1
|
Campos-Sánchez JC, Cabrera-Álvarez MJ, Saraiva JL. Review of Fish Neuropeptides: A Novel Perspective on Animal Welfare. J Comp Neurol 2025; 533:e70029. [PMID: 40008573 DOI: 10.1002/cne.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Neuropeptides are highly variable but widely conserved molecules, the main functions of which are the regulation and coordination of physiological processes and behaviors. They are synthesized in the nervous system and generally act on other neuronal and non-neuronal tissues or organs. In recent years, diverse neuropeptide isoforms and their receptors have been identified in different fish species, regulating functions in the neuroendocrine (e.g., corticotropin-releasing hormone and arginine vasotocin), immune (e.g., vasoactive intestinal polypeptide and somatostatin), digestive (e.g., neuropeptide Y), and reproductive (e.g., isotocin) systems, as well as in the commensal microbiota. Interestingly, all these processes carried out by neuropeptides are integrated into the nervous system and are manifested externally in the behavior and affective states of fish, thus having an impact on the modulation of these actions. In this sense, the monitoring of neuropeptides may represent a new approach to assess animal welfare, targeting both physiological and affective aspects in fish. Therefore, although there are many studies investigating the action of neuropeptides in a wide range of paradigms, especially in mammals, their study within a fish welfare framework is scarce. To the best of our knowledge, this is the first review that gathers and integrates up-to-date information on neuropeptides from an animal welfare perspective. In this review, we summarize current findings on neuropeptides in fish and discuss their possible implication in the physiological and emotional state of fish, and therefore in their welfare.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
| | - María José Cabrera-Álvarez
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| | - Joao L Saraiva
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| |
Collapse
|
2
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
3
|
Horikawa M, Fukuyama M, Antebi A, Mizunuma M. Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans. Nat Commun 2024; 15:5793. [PMID: 38987256 PMCID: PMC11237089 DOI: 10.1038/s41467-024-50111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Collapse
Affiliation(s)
- Makoto Horikawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
4
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren W, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial sleep in short-sleeping Mexican cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.602003. [PMID: 39005273 PMCID: PMC11244998 DOI: 10.1101/2024.07.03.602003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Owen North
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Morgan O'Gorman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Pierce Hutton
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Wes Warren
- Department of Genomics, University of Missouri, Columbia, MO 65201
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
5
|
Terzi A, Ngo KJ, Mourrain P. Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism. J Comp Physiol B 2024; 194:241-252. [PMID: 38324048 PMCID: PMC11233307 DOI: 10.1007/s00360-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Keri J Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
6
|
Özcan GG, Lim S, Canning T, Tirathdas L, Donnelly J, Kundu T, Rihel J. Genetic and chemical disruption of amyloid precursor protein processing impairs zebrafish sleep maintenance. iScience 2024; 27:108870. [PMID: 38318375 PMCID: PMC10839650 DOI: 10.1016/j.isci.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Amyloid precursor protein (APP) is a brain-rich, single pass transmembrane protein that is proteolytically processed into multiple products, including amyloid-beta (Aβ), a major driver of Alzheimer disease (AD). Although both overexpression of APP and exogenously delivered Aβ lead to changes in sleep, whether APP processing plays an endogenous role in regulating sleep is unknown. Here, we demonstrate that APP processing into Aβ40 and Aβ42 is conserved in zebrafish and then describe sleep/wake phenotypes in loss-of-function appa and appb mutants. Larvae with mutations in appa had reduced waking activity, whereas larvae that lacked appb had shortened sleep bout durations at night. Treatment with the γ-secretase inhibitor DAPT also shortened night sleep bouts, whereas the BACE-1 inhibitor lanabecestat lengthened sleep bouts. Intraventricular injection of P3 also shortened night sleep bouts, suggesting that the proper balance of Appb proteolytic processing is required for normal sleep maintenance in zebrafish.
Collapse
Affiliation(s)
- Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Thomas Canning
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lavitasha Tirathdas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tanushree Kundu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
7
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
8
|
Barlow IL, Mackay E, Wheater E, Goel A, Lim S, Zimmerman S, Woods I, Prober DA, Rihel J. The zebrafish mutant dreammist implicates sodium homeostasis in sleep regulation. eLife 2023; 12:RP87521. [PMID: 37548652 PMCID: PMC10406431 DOI: 10.7554/elife.87521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Sleep is a nearly universal feature of animal behaviour, yet many of the molecular, genetic, and neuronal substrates that orchestrate sleep/wake transitions lie undiscovered. Employing a viral insertion sleep screen in larval zebrafish, we identified a novel gene, dreammist (dmist), whose loss results in behavioural hyperactivity and reduced sleep at night. The neuronally expressed dmist gene is conserved across vertebrates and encodes a small single-pass transmembrane protein that is structurally similar to the Na+,K+-ATPase regulator, FXYD1/Phospholemman. Disruption of either fxyd1 or atp1a3a, a Na+,K+-ATPase alpha-3 subunit associated with several heritable movement disorders in humans, led to decreased night-time sleep. Since atpa1a3a and dmist mutants have elevated intracellular Na+ levels and non-additive effects on sleep amount at night, we propose that Dmist-dependent enhancement of Na+ pump function modulates neuronal excitability to maintain normal sleep behaviour.
