1
|
Yu Y, Liao P, Jiang R. Ion Channels in Odor Information Processing of Neural Circuits of the Vertebrate Olfactory Bulb. Int J Mol Sci 2024; 25:13259. [PMID: 39769024 PMCID: PMC11675640 DOI: 10.3390/ijms252413259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Olfactory disorders and their associated complications present a considerable challenge to an individual's quality of life and emotional wellbeing. The current range of treatments, including surgical procedures, pharmacological interventions, and behavioral training, frequently proves ineffective in restoring olfactory function. The olfactory bulb (OB) is essential for odor processing and plays a pivotal role in the development of these disorders. Despite the acknowledged significance of ion channels in sensory functions and related pathologies, their specific involvement in OB remains unexplored. This review presents an overview of the functions of various ion channel families in regulating neuronal excitability, synaptic transmission, and the complex processes of olfactory perception. The objective of this review was to elucidate the role of ion channels in olfactory function, providing new insights into the diagnosis and treatment of olfactory dysfunction.
Collapse
Affiliation(s)
- Yunqing Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Eberhardt F. Ion-concentration gradients induced by synaptic input increase the voltage depolarization in dendritic spines. J Comput Neurosci 2024; 52:1-19. [PMID: 38349479 PMCID: PMC10924734 DOI: 10.1007/s10827-024-00864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
The vast majority of excitatory synaptic connections occur on dendritic spines. Due to their extremely small volume and spatial segregation from the dendrite, even moderate synaptic currents can significantly alter ionic concentrations. This results in chemical potential gradients between the dendrite and the spine head, leading to measurable electrical currents. In modeling electric signals in spines, different formalisms were previously used. While the cable equation is fundamental for understanding the electrical potential along dendrites, it only considers electrical currents as a result of gradients in electrical potential. The Poisson-Nernst-Planck (PNP) equations offer a more accurate description for spines by incorporating both electrical and chemical potential. However, solving PNP equations is computationally complex. In this work, diffusion currents are incorporated into the cable equation, leveraging an analogy between chemical and electrical potential. For simulating electric signals based on this extension of the cable equation, a straightforward numerical solver is introduced. The study demonstrates that this set of equations can be accurately solved using an explicit finite difference scheme. Through numerical simulations, this study unveils a previously unrecognized mechanism involving diffusion currents that amplify electric signals in spines. This discovery holds crucial implications for both numerical simulations and experimental studies focused on spine neck resistance and calcium signaling in dendritic spines.
Collapse
Affiliation(s)
- Florian Eberhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
- Bernstein Center for Computational Neuroscience, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
| |
Collapse
|
4
|
Zecevic D. Electrical properties of dendritic spines. Biophys J 2023; 122:4303-4315. [PMID: 37837192 PMCID: PMC10698282 DOI: 10.1016/j.bpj.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Dendritic spines are small protrusions that mediate most of the excitatory synaptic transmission in the brain. Initially, the anatomical structure of spines has suggested that they serve as isolated biochemical and electrical compartments. Indeed, following ample experimental evidence, it is now widely accepted that a significant physiological role of spines is to provide biochemical compartmentalization in signal integration and plasticity in the nervous system. In contrast to the clear biochemical role of spines, their electrical role is uncertain and is currently being debated. This is mainly because spines are small and not accessible to conventional experimental methods of electrophysiology. Here, I focus on reviewing the literature on the electrical properties of spines, including the initial morphological and theoretical modeling studies, indirect experimental approaches based on measurements of diffusional resistance of the spine neck, indirect experimental methods using two-photon uncaging of glutamate on spine synapses, optical imaging of intracellular calcium concentration changes, and voltage imaging with organic and genetically encoded voltage-sensitive probes. The interpretation of evidence from different preparations obtained with different methods has yet to reach a consensus, with some analyses rejecting and others supporting an electrical role of spines in regulating synaptic signaling. Thus, there is a need for a critical comparison of the advantages and limitations of different methodological approaches. The only experimental study on electrical signaling monitored optically with adequate sensitivity and spatiotemporal resolution using voltage-sensitive dyes concluded that mushroom spines on basal dendrites of cortical pyramidal neurons in brain slices have no electrical role.
Collapse
Affiliation(s)
- Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
5
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Aghvami SS, Kubota Y, Egger V. Anatomical and Functional Connectivity at the Dendrodendritic Reciprocal Mitral Cell-Granule Cell Synapse: Impact on Recurrent and Lateral Inhibition. Front Neural Circuits 2022; 16:933201. [PMID: 35937203 PMCID: PMC9355734 DOI: 10.3389/fncir.2022.933201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the vertebrate olfactory bulb, reciprocal dendrodendritic interactions between its principal neurons, the mitral and tufted cells, and inhibitory interneurons in the external plexiform layer mediate both recurrent and lateral inhibition, with the most numerous of these interneurons being granule cells. Here, we used recently established anatomical parameters and functional data on unitary synaptic transmission to simulate the strength of recurrent inhibition of mitral cells specifically from the reciprocal spines of rat olfactory bulb granule cells in a quantitative manner. Our functional data allowed us to derive a unitary synaptic conductance on the order of 0.2 nS. The simulations predicted that somatic voltage deflections by even proximal individual granule cell inputs are below the detection threshold and that attenuation with distance is roughly linear, with a passive length constant of 650 μm. However, since recurrent inhibition in the wake of a mitral cell action potential will originate from hundreds of reciprocal spines, the summated recurrent IPSP will be much larger, even though there will be substantial mutual shunting across the many inputs. Next, we updated and refined a preexisting model of connectivity within the entire rat olfactory bulb, first between pairs of mitral and granule cells, to estimate the likelihood and impact of recurrent inhibition depending on the distance between cells. Moreover, to characterize the substrate of lateral inhibition, we estimated the connectivity via granule cells between any two mitral cells or all the mitral cells that belong to a functional glomerular ensemble (i.e., which receive their input from the same glomerulus), again as a function of the distance between mitral cells and/or entire glomerular mitral cell ensembles. Our results predict the extent of the three regimes of anatomical connectivity between glomerular ensembles: high connectivity within a glomerular ensemble and across the first four rings of adjacent glomeruli, substantial connectivity to up to eleven glomeruli away, and negligible connectivity beyond. Finally, in a first attempt to estimate the functional strength of granule-cell mediated lateral inhibition, we combined this anatomical estimate with our above simulation results on attenuation with distance, resulting in slightly narrowed regimes of a functional impact compared to the anatomical connectivity.
