zimmerman A, Chesi A, Doldur-Balli F, Kim H, Almeraya Del Valle E, Pack AI, Grant SFA, Kayser MS. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615048. [PMID: 39386457 PMCID: PMC11463363 DOI: 10.1101/2024.09.25.615048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Idiopathic hypersomnia (IH) is a poorly-understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2 , synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia , CADM2 , results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2 . These findings point towards NPY modulation as a treatment target for human hypersomnia.
Collapse
|
3
|
Karkali K, Saunders TE, Panayotou G, Martín-Blanco E. JNK signaling in pioneer neurons organizes ventral nerve cord architecture in Drosophila embryos. Nat Commun 2023; 14:675. [PMID: 36750572 PMCID: PMC9905486 DOI: 10.1038/s41467-023-36388-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Morphogenesis of the Central Nervous System (CNS) is a complex process that obeys precise architectural rules. Yet, the mechanisms dictating these rules remain unknown. Analyzing morphogenesis of the Drosophila embryo Ventral Nerve Cord (VNC), we observe that a tight control of JNK signaling is essential for attaining the final VNC architecture. JNK signaling in a specific subset of pioneer neurons autonomously regulates the expression of Fasciclin 2 (Fas 2) and Neurexin IV (Nrx IV) adhesion molecules, probably via the transcription factor zfh1. Interfering at any step in this cascade affects fasciculation along pioneer axons, leading to secondary cumulative scaffolding defects during the structural organization of the axonal network. The global disorder of architectural landmarks ultimately influences nervous system condensation. In summary, our data point to JNK signaling in a subset of pioneer neurons as a key element underpinning VNC architecture, revealing critical milestones on the mechanism of control of its structural organization.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- BSRC Alexander Fleming, 34 Fleming Street, 16672, Vari, Greece
| | - Timothy E Saunders
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
4
|
Chen Y, Liu TT, Niu M, Li X, Wang X, Liu T, Li Y. Epilepsy gene prickle ensures neuropil glial ensheathment through regulating cell adhesion molecules. iScience 2022; 26:105731. [PMID: 36582832 PMCID: PMC9792895 DOI: 10.1016/j.isci.2022.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Human PRICKLE1 gene has been associated with epilepsy. However, the underlying pathogenetic mechanisms remain elusive. Here we report a Drosophila prickle mutant pk IG1-1 exhibiting strong epileptic seizures and, intriguingly, abnormal glial wrapping. We found that pk is required in both neurons and glia, particularly neuropil ensheathing glia (EGN), the fly analog of oligodendrocyte, for protecting the animal from seizures. We further revealed that Pk directly binds to the membrane skeleton binding protein Ankyrin 2 (Ank2), thereby regulating the cell adhesion molecule Neuroglian (Nrg). Such protein interactions also apply to their human homologues. Moreover, nrg and ank2 mutant flies also display seizure phenotypes, and expression of either Nrg or Ank2 rescues the seizures of pk IG1-1 flies. Therefore, our findings indicate that Prickle ensures neuron-glial interaction within neuropils through regulating cell adhesion between neurons and ensheathing glia. Dysregulation of this process may represent a conserved pathogenic mechanism underlying PRICKLE1-associated epilepsy.
Collapse
Affiliation(s)
- Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,Corresponding author
| | - Tong-Tong Liu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Niu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoting Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
5
|
Kovalenko A, Yaron A. Cracking the combinatorial code of neuronal wiring. Neuron 2022; 110:2204-2206. [PMID: 35863317 DOI: 10.1016/j.neuron.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How transcription factors orchestrate the combinatorial expression of cell-surface proteins that, in turn, specify the wiring of the nervous system is an open question. In this issue of Neuron, Xie et al. reveal a new, unexpected layer of complexity.
Collapse
Affiliation(s)
- Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Xie Q, Li J, Li H, Udeshi ND, Svinkina T, Orlin D, Kohani S, Guajardo R, Mani DR, Xu C, Li T, Han S, Wei W, Shuster SA, Luginbuhl DJ, Quake SR, Murthy SE, Ting AY, Carr SA, Luo L. Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron 2022; 110:2299-2314.e8. [PMID: 35613619 DOI: 10.1016/j.neuron.2022.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.