Collapse
Affiliation(s)
- Ida L Barlow
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Emily Wheater
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Aimee Goel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steve Zimmerman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - David A Prober
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Gull M, Schmitt SM, Kälin RE, Brändli AW. Screening of Chemical Libraries Using Xenopus Embryos and Tadpoles for Phenotypic Drug Discovery. Cold Spring Harb Protoc 2023; 2023:098269-pdb.prot. [PMID: 36180216 DOI: 10.1101/pdb.prot098269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Phenotypic drug discovery assesses the effect of small molecules on the phenotype of cells, tissues, or whole organisms without a priori knowledge of the target or pathway. Using vertebrate embryos instead of cell-based assays has the advantage that the screening of small molecules occurs in the context of the complex biology and physiology of the whole organism. Fish and amphibians are the only classes of vertebrates with free-living larvae amenable to high-throughput drug screening in multiwell dishes. For both animal classes, particularly zebrafish and Xenopus, husbandry requirements are straightforward, embryos can be obtained in large numbers, and they develop ex utero so their development can be monitored easily with a dissecting microscope. At 350 million years, the evolutionary distance between amphibians and humans is significantly shorter than that between fish and humans, which is estimated at 450 million years. This increases the likelihood that drugs discovered by screening in amphibian embryos will be active in humans. Here, we describe the basic protocol for the medium- to high-throughput screening of chemical libraries using embryos of the African clawed frog Xenopus laevis Bioactive compounds are identified by observing phenotypic changes in whole embryos and tadpoles. In addition to the discovery of compounds with novel bioactivities, the phenotypic screening protocol also allows for the identification of compounds with in vivo toxicity, eliminating early hits that are poor drug candidates. We also highlight important considerations for designing chemical screens, choosing chemical libraries, and performing secondary screens using whole mount in situ hybridization or immunostaining.
Collapse
Affiliation(s)
- Mazhar Gull
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Stefan M Schmitt
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Roland E Kälin
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - André W Brändli
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
10
|
Palermo J, Chesi A, Zimmerman A, Sonti S, Pahl MC, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Mazzotti DR, Pack AI, Gehrman PR, Grant SF, Keene AC. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. SCIENCE ADVANCES 2023; 9:eabq0844. [PMID: 36608130 PMCID: PMC9821868 DOI: 10.1126/sciadv.abq0844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 05/13/2023]
Abstract
Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.
Collapse
Affiliation(s)
- Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Allan I. Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Phillip R. Gehrman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Matsuda K, Watanabe K, Miyagawa Y, Maruyama K, Konno N, Nakamachi T. Distribution of neuromedin U (NMU)-like immunoreactivity in the goldfish brain, and effect of intracerebroventricular administration of NMU on emotional behavior in goldfish. Peptides 2022; 156:170846. [PMID: 35905944 DOI: 10.1016/j.peptides.2022.170846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Neuromedin U (NMU) is a multifunctional neuropeptide implicated in regulation of smooth muscle contraction in the circulatory and digestive systems, energy homeostasis and the stress response, but especially food intake in vertebrates. Recent studies have indicated the possible involvement of NMU in the regulation of psychomotor activity in rodents. We have identified four cDNAs encoding three putative NMU variants (NMU-21, -25 and -38) from the goldfish brain and intestine. Recently, we have also purified these NMUs and the truncated C-terminal form NMU-9 from these tissues, and demonstrated their anorexigenic action in goldfish. However, there is no information on the brain localization of NMU-like immunoreactivity and the psychophysiological roles of NMU in fish. Here, we investigated the brain distribution of NMU-like immunoreactivity and found that it was localized throughout the fore- and mid-brains. We subsequently examined the effect of intracerebroventricular (ICV) administration of NMU-21, which is abundant only in the brain on psychomotor activity in goldfish. As goldfish prefer the lower to the upper area of a tank, we developed an upper/lower area preference test in a tank for evaluating the psychomotor activity of goldfish using a personal tablet device without an automatic behavior-tracking device. ICV administration of NMU-21 at 10 pmol g-1 body weight (BW) prolonged the time spent in the upper area of the tank, and this action mimicked that of ICV administration of the central-type benzodiazepine receptor (CBR) agonist tofisopam at 100 pmol g-1 BW. These results suggest that NMU-21 potently induces anxiolytic-like action in the goldfish brain.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan
| | - Yoshiki Miyagawa
- Laboratory of Regulatory Biology, Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Maruyama
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
12
|
Athira A, Dondorp D, Rudolf J, Peytral O, Chatzigeorgiou M. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire. PLoS Biol 2022; 20:e3001744. [PMID: 35925898 PMCID: PMC9352054 DOI: 10.1371/journal.pbio.3001744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli. Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.