Collapse
Affiliation(s)
- S. Sara Aghvami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Regensburg University, Regensburg, Germany
| |
Collapse
|
7
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Egger V, Kuner T. Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors. Cell Tissue Res 2021; 383:495-506. [PMID: 33404844 PMCID: PMC7873091 DOI: 10.1007/s00441-020-03402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The role of granule cells in olfactory processing is surrounded by several enigmatic observations, such as the purpose of reciprocal spines and the mechanisms for GABA release, the apparently low firing activity and recurrent inhibitory drive of granule cells, the missing proof for functional reciprocal connectivity, and the apparently negligible contribution to lateral inhibition. Here, we summarize recent results with regard to both the mechanisms of GABA release and the behavioral relevance of granule cell activity during odor discrimination. We outline a novel hypothesis that has the potential to resolve most of these enigmas and allows further predictions on the function of granule cells in odor processing. Briefly, recent findings imply that GABA release from the reciprocal spine requires a local spine action potential and the cooperative action of NMDA receptors and high voltage-activated Ca2+ channels. Thus, lateral inhibition is conditional on activity in the principal neurons connected to a granule cell and tightly intertwined with recurrent inhibition. This notion allows us to infer that lateral inhibition between principal neurons occurs "on demand," i.e., selectively on coactive mitral and tufted cells, and thus can provide directed, dynamically switched lateral inhibition in a sensory system with 1000 input channels organized in glomerular columns. The mechanistic underpinnings of this hypothesis concur with findings from odor discrimination behavior in mice with synaptic proteins deleted in granule cells. In summary, our hypothesis explains the unusual microcircuit of the granule cell reciprocal spine as a means of olfactory combinatorial coding.
Collapse
Affiliation(s)
- Veronica Egger
- Institute of Zoology, Regensburg University, Universitätsstr. 30, 93040, Regensburg, Germany.
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Torres JJ, Baroni F, Latorre R, Varona P. Temporal discrimination from the interaction between dynamic synapses and intrinsic subthreshold oscillations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Lage-Rupprecht V, Zhou L, Bianchini G, Aghvami SS, Mueller M, Rózsa B, Sassoè-Pognetto M, Egger V. Presynaptic NMDARs cooperate with local spikes toward GABA release from the reciprocal olfactory bulb granule cell spine. eLife 2020; 9:e63737. [PMID: 33252329 PMCID: PMC7704106 DOI: 10.7554/elife.63737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
In the rodent olfactory bulb the smooth dendrites of the principal glutamatergic mitral cells (MCs) form reciprocal dendrodendritic synapses with large spines on GABAergic granule cells (GC), where unitary release of glutamate can trigger postsynaptic local activation of voltage-gated Na+-channels (Navs), that is a spine spike. Can such single MC input evoke reciprocal release? We find that unitary-like activation via two-photon uncaging of glutamate causes GC spines to release GABA both synchronously and asynchronously onto MC dendrites. This release indeed requires activation of Navs and high-voltage-activated Ca2+-channels (HVACCs), but also of NMDA receptors (NMDAR). Simulations show temporally overlapping HVACC- and NMDAR-mediated Ca2+-currents during the spine spike, and ultrastructural data prove NMDAR presence within the GABAergic presynapse. This cooperative action of presynaptic NMDARs allows to implement synapse-specific, activity-dependent lateral inhibition, and thus could provide an efficient solution to combinatorial percept synthesis in a sensory system with many receptor channels.