Collapse
Affiliation(s)
- Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sayeh Kohani
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Wei Wei
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S Andrew Shuster
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Swetha E Murthy
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
The Role of Even-Skipped in Drosophila Larval Somatosensory Circuit Assembly. eNeuro 2022; 9:ENEURO.0403-21.2021. [PMID: 35031555 PMCID: PMC8856706 DOI: 10.1523/eneuro.0403-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
Proper somatosensory circuit assembly is critical for processing somatosensory stimuli and for responding accordingly. In comparison to other sensory circuits (e.g., olfactory and visual), somatosensory circuits have unique anatomy and function. However, understanding of somatosensory circuit development lags far behind that of other sensory systems. For example, there are few identified transcription factors required for integration of interneurons into functional somatosensory circuits. Here, as a model, we examine one type of somatosensory interneuron, Even-skipped (Eve) expressing laterally placed interneurons (ELs) of the Drosophila larval nerve cord. Eve is a highly conserved, homeodomain transcription factor known to play a role in cell fate specification and neuronal axon guidance. Because marker genes are often functionally important in the cell types they define, we deleted eve expression specifically from EL interneurons. On the cell biological level, using single neuron labeling, we find eve plays several previously undescribed roles in refinement of neuron morphogenesis. Eve suppresses aberrant neurite branching, promotes axon elongation, and regulates dorsal-ventral dendrite position. On the circuit level, using optogenetics, calcium imaging, and behavioral analysis, we find eve expression is required in EL interneurons for the normal encoding of somatosensory stimuli and for normal mapping of outputs to behavior. We conclude that the eve gene product coordinately regulates multiple aspects of EL interneuron morphogenesis and is critically required to properly integrate EL interneurons into somatosensory circuits. Our data shed light on the genetic regulation of somatosensory circuit assembly.
Collapse
|
8
|
Hörmann N, Schilling T, Ali AH, Serbe E, Mayer C, Borst A, Pujol-Martí J. A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in Drosophila. Development 2020; 147:223179. [PMID: 32238425 PMCID: PMC7240302 DOI: 10.1242/dev.186296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Direction-selective T4/T5 neurons exist in four subtypes, each tuned to visual motion along one of the four cardinal directions. Along with their directional tuning, neurons of each T4/T5 subtype orient their dendrites and project their axons in a subtype-specific manner. Directional tuning, thus, appears strictly linked to morphology in T4/T5 neurons. How the four T4/T5 subtypes acquire their distinct morphologies during development remains largely unknown. Here, we investigated when and how the dendrites of the four T4/T5 subtypes acquire their specific orientations, and profiled the transcriptomes of all T4/T5 neurons during this process. This revealed a simple and stable combinatorial code of transcription factors defining the four T4/T5 subtypes during their development. Changing the combination of transcription factors of specific T4/T5 subtypes resulted in predictable and complete conversions of subtype-specific properties, i.e. dendrite orientation and matching axon projection pattern. Therefore, a combinatorial code of transcription factors coordinates the development of dendrite and axon morphologies to generate anatomical specializations that differentiate subtypes of T4/T5 motion-sensing neurons. Summary: Morphological and transcriptomic analyses allowed the identification of a combinatorial code of transcription factors that controls the development of subtype-specific morphologies in motion-detecting neurons of the Drosophila visual system.
Collapse
Affiliation(s)
- Nikolai Hörmann
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Tabea Schilling
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aicha Haji Ali
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Etienne Serbe
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jesús Pujol-Martí
- Department of Circuits - Computation - Models, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Kurmangaliyev YZ, Yoo J, LoCascio SA, Zipursky SL. Modular transcriptional programs separately define axon and dendrite connectivity. eLife 2019; 8:50822. [PMID: 31687928 PMCID: PMC6855804 DOI: 10.7554/elife.50822] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023] Open
Abstract
Patterns of synaptic connectivity are remarkably precise and complex. Single-cell RNA sequencing has revealed a vast transcriptional diversity of neurons. Nevertheless, a clear logic underlying the transcriptional control of neuronal connectivity has yet to emerge. Here, we focused on Drosophila T4/T5 neurons, a class of closely related neuronal subtypes with different wiring patterns. Eight subtypes of T4/T5 neurons are defined by combinations of two patterns of dendritic inputs and four patterns of axonal outputs. Single-cell profiling during development revealed distinct transcriptional programs defining each dendrite and axon wiring pattern. These programs were defined by the expression of a few transcription factors and different combinations of cell surface proteins. Gain and loss of function studies provide evidence for independent control of different wiring features. We propose that modular transcriptional programs for distinct wiring features are assembled in different combinations to generate diverse patterns of neuronal connectivity.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Juyoun Yoo
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
| | - Samuel A LoCascio
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
11
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Ou M, Wang S, Sun M, An J, Lv H, Zeng X, Hou SX, Xie W. The PDZ-GEF Gef26 regulates synapse development and function via FasII and Rap1 at the Drosophila neuromuscular junction. Exp Cell Res 2018; 374:342-352. [PMID: 30553967 DOI: 10.1016/j.yexcr.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.