Collapse
Affiliation(s)
- Athira Athira
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jerneja Rudolf
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Olivia Peytral
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
13
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
14
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
15
|
Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022; 15:873520. [PMID: 35465097 PMCID: PMC9021570 DOI: 10.3389/fnmol.2022.873520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Sleep disorders and chronic sleep disturbances are common and are associated with cardio-metabolic diseases and neuropsychiatric disorders. Several genetic pathways and neuronal mechanisms that regulate sleep have been described in animal models, but the genes underlying human sleep variation and sleep disorders are largely unknown. Identifying these genes is essential in order to develop effective therapies for sleep disorders and their associated comorbidities. To address this unmet health problem, genome-wide association studies (GWAS) have identified numerous genetic variants associated with human sleep traits and sleep disorders. However, in most cases, it is unclear which gene is responsible for a sleep phenotype that is associated with a genetic variant. As a result, it is necessary to experimentally validate candidate genes identified by GWAS using an animal model. Rodents are ill-suited for this endeavor due to their poor amenability to high-throughput sleep assays and the high costs associated with generating, maintaining, and testing large numbers of mutant lines. Zebrafish (Danio rerio), an alternative vertebrate model for studying sleep, allows for the rapid and cost-effective generation of mutant lines using the CRISPR/Cas9 system. Numerous zebrafish mutant lines can then be tested in parallel using high-throughput behavioral assays to identify genes whose loss affects sleep. This process identifies a gene associated with each GWAS hit that is likely responsible for the human sleep phenotype. This strategy is a powerful complement to GWAS approaches and holds great promise to identify the genetic basis for common human sleep disorders.
Collapse
Affiliation(s)
| | - David A. Prober
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
16
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
17
|
Qi X, Liu P, Wang Y, Xue J, An Y, Zhao C. Insights Into the Research Status of Neuromedin U: A Bibliometric and Visual Analysis From 1987 to 2021. Front Med (Lausanne) 2022; 9:773000. [PMID: 35273971 PMCID: PMC8901607 DOI: 10.3389/fmed.2022.773000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromedin U (NMU) is a regulatory peptide that is widely distributed throughout the body and performs a variety of physiological functions through its corresponding receptors. In recent years, NMU has become the focus of attention in various fields of research as its diverse and essential functions have gradually been elucidated. However, there have been no bibliometrics studies on the development trend and knowledge structure of NMU research. Therefore, in this study, we used VOSviewer software to statistically analyze scientific data from articles related to NMU to track the developmental footprint of this research field, including relevant countries, institutions, authors, and keywords. We retrieved a total of 338 papers related to NMU, written by 1,661 authors from 438 organizations of 41 countries that were published in 332 journals. The first study on NMU was reported by a group in Japan in 1985. Subsequently, nine articles on NMU were published from 1987 to 2006. A small leap in this field could be detected in 2009, with 30 articles published worldwide. Among the various countries in which this research has been performed, Japan and the United States have made the most outstanding contributions. Miyazato M, Kangawa K, and Mori K from the Department of Biochemistry, National Retrain and Cardiovascular Center Research Institute in Japan were the most productive authors who have the highest number of citations. Keyword analysis showed six clusters: central-nervous-system, homeostasis, energy metabolism, cancer, immune inflammation, and food intake. The three most highly cited articles were associated with inflammation. Overall, this study demonstrates the research trends and future directions of NMU, providing an objective description of the contributions in this field along with reference value for future research.
Collapse
Affiliation(s)
- Xueping Qi
- Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | | | - Yanjie Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Jinmei Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Yunfang An
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| |
Collapse
|
18
|
Lee DA, Oikonomou G, Prober DA. Large-scale Analysis of Sleep in Zebrafish. Bio Protoc 2022; 12:e4313. [PMID: 35284597 PMCID: PMC8855086 DOI: 10.21769/bioprotoc.4313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 03/20/2025] Open
Abstract
Over the past decade, zebrafish have emerged as a powerful model for the study of vertebrate sleep and wake behaviors. Experimental evidence has demonstrated behavioral, anatomical, genetic, and pharmacological conservation of sleep between zebrafish and mammals, suggesting that discoveries in zebrafish can inform our understanding of mammalian sleep. Here, we describe a protocol for performing sleep behavioral experiments in larval zebrafish, using a high-throughput video tracking system. We explain how to set up a sleep behavioral experiment and provide guidelines on how to analyze the data. Using this protocol, a typical experiment can be completed in less than five days, and this method provides a scalable platform to perform genetic and pharmacological screens in a simple and cost-effective vertebrate model. By combining high-throughput behavioral assays with several advantageous features of zebrafish, this model system provides new opportunities to make discoveries that clarify the genetic and neurological mechanisms that regulate sleep.