Collapse
Affiliation(s)
- Vanessa Lage-Rupprecht
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
- Department of Bioinformatics, Fraunhofer SCAISankt AugustinGermany
| | - Li Zhou
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - Gaia Bianchini
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - S Sara Aghvami
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
- School of Electrical and Computer Engineering, University of TehranTehranIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| | - Max Mueller
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | | | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| |
Collapse
|
12
|
Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb. J Neurosci 2020; 40:9701-9714. [PMID: 33234611 DOI: 10.1523/jneurosci.0989-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
The olfactory bulb (OB) serves as a relay region for sensory information transduced by receptor neurons in the nose and ultimately routed to a variety of cortical areas. Despite the highly structured organization of the sensory inputs to the OB, even simple monomolecular odors activate large regions of the OB comprising many glomerular modules defined by afferents from different receptor neuron subtypes. OB principal cells receive their primary excitatory input from only one glomerular channel defined by inputs from one class of olfactory receptor neurons. By contrast, interneurons, such as GABAergic granule cells (GCs), integrate across multiple channels through dendodendritic inputs on their distal apical dendrites. Through their inhibitory synaptic actions, GCs appear to modulate principal cell firing to enhance olfactory discrimination, although how GCs contribute to olfactory function is not well understood. In this study, we identify a second synaptic pathway by which principal cells in the rat (both sexes) OB excite GCs by evoking potent nondepressing EPSPs (termed large-amplitude, nondendrodendritic [LANDD] EPSPs). LANDD EPSPs show little depression in response to tetanic stimulation and, therefore, can be distinguished other EPSPs that target GCs. LANDD EPSPs can be evoked by both focal stimulation near GC proximal dendrites and by activating sensory inputs in the glomerular layer in truncated GCs lacking dendrodendritic inputs. Using computational simulations, we show that LANDD EPSPs more reliably encode the duration of principal cell discharges than DD EPSPs, enabling GCs to compare contrasting versions of odor-driven activity patterns.SIGNIFICANCE STATEMENT The olfactory bulb plays a critical role in transforming broad sensory input patterns into odor-selective population responses. How this occurs is not well understood, but the local bulbar interneurons appear to be centrally involved in the process. Granule cells, the most common interneuron in the olfactory bulb, are known to broadly integrate sensory input through specialized synapses on their distal dendrites. Here we describe a second class of local excitatory inputs to granule cells that are more powerful than distal inputs and fail to depress with repeated stimulation. This second, proximal pathway allows bulbar interneurons to assay divergent versions of the same sensory input pattern.
Collapse
|
13
|
Ona Jodar T, Lage-Rupprecht V, Abraham NM, Rose CR, Egger V. Local Postsynaptic Signaling on Slow Time Scales in Reciprocal Olfactory Bulb Granule Cell Spines Matches Asynchronous Release. Front Synaptic Neurosci 2020; 12:551691. [PMID: 33304264 PMCID: PMC7701096 DOI: 10.3389/fnsyn.2020.551691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output. To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2 +- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1 / 2_Δ[Ca2 +]i ∼500 ms and t1 / 2_Δ[Na+]i ∼1,000 ms. We also analyzed the kinetics of already existing data of postsynaptic spine Ca2 +-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.
Collapse
Affiliation(s)
- Tiffany Ona Jodar
- Regensburg University, Regensburg, Germany
- Institut D’Investigacions Biomèdiques, Barcelona, Spain
| | - Vanessa Lage-Rupprecht
- Regensburg University, Regensburg, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, St. Augustin, Germany
| | | | | | | |
Collapse
|
14
|
Egger V, Diamond JS. A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information. Front Cell Neurosci 2020; 14:600537. [PMID: 33250720 PMCID: PMC7674606 DOI: 10.3389/fncel.2020.600537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback via GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles via multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.
Collapse
Affiliation(s)
- Veronica Egger
- Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Mueller M, Egger V. Dendritic integration in olfactory bulb granule cells upon simultaneous multispine activation: Low thresholds for nonlocal spiking activity. PLoS Biol 2020; 18:e3000873. [PMID: 32966273 PMCID: PMC7535128 DOI: 10.1371/journal.pbio.3000873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/05/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
The inhibitory axonless olfactory bulb granule cells form reciprocal dendrodendritic synapses with mitral and tufted cells via large spines, mediating recurrent and lateral inhibition. As a case in point for dendritic transmitter release, rat granule cell dendrites are highly excitable, featuring local Na+ spine spikes and global Ca2+- and Na+-spikes. To investigate the transition from local to global signaling, we performed holographic, simultaneous 2-photon uncaging of glutamate at up to 12 granule cell spines, along with whole-cell recording and dendritic 2-photon Ca2+ imaging in acute juvenile rat brain slices. Coactivation of less than 10 reciprocal spines was sufficient to generate diverse regenerative signals that included regional dendritic Ca2+-spikes and dendritic Na+-spikes (D-spikes). Global Na+-spikes could be triggered in one third of granule cells. Individual spines and dendritic segments sensed the respective signal transitions as increments in Ca2+ entry. Dendritic integration as monitored by the somatic membrane potential was mostly linear until a threshold number of spines was activated, at which often D-spikes along with supralinear summation set in. As to the mechanisms supporting active integration, NMDA receptors (NMDARs) strongly contributed to all aspects of supralinearity, followed by dendritic voltage-gated Na+- and Ca2+-channels, whereas local Na+ spine spikes, as well as morphological variables, barely mattered. Because of the low numbers of coactive spines required to trigger dendritic Ca2+ signals and thus possibly lateral release of GABA onto mitral and tufted cells, we predict that thresholds for granule cell-mediated bulbar lateral inhibition are low. Moreover, D-spikes could provide a plausible substrate for granule cell-mediated gamma oscillations.