Collapse
Affiliation(s)
- Mengzhu Ou
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Mingkuan Sun
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jinsong An
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huihui Lv
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xiankun Zeng
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Steven X Hou
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA.
| | - Wei Xie
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
13
|
Kinold JC, Pfarr C, Aberle H. Sidestep-induced neuromuscular miswiring causes severe locomotion defects in Drosophila larvae. Development 2018; 145:145/17/dev163279. [DOI: 10.1242/dev.163279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023]
Abstract
ABSTRACT
Mutations in motor axon guidance molecules cause aberrant projection patterns of motor nerves. As most studies in Drosophila have analysed these molecules in fixed embryos, the consequences for larval locomotion are entirely unexplored. Here, we took advantage of sidestep (side)-mutant larvae that display severe locomotion defects because of irreparable innervation errors. Mutations in side affected all motor nerve branches and all body wall regions. Innervation defects were non-stereotypical, showing unique innervation patterns in each hemisegment. Premature activation of Side in muscle precursors abrogated dorsal migration of motor nerves, resulting in larvae with a complete loss of neuromuscular junctions on dorsal-most muscles. High-speed videography showed that these larvae failed to maintain substrate contact and inappropriately raised both head and tail segments above the substrate, resulting in unique ‘arching’ and ‘lifting’ phenotypes. These results show that guidance errors in side mutants are maintained throughout larval life and are asymmetrical with respect to the bilateral body axis. Together with similar findings in mice, this study also suggests that miswiring could be an underlying cause of inherited movement disorders.
Collapse
Affiliation(s)
- Jaqueline C. Kinold
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Carsten Pfarr
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Hermann Aberle
- Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson's Disease. Genetics 2018; 209:1345-1356. [PMID: 29907646 DOI: 10.1534/genetics.118.301119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022] Open
Abstract
Disease phenotypes can be highly variable among individuals with the same pathogenic mutation. There is increasing evidence that background genetic variation is a strong driver of disease variability in addition to the influence of environment. To understand the genotype-phenotype relationship that determines the expressivity of a pathogenic mutation, a large number of backgrounds must be studied. This can be efficiently achieved using model organism collections such as the Drosophila Genetic Reference Panel (DGRP). Here, we used the DGRP to assess the variability of locomotor dysfunction in a LRRK2 G2019S Drosophila melanogaster model of Parkinson's disease (PD). We find substantial variability in the LRRK2 G2019S locomotor phenotype in different DGRP backgrounds. A genome-wide association study for candidate genetic modifiers reveals 177 genes that drive wide phenotypic variation, including 19 top association genes. Genes involved in the outgrowth and regulation of neuronal projections are enriched in these candidate modifiers. RNAi functional testing of the top association and neuronal projection-related genes reveals that pros, pbl, ct, and CG33506 significantly modify age-related dopamine neuron loss and associated locomotor dysfunction in the Drosophila LRRK2 G2019S model. These results demonstrate how natural genetic variation can be used as a powerful tool to identify genes that modify disease-related phenotypes. We report novel candidate modifier genes for LRRK2 G2019S that may be used to interrogate the link between LRRK2, neurite regulation and neuronal degeneration in PD.
Collapse
|
15
|
Santiago C, Bashaw GJ. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor. Cell Rep 2017; 18:1646-1659. [PMID: 28199838 DOI: 10.1016/j.celrep.2017.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/30/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl) controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra)/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
17
|
Li H, Watson A, Olechwier A, Anaya M, Sorooshyari SK, Harnett DP, Lee HKP, Vielmetter J, Fares MA, Garcia KC, Özkan E, Labrador JP, Zinn K. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife 2017; 6:28111. [PMID: 28829740 PMCID: PMC5578738 DOI: 10.7554/elife.28111] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. Within every organ of the body, cells must be able to recognise and communicate with one another in order to work together to perform a particular role. Each cell has a specific protein on its surface that acts like a molecular identity card, and which can form weak bonds with a complementary protein on another cell. There are thousands of different cell surface proteins, and the interactions between them – known collectively as the interactome – dictate the how cells interact with one another. Many cell surface proteins are similar across species. Humans and fruit flies, for example, both possess a family of cell surface proteins that contain a region called the Immunoglobulin Superfamily domain. This family can be further divided into subfamilies, two of which are known as “Beats” and “Sides” for short. As the nervous system develops, nerve cells carrying a particular Beat protein interact with nerve or muscle cells carrying a corresponding Side protein. Yet while experiments have matched up many Beats and Sides, the partners of others remain unknown. Li et al. have now developed a new technique called the Bio-Plex Interactome Assay to rapidly screen for interactions between multiple cell surface proteins in a single sample. Applying the technique to cells from fruit flies revealed new binding partners within the Beats and the Sides. After verifying several of these interactions, Li et al. explored the role of various Beats and Sides in the developing nervous system of fruit fly embryos by mapping the cells that display them on their surfaces. This increased knowledge of the Beat-Side binding network should provide further insights into how connections form between nerve cells. The new screening technique could also eventually be used to map the cell surface protein interactome in humans. A number of key drugs, including the breast cancer drug Herceptin, target cell surface proteins. Identifying interactions among cell surface proteins could thus provide additional leads for developing new therapies.