Collapse
Affiliation(s)
- Max Mueller
- Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Zhang X, Meeks JP. Paradoxically Sparse Chemosensory Tuning in Broadly Integrating External Granule Cells in the Mouse Accessory Olfactory Bulb. J Neurosci 2020; 40:5247-5263. [PMID: 32503886 PMCID: PMC7329303 DOI: 10.1523/jneurosci.2238-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
The accessory olfactory bulb (AOB), the first neural circuit in the mouse accessory olfactory system, is critical for interpreting social chemosignals. Despite its importance, AOB information processing is poorly understood compared with the main olfactory bulb (MOB). Here, we sought to fill gaps in the understanding of AOB interneuron function. We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study chemosensory tuning in AOB external granule cells (EGCs), interneurons hypothesized to broadly inhibit activity in excitatory mitral cells (MCs). In ex vivo preparations from mice of both sexes, we measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was sparser, not broader, than upstream MCs. Simultaneous electrophysiological recording and Ca2+ imaging showed no differences in GCaMP6f-to-spiking relationships in these cell types during simulated sensory stimulation, suggesting that measured EGC sparseness was not due to cell type-dependent variability in GCaMP6f performance. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was far broader than indicated by GCaMP6f Ca2+ imaging, and that monomolecular ligands rarely elicited EGC spiking. These results indicate that EGCs are selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.SIGNIFICANCE STATEMENT The mouse accessory olfactory system (AOS) interprets social chemosignals, but we poorly understand AOS information processing. Here, we investigate the functional properties of external granule cells (EGCs), a major class of interneurons in the accessory olfactory bulb (AOB). We hypothesized that EGCs, which are densely innervated by excitatory mitral cells (MCs), would show broad chemosensory tuning, suggesting a role in divisive normalization. Using ex vivo GCaMP6f imaging, we found that EGCs were instead more sparsely tuned than MCs. This was not due to weaker GCaMP6f signaling in EGCs than in MCs. Instead, we found that many MC-activating chemosignals caused only subthreshold EGC responses. This indicates a different role for AOB EGCs compared with analogous cells in the main olfactory bulb.
Collapse
Affiliation(s)
- Xingjian Zhang
- University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Julian P Meeks
- University of Texas Southwestern Medical Center, Dallas, Texas 75390
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
17
|
Coincidence Detection within the Excitable Rat Olfactory Bulb Granule Cell Spines. J Neurosci 2019; 39:584-595. [PMID: 30674614 DOI: 10.1523/jneurosci.1798-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
In the mammalian olfactory bulb, the inhibitory axonless granule cells (GCs) feature reciprocal synapses that interconnect them with the principal neurons of the bulb, mitral, and tufted cells. These synapses are located within large excitable spines that can generate local action potentials (APs) upon synaptic input ("spine spike"). Moreover, GCs can fire global APs that propagate throughout the dendrite. Strikingly, local postsynaptic Ca2+ entry summates mostly linearly with Ca2+ entry due to coincident global APs generated by glomerular stimulation, although some underlying conductances should be inactivated. We investigated this phenomenon by constructing a compartmental GC model to simulate the pairing of local and global signals as a function of their temporal separation Δt. These simulations yield strongly sublinear summation of spine Ca2+ entry for the case of perfect coincidence Δt = 0 ms. Summation efficiency (SE) sharply rises for both positive and negative Δt. The SE reduction for coincident signals depends on the presence of voltage-gated Na+ channels in the spine head, while NMDARs are not essential. We experimentally validated the simulated SE in slices of juvenile rat brain (both sexes) by pairing two-photon uncaging of glutamate at spines and APs evoked by somatic current injection at various intervals Δt while imaging spine Ca2+ signals. Finally, the latencies of synaptically evoked global APs and EPSPs were found to correspond to Δt ≈ 10 ms, explaining the observed approximately linear summation of synaptic local and global signals. Our results provide additional evidence for the existence of the GC spine spike.SIGNIFICANCE STATEMENT Here we investigate the interaction of local synaptic inputs and global activation of a neuron by a backpropagating action potential within a dendritic spine with respect to local Ca2+ signaling. Our system of interest, the reciprocal spine of the olfactory bulb granule cell, is known to feature a special processing mode, namely, a synaptically triggered action potential that is restricted to the spine head. Therefore, coincidence detection of local and global signals follows different rules than in more conventional synapses. We unravel these rules using both simulations and experiments and find that signals coincident within ≈±7 ms around 0 ms result in sublinear summation of Ca2+ entry because of synaptic activation of voltage-gated Na+ channels within the spine.
Collapse
|
18
|
Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells. J Neurosci 2019; 39:9674-9688. [PMID: 31662426 DOI: 10.1523/jneurosci.1763-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022] Open
Abstract
Principal cells in the olfactory bulb (OB), mitral and tufted cells, play key roles in processing and then relaying sensory information to downstream cortical regions. How OB local circuits facilitate odor-specific responses during odor discrimination is not known but involves GABAergic inhibition mediated by axonless granule cells (GCs), the most abundant interneuron in the OB. Most previous work on GCs has focused on defining properties of distal apical dendrites where these interneurons form reciprocal dendrodendritic connections with principal cells. Less is known about the function of the proximal dendritic compartments. In the present study, we identified the likely action potentials (AP) initiation zone by comparing electrophysiological properties of rat (either sex) GCs with apical dendrites severed at different locations. We find that truncated GCs with long apical dendrites had active properties that were indistinguishable from intact GCs, generating full-height APs and short-latency low-threshold Ca2+ spikes. We then confirmed the presumed site of AP and low-threshold Ca2+ spike initiation in the proximal apical dendrite using two-photon Ca2+ photometry and focal TTX application. These results suggest that GCs incorporate two separate pathways for processing synaptic inputs: an already established dendrodendritic input to the distal apical dendrite and a novel pathway in which the cell body integrates proximal synaptic inputs, leading to spike generation in the proximal apical dendrite. Spikes generated by the proximal pathway likely enables GCs to regulate lateral inhibition by defining time windows when lateral inhibition is functional.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in processing sensory input transduced by receptor neurons. How local circuits in the bulb function to facilitate sensory processing during odor discrimination is not known but appears to involve inhibition mediated by granule cells, axonless GABAergic interneurons. Little is known about the active conductances in granule cells including where action potentials originate. Using a variety of experimental approaches, we find the Na+-based action potentials originate in the proximal apical dendrite, a region targeted by cortical feedback afferents. We also find evidence for high expression of low-voltage activated Ca2+ channels in the same region, intrinsic currents that enable GCs to spike rapidly in response to sensory input during each sniff cycle.
Collapse
|
19
|
Go MA, Mueller M, Castañares ML, Egger V, Daria VR. A compact holographic projector module for high-resolution 3D multi-site two-photon photostimulation. PLoS One 2019; 14:e0210564. [PMID: 30689635 PMCID: PMC6349413 DOI: 10.1371/journal.pone.0210564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
Patterned two-photon (2P) photolysis via holographic illumination is a powerful method to investigate neuronal function because of its capability to emulate multiple synaptic inputs in three dimensions (3D) simultaneously. However, like any optical system, holographic projectors have a finite space-bandwidth product that restricts the spatial range of patterned illumination or field-of-view (FOV) for a desired resolution. Such trade-off between holographic FOV and resolution restricts the coverage within a limited domain of the neuron's dendritic tree to perform highly resolved patterned 2P photolysis on individual spines. Here, we integrate a holographic projector into a commercial 2P galvanometer-based 2D scanning microscope with an uncaging unit and extend the accessible holographic FOV by using the galvanometer scanning mirrors to reposition the holographic FOV arbitrarily across the imaging FOV. The projector system utilizes the microscope's built-in imaging functions. Stimulation positions can be selected from within an acquired 3D image stack (the volume-of-interest, VOI) and the holographic projector then generates 3D illumination patterns with multiple uncaging foci. The imaging FOV of our system is 800×800 μm2 within which a holographic VOI of 70×70×70 μm3 can be chosen at arbitrary positions and also moved during experiments without moving the sample. We describe the design and alignment protocol as well as the custom software plugin that controls the 3D positioning of stimulation sites. We demonstrate the neurobiological application of the system by simultaneously uncaging glutamate at multiple spines within dendritic domains and consequently observing summation of postsynaptic potentials at the soma, eventually resulting in action potentials. At the same time, it is possible to perform two-photon Ca2+ imaging in 2D in the dendrite and thus to monitor synaptic Ca2+ entry in selected spines and also local regenerative events such as dendritic action potentials.
Collapse
Affiliation(s)
- Mary Ann Go
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom
| | - Max Mueller
- Neurophysiology, Institute of Zoology, Universität Regensburg, 93040 Regensburg, Germany
| | - Michael Lawrence Castañares
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, 0200 ACT, Australia
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität Regensburg, 93040 Regensburg, Germany
| | - Vincent R. Daria
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, 0200 ACT, Australia
| |
Collapse
|
20
|
Nunes D, Kuner T. Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination. PLoS Biol 2018; 16:e2003816. [PMID: 30125271 PMCID: PMC6117082 DOI: 10.1371/journal.pbio.2003816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrodendritic synaptic interactions between olfactory bulb mitral and granule cells represent a key neuronal mechanism of odor discrimination. Dendritic release of gamma-aminobutyric acid (GABA) from granule cells contributes to stimulus-dependent, rapid, and accurate odor discrimination, yet the physiological mechanisms governing this release and its behavioral relevance are unknown. Here, we show that granule cells express the voltage-gated sodium channel α-subunit NaV1.2 in clusters distributed throughout the cell surface including dendritic spines. Deletion of NaV1.2 in granule cells abolished spiking and GABA release as well as inhibition of synaptically connected mitral cells (MCs). As a consequence, mice required more time to discriminate highly similar odorant mixtures, while odor discrimination learning remained unaffected. In conclusion, we show that expression of NaV1.2 in granule cells is crucial for physiological dendritic GABA release and rapid discrimination of similar odorants with high accuracy. Hence, our data indicate that neurotransmitter-releasing dendritic spines function just like axon terminals. In axonal nerve terminals, neurotransmitter release is triggered by a localized Ca2+ nanodomain generated by voltage-gated calcium channels in response to an action potential, which in turn is mediated by voltage-gated sodium channels. Dendritic neurotransmitter release has been thought to work differently, mainly depending on Ca2+ entering directly through N-methyl-D-aspartate (NMDA) receptors, a subtype of ligand-gated ion channel. To further investigate how dendritic neurotransmitter is released, we studied granule cells in the olfactory bulb of mice, which establish inhibitory dendrodendritic synapses with mitral cells. We show that granule cells express voltage-gated sodium channels predominantly localized in dendrites and spines. Down-regulation of these channels precludes action potential firing in granule cells and strongly reduces mitral cell inhibition. Behaviorally, these mice require more time to discriminate highly similar odorants at maximal accuracy. Therefore, the inhibition of mitral cells relies on neurotransmitter released from the dendrites of granule cells by a mechanism that resembles axonal neurotransmitter release much more than previously thought.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| | - Thomas Kuner
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| |
Collapse
|
21
|
Theis AK, Rózsa B, Katona G, Schmitz D, Johenning FW. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function. Front Cell Neurosci 2018; 12:109. [PMID: 29755321 PMCID: PMC5932410 DOI: 10.3389/fncel.2018.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs). For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
Collapse
Affiliation(s)
- Anne-Kathrin Theis
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Gergely Katona
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Cluster of Excellence "Neurocure", Berlin, Germany.,DZNE-German Center for Neurodegenerative Disease, Berlin, Germany
| | - Friedrich W Johenning
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
22
|
Lukas M, Holthoff K, Egger V. Long-Term Plasticity at the Mitral and Tufted Cell to Granule Cell Synapse of the Olfactory Bulb Investigated with a Custom Multielectrode in Acute Brain Slice Preparations. Methods Mol Biol 2018; 1820:157-167. [PMID: 29884945 DOI: 10.1007/978-1-4939-8609-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single extracellular stimulation electrodes are a widespread means to locally activate synaptic inputs in acute brain slices. Here we describe the fabrication and application of a multielectrode stimulator that was developed for conditions under which independent stimulation of several nearby sites is desirable. For the construction of the multielectrode we have developed a method by which electrode wires can be spaced at minimal distances of 100 μm. This configuration increases the efficiency of stimulation paradigms, such as the comparison of proximal induced and control inputs for studies of synaptic plasticity.In our case the multielectrode was used for acute olfactory bulb slices to independently excite individual nearby glomeruli; the technique allowed us to demonstrate homosynaptic bidirectional long-term plasticity at the mitral/tufted cell to granule cell synapse. We also describe the determinants for successful recordings of long-term plasticity at this synapse, with mechanical and electrophysiological recording stability being tantamount. Finally, we briefly discuss data analysis procedures.