Collapse
Affiliation(s)
- Hanqing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ash Watson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Agnieszka Olechwier
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Michael Anaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | - Dermott P Harnett
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hyung-Kook Peter Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mario A Fares
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Department of Abiotic Stress, Group of Integrative and Systems Biology, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
18
|
Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F, Stoeckli ET, Araújo SJ. SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 2017; 77:963-974. [DOI: 10.1002/dneu.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo José Barrecheguren
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
| | - Oriol Ros
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
- Vall d'Hebron Institute of Research (VHIR); Barcelona 08035 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona 08010 Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Sofia J. Araújo
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona 08028 Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
| |
Collapse
|
19
|
Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Rep 2016; 14:1901-15. [PMID: 26904955 DOI: 10.1016/j.celrep.2016.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Asadzadeh J, Neligan N, Kramer SG, Labrador JP. Tinman Regulates NetrinB in the Cardioblasts of the Drosophila Dorsal Vessel. PLoS One 2016; 11:e0148526. [PMID: 26840059 PMCID: PMC4740434 DOI: 10.1371/journal.pone.0148526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis of the Drosophila dorsal vessel (DV) shares similarities with that of the vertebrate heart. Precursors line up at both sides of the embryo, migrate towards the midline and fuse to form a tubular structure. Guidance receptors and their ligands have been implicated in this process in vertebrates and invertebrates, as have been a series of evolutionarily conserved cardiogenic transcriptional regulators including Tinman, the Drosophila homolog of the transcription factor Nkx-2.5. NetrinB (NetB), a repulsive ligand for the Unc-5 receptor is required to preserve the dorsal vessel hollow. It localizes to the luminal space of the dorsal vessel but its source and its regulation is unknown. Here, using genetics together with in situ hybridization with single cell resolution, we show how tin is required for NetrinB expression in cardioblasts during DV tubulogenesis and sufficient to promote NetB transcription ectopically. We further identify a dorsal vessel-specific NetB enhancer and show that it is also regulated by tin in a similar fashion to NetB.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Niamh Neligan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Sunita G. Kramer
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
21
|
Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron 2015; 88:314-29. [PMID: 26439528 PMCID: PMC4619170 DOI: 10.1016/j.neuron.2015.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction.
Collapse
Affiliation(s)
- Ellie S Heckscher
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Aref Arzan Zarin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew Q Clark
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Akira Fushiki
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | | | | | | | - Maarten F Zwart
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
22
|
Abstract
Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Maggie M Shin
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
23
|
Asadzadeh J, Neligan N, Canabal-Alvear JJ, Daly AC, Kramer SG, Labrador JP. The Unc-5 Receptor Is Directly Regulated by Tinman in the Developing Drosophila Dorsal Vessel. PLoS One 2015; 10:e0137688. [PMID: 26356221 PMCID: PMC4565662 DOI: 10.1371/journal.pone.0137688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
During early heart morphogenesis cardiac cells migrate in two bilateral opposing rows, meet at the dorsal midline and fuse to form a hollow tube known as the primary heart field in vertebrates or dorsal vessel (DV) in Drosophila. Guidance receptors are thought to mediate this evolutionarily conserved process. A core of transcription factors from the NK2, GATA and T-box families are also believed to orchestrate this process in both vertebrates and invertebrates. Nevertheless, whether they accomplish their function, at least in part, through direct or indirect transcriptional regulation of guidance receptors is currently unknown. In our work, we demonstrate how Tinman (Tin), the Drosophila homolog of the Nkx-2.5 transcription factor, regulates the Unc-5 receptor during DV tube morphogenesis. We use genetics, expression analysis with single cell mRNA resolution and enhancer-reporter assays in vitro or in vivo to demonstrate that Tin is required for Unc-5 receptor expression specifically in cardioblasts. We show that Tin can bind to evolutionary conserved sites within an Unc-5 DV enhancer and that these sites are required for Tin-dependent transactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Niamh Neligan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Judith J. Canabal-Alvear
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Amanda C. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sunita Gupta Kramer
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
24
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132:81-95. [PMID: 26193487 DOI: 10.1016/j.pneurobio.2015.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Oliva C, Molina-Fernandez C, Maureira M, Candia N, López E, Hassan B, Aerts S, Cánovas J, Olguín P, Sierralta J. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila. Dev Neurobiol 2015; 75:1018-32. [PMID: 25652545 DOI: 10.1002/dneu.22271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
Abstract
During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.
Collapse
Affiliation(s)
- Carlos Oliva
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Claudia Molina-Fernandez
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Miguel Maureira
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Noemi Candia
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Estefanía López
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Bassem Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - José Cánovas
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Patricio Olguín
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Jimena Sierralta
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| |
Collapse
|
26
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|