Collapse
Affiliation(s)
- Michael Lukas
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Veronica Egger
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany.
| |
Collapse
|
23
|
Beaulieu-Laroche L, Harnett MT. Dendritic Spines Prevent Synaptic Voltage Clamp. Neuron 2017; 97:75-82.e3. [PMID: 29249288 DOI: 10.1016/j.neuron.2017.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 11/27/2022]
Abstract
Synapses are the fundamental units of information processing in the mammalian brain. Much of our understanding of their functional properties comes from voltage-clamp analysis, the predominant approach for investigating synaptic physiology. Here, we reveal that voltage clamp is completely ineffective for most excitatory synapses due to spine electrical compartmentalization. Under local dendritic voltage clamp, single-spine activation produced large spine head depolarizations that severely distorted measurements and recruited voltage-dependent channels. To overcome these voltage-clamp errors, we developed an approach to provide new, accurate measurements of synaptic conductance. Single-synapse AMPA conductance was much larger than previously appreciated, producing saturation effects on synaptic currents. We conclude that electrical compartmentalization profoundly shapes both synaptic function and how that function can be assessed with electrophysiological methods.
Collapse
Affiliation(s)
- Lou Beaulieu-Laroche
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark T Harnett
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Wallace JL, Wienisch M, Murthy VN. Development and Refinement of Functional Properties of Adult-Born Neurons. Neuron 2017; 96:883-896.e7. [PMID: 29056299 PMCID: PMC5789450 DOI: 10.1016/j.neuron.2017.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 01/21/2023]
Abstract
New neurons appear only in a few regions of the adult mammalian brain and become integrated into existing circuits. Little is known about the functional development of individual neurons in vivo. We examined the functional life history of adult-born granule cells (abGCs) in the olfactory bulb using multiphoton imaging in awake and anesthetized mice. We found that abGCs can become responsive to odorants soon after they arrive in the olfactory bulb. Tracking identified abGCs over weeks revealed that the robust and broadly tuned responses of most newly arrived abGCs gradually become more selective over a period of ∼3 weeks, but a small fraction achieves broader tuning with maturation. Enriching the olfactory environment of mice prolonged the period over which abGCs were strongly and broadly responsive to odorants. Our data offer direct support for rapid integration of adult-born neurons into existing circuits, followed by experience-dependent refinement of their functional connectivity.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Molecules, Cells, and Organisms training program, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Wienisch
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells. J Neurosci 2017; 37:11774-11788. [PMID: 29066560 DOI: 10.1523/jneurosci.2033-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
The olfactory bulb contains excitatory principal cells (mitral and tufted cells) that project to cortical targets as well as inhibitory interneurons. How the local circuitry in this region facilitates odor-specific output is not known, but previous work suggests that GABAergic granule cells plays an important role, especially during fine odor discrimination. Principal cells interact with granule cells through reciprocal dendrodendritic connections that are poorly understood. While many studies examined the GABAergic output side of these reciprocal connections, little is known about how granule cells are excited. Only two previous studies reported monosynaptically coupled mitral/granule cell connections and neither attempted to determine the fundamental properties of these synapses. Using dual intracellular recordings and a custom-built loose-patch amplifier, we have recorded unitary granule cell EPSPs evoked in response to mitral cell action potentials in rat (both sexes) brain slices. We find that the unitary dendrodendritic input is relatively weak with highly variable release probability and short-term depression. In contrast with the weak dendrodendritic input, the facilitating cortical input to granule cells is more powerful and less variable. Our computational simulations suggest that dendrodendritic synaptic properties prevent individual principal cells from strongly depolarizing granule cells, which likely discharge in response to either concerted activity among a large proportion of inputs or coactivation of a smaller subset of local dendrodendritic inputs with coincidence excitation from olfactory cortex. This dual-pathway requirement likely enables the sparse mitral/granule cell interconnections to develop highly odor-specific responses that facilitate fine olfactory discrimination.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in converting broad, highly overlapping, sensory input patterns into odor-selective population responses. How this occurs is not known, but experimental and theoretical studies suggest that local inhibition often plays a central role. Very little is known about how the most common local interneuron subtype, the granule cell, is excited during odor processing beyond the unusual anatomical arraignment of the interconnections (reciprocal dendrodendritic synapses). Using paired recordings and two-photon imaging, we determined the properties of the primary input to granule cells for the first time and show that these connections bias interneurons to fire in response to spiking in large populations of principal cells rather than a small group of highly active cells.
Collapse
|
26
|
Spatial Structure of Synchronized Inhibition in the Olfactory Bulb. J Neurosci 2017; 37:10468-10480. [PMID: 28947574 DOI: 10.1523/jneurosci.1004-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Olfactory sensory input is detected by receptor neurons in the nose, which then send information to the olfactory bulb (OB), the first brain region for processing olfactory information. Within the OB, many local circuit interneurons, including axonless granule cells, function to facilitate fine odor discrimination. How interneurons interact with principal cells to affect bulbar processing is not known, but the mechanism is likely to be different from that in sensory cortical regions because the OB lacks an obvious topographical organization. Neighboring glomerular columns, representing inputs from different receptor neuron subtypes, typically have different odor tuning. Determining the spatial scale over which interneurons such as granule cells can affect principal cells is a critical step toward understanding how the OB operates. We addressed this question by assaying inhibitory synchrony using intracellular recordings from pairs of principal cells with different intersomatic spacing. We found, in acute rat OB slices from both sexes, that inhibitory synchrony is evident in the spontaneous synaptic input in mitral cells (MCs) separated up to 220 μm (300 μm with elevated K+). At all intersomatic spacing assayed, inhibitory synchrony was dependent on Na+ channels, suggesting that action potentials in granule cells function to coordinate GABA release at relatively distant dendrodendritic synapses formed throughout the dendritic arbor. Our results suggest that individual granule cells are able to influence relatively large groups of MCs and tufted cells belonging to clusters of at least 15 glomerular modules, providing a potential mechanism to integrate signals reflecting a wide variety of odorants.SIGNIFICANCE STATEMENT Inhibitory circuits in the olfactory bulb (OB) play a major role in odor processing, especially during fine odor discrimination. However, how inhibitory networks enhance olfactory function, and over what spatial scale they operate, is not known. Interneurons are potentially able to function on both a highly localized, synapse-specific level and on a larger, spatial scale that encompasses many different glomerular channels. Although recent indirect evidence has suggested a relatively localized functional role for most inhibition in the OB, in the present study, we used paired intracellular recordings to demonstrate directly that inhibitory local circuits operate over large spatial scales by using fast action potentials to link GABA release at many different synaptic contacts formed with principal cells.
Collapse
|
27
|
Blakemore LJ, Trombley PQ. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front Cell Neurosci 2017; 11:297. [PMID: 29033788 PMCID: PMC5627021 DOI: 10.3389/fncel.2017.00297] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB. In addition, zinc is contained in the synaptic vesicles of some glycinergic and GABAergic neurons. Thus, zinc released from synaptic vesicles is available to modulate synaptic transmission mediated by excitatory (e.g., N-methyl-D aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) and inhibitory (e.g., gamma-aminobutyric acid (GABA), glycine) amino acid receptors. Furthermore, extracellular zinc can alter the excitability of neurons through effects on a variety of voltage-gated ion channels. Consistent with the notion that zinc acts as a regulator of neuronal activity, we and others have shown zinc modulation (inhibition and/or potentiation) of amino acid receptors and voltage-gated ion channels expressed by OB neurons. This review summarizes the locations and release of vesicular zinc in the central nervous system (CNS), including in the OB. It also summarizes the effects of zinc on various amino acid receptors and ion channels involved in regulating synaptic transmission and neuronal excitability, with a special emphasis on the actions of zinc as a neuromodulator in the OB. An understanding of how neuroactive substances such as zinc modulate receptors and ion channels expressed by OB neurons will increase our understanding of the roles that synaptic circuits in the OB play in odor information processing and transmission.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| |
Collapse
|
28
|
Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion. J Neurosci 2017; 37:9964-9976. [PMID: 28904093 DOI: 10.1523/jneurosci.1758-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are key elements underlying synaptic integration and cellular plasticity, but many features of these important structures are not known or are controversial. We examined these properties using newly developed simultaneous sodium and calcium imaging with single-spine resolution in pyramidal neurons in rat hippocampal slices from either sex. Indicators for both ions were loaded through the somatic patch pipette, which also recorded electrical responses. Fluorescence changes were detected with a high-speed, low-noise CCD camera. Following subthreshold electrical stimulation, postsynaptic sodium entry is almost entirely through AMPA receptors with little contribution from entry through NMDA receptors or voltage-gated sodium channels. Sodium removal from the spine head is through rapid diffusion out to the dendrite through the spine neck with a half-removal time of ∼16 ms, which suggests the neck has low resistance. Peak [Na+]i changes during single EPSPs are ∼5 mm Stronger electrical stimulation evoked small plateau potentials that had significant longer-lasting localized [Na+]i increases mediated through NMDA receptors.SIGNIFICANCE STATEMENT Dendritic spines, small structures that are difficult to investigate, are important elements in the fundamental processes of synaptic integration and plasticity. The main tool for examining these structures has been calcium imaging. However, the kinds of information that calcium imaging reveals is limited. We used newly developed, high-speed, simultaneous sodium and calcium imaging to examine ion dynamics in spines in hippocampal pyramidal neurons. We found that following single subthreshold synaptic activation most sodium entry was through AMPA receptors and not through NMDA receptors or through voltage-gated sodium channels and that the spine neck is not a significant resistance barrier. Most spine mechanisms are linear. However, regenerative NMDA conductances can be activated with stronger stimulation.
Collapse
|
29
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Ona-Jodar T, Gerkau NJ, Sara Aghvami S, Rose CR, Egger V. Two-Photon Na + Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites. Front Cell Neurosci 2017; 11:50. [PMID: 28293175 PMCID: PMC5329072 DOI: 10.3389/fncel.2017.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/14/2017] [Indexed: 12/05/2022] Open
Abstract
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.
Collapse
Affiliation(s)
- Tiffany Ona-Jodar
- Neurophysiology, Institute of Zoology, Universität Regensburg Regensburg, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - S Sara Aghvami
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany; School of Electrical and Computer Engineering, University of TehranTehran, Iran; School of Cognitive Science, Institute for Research in Fundamental ScienceTehran, Iran
| | - Christine R Rose
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany; Regensburg Center of Neuroscience, Universität RegensburgRegensburg, Germany
| |
Collapse
|
31
|
Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse. Neural Plast 2016; 2016:9124986. [PMID: 27747107 PMCID: PMC5056313 DOI: 10.1155/2016/9124986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts ("single-sniff paradigm") can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and "single-sniff paradigm"-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.
Collapse
|
32
|
Wienisch M, Murthy VN. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb. Sci Rep 2016; 6:29308. [PMID: 27388949 PMCID: PMC4937346 DOI: 10.1038/srep29308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons.
Collapse
Affiliation(s)
- Martin Wienisch
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| | - Venkatesh N Murthy
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| |
Collapse
|
33
|
Kantevari S, Passlick S, Kwon HB, Richers MT, Sabatini BL, Ellis-Davies GC. Development of Anionically Decorated Caged Neurotransmitters: In Vitro Comparison of 7-Nitroindolinyl- and 2-(p-Phenyl-o-nitrophenyl)propyl-Based Photochemical Probes. Chembiochem 2016; 17:953-61. [PMID: 26929152 PMCID: PMC4870097 DOI: 10.1002/cbic.201600019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/26/2023]
Abstract
Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ-aminobutyric acid (GABA)-A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two-photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used 4-methoxy-7-nitroindolinyl-Glu (MNI-Glu) system reduced the off-target effects by about 50-70 %. When the same strategy was applied to an electron-rich 2-(p-Phenyl-o-nitrophenyl)propyl (PNPP) caging group, the pharmacological improvements were not as significant as in the MNI case. Finally, we used very extensive biological testing of the PNPP-caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro-biphenyl caging chromophores have two-photon uncaging efficacies similar to that of MNI-Glu.
Collapse
Affiliation(s)
- Srinivas Kantevari
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Stefan Passlick
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Hyung-Bae Kwon
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Cambridge, MA 02115, USA
| | - Matthew T. Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Cambridge, MA 02115, USA
| | | |
Collapse
|
34
|
Hage TA, Sun Y, Khaliq ZM. Electrical and Ca(2+) signaling in dendritic spines of substantia nigra dopaminergic neurons. eLife 2016; 5. [PMID: 27163179 PMCID: PMC4900803 DOI: 10.7554/elife.13905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca(2+) imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca(2+) signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca(2+) signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca(2+) midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca(2+) signaling during pacemaking.
Collapse
Affiliation(s)
- Travis A Hage
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yujie Sun
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Zayd M Khaliq
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
35
|
Osinski BL, Kay LM. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit. J Neurophysiol 2016; 116:522-39. [PMID: 27121582 DOI: 10.1152/jn.00988.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 01/03/2023] Open
Abstract
Odors evoke gamma (40-100 Hz) and beta (20-30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca(2+)-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca(2+) channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca(2+) flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs.
Collapse
Affiliation(s)
- Bolesław L Osinski
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois; Institute for Mind and Biology, The University of Chicago, Chicago, Illinois; and
| | - Leslie M Kay
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois; and Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 2016; 35:14103-22. [PMID: 26490853 DOI: 10.1523/jneurosci.0746-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates.
Collapse
|
37
|
Tønnesen J, Nägerl UV. Dendritic Spines as Tunable Regulators of Synaptic Signals. Front Psychiatry 2016; 7:101. [PMID: 27340393 PMCID: PMC4899469 DOI: 10.3389/fpsyt.2016.00101] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity.
Collapse
Affiliation(s)
- Jan Tønnesen
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
38
|
Popovic MA, Carnevale N, Rozsa B, Zecevic D. Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat Commun 2015; 6:8436. [PMID: 26436431 PMCID: PMC4594633 DOI: 10.1038/ncomms9436] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022] Open
Abstract
Thousands of dendritic spines on individual neurons process information and mediate plasticity by generating electrical input signals using a sophisticated assembly of transmitter receptors and voltage-sensitive ion channel molecules. Our understanding, however, of the electrical behaviour of spines is limited because it has not been possible to record input signals from these structures with adequate sensitivity and spatiotemporal resolution. Current interpretation of indirect data and speculations based on theoretical considerations are inconclusive. Here we use an electrochromic voltage-sensitive dye which acts as a transmembrane optical voltmeter with a linear scale to directly monitor electrical signals from individual spines on thin basal dendrites. The results show that synapses on these spines are not electrically isolated by the spine neck to a significant extent. Electrically, they behave as if they are located directly on dendrites.
Collapse
Affiliation(s)
- Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Institute for Multidisciplinary Research, Belgrade University, Belgrade 11030, Serbia
| | - Nicholas Carnevale
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Balazs Rozsa
- Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest H-1083, Hungary.,The Faculty of Information Technology, Pázmány Péter University, Budapest H-1083, Hungary
| | - Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
39
|
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning, and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling are regulated in a complicated manner because of geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
40
|
McDole B, Isgor C, Pare C, Guthrie K. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. Neuroscience 2015. [PMID: 26211445 DOI: 10.1016/j.neuroscience.2015.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.
Collapse
Affiliation(s)
- B McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Isgor
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Pare
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - K Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States.
| |
Collapse
|