Collapse
Affiliation(s)
- Daniel A. Lee
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California, United States of America
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California, United States of America
| | - David A. Prober
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
19
|
Li Q, Jang H, Lim KY, Lessing A, Stavropoulos N. insomniac links the development and function of a sleep-regulatory circuit. eLife 2021; 10:65437. [PMID: 34908527 PMCID: PMC8758140 DOI: 10.7554/elife.65437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Hyunsoo Jang
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Kayla Y Lim
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Alexie Lessing
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
20
|
Malik S. Effect of time-restricted feeding on 24-h rhythm in phototactic behavior of zebrafish. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1669941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shikha Malik
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
21
|
Hugin + neurons provide a link between sleep homeostat and circadian clock neurons. Proc Natl Acad Sci U S A 2021; 118:2111183118. [PMID: 34782479 DOI: 10.1073/pnas.2111183118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin + neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin + neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin + neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin + locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin + neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin + neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.
Collapse
|
22
|
Keenan BT, Galante RJ, Lian J, Zhang L, Guo X, Veatch OJ, Chesler EJ, O'Brien WT, Svenson KL, Churchill GA, Pack AI. The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice. Curr Biol 2021; 31:5238-5248.e7. [PMID: 34653361 DOI: 10.1016/j.cub.2021.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
Many aspects of sleep are heritable, but only a few sleep-regulating genes have been reported. Here, we leverage mouse models to identify and confirm a previously unreported gene affecting sleep duration-dihydropyrimidine dehydrogenase (Dpyd). Using activity patterns to quantify sleep in 325 Diversity Outbred (DO) mice-a population with high genetic and phenotypic heterogeneity-a linkage peak for total sleep in the active lights off period was identified on chromosome 3 (LOD score = 7.14). Mice with the PWK/PhJ ancestral haplotype at this location demonstrated markedly reduced sleep. Among the genes within the linkage region, available RNA sequencing data in an independent sample of DO mice supported a highly significant expression quantitative trait locus for Dpyd, wherein reduced expression was associated with the PWK/PhJ allele. Validation studies were performed using activity monitoring and EEG/EMG recording in Collaborative Cross mouse strains with and without the PWK/PhJ haplotype at this location, as well as EEG and EMG recording of sleep and wake in Dpyd knockout mice and wild-type littermate controls. Mice lacking Dpyd had 78.4 min less sleep during the lights-off period than wild-type mice (p = 0.007; Cohen's d = -0.94). There was no difference in other measured behaviors in knockout mice, including assays evaluating cognitive-, social-, and affective-disorder-related behaviors. Dpyd encodes the rate-limiting enzyme in the metabolic pathway that catabolizes uracil and thymidine to β-alanine, an inhibitory neurotransmitter. Thus, data support β-alanine as a neurotransmitter that promotes sleep in mice.
Collapse
Affiliation(s)
- Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raymond J Galante
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Lian
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lin Zhang
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Guo
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Olivia J Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - W Timothy O'Brien
- Neurobehavior Testing Core, Institute for Translational and Therapeutic Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Webb JM, Fu YH. Recent advances in sleep genetics. Curr Opin Neurobiol 2021; 69:19-24. [PMID: 33360546 PMCID: PMC8217384 DOI: 10.1016/j.conb.2020.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Sleep regulation has a strong genetic component. In this review, we highlight the recent advances in sleep genetics from knockout, point mutation, and GWAS studies. We overview specific genetic effects on REM versus NREM sleep as well as how the implicated genes fall in broad functional categories. Furthermore, we elucidate how genes affect different aspects of sleep including sleep duration, sleep consolidation, recovery sleep, and the circadian timing of sleep, demonstrating that genetic studies can be powerful in understanding how the body regulates sleep.
Collapse
Affiliation(s)
- John M Webb
- Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun 2021; 12:4481. [PMID: 34294692 PMCID: PMC8298587 DOI: 10.1038/s41467-021-24582-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
25
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
26
|
Altenhofen S, Bonan CD. Zebrafish as a tool in the study of sleep and memory-related disorders. Curr Neuropharmacol 2021; 20:540-549. [PMID: 34254919 DOI: 10.2174/1570159x19666210712141041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about "Why we need to sleep?" among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the "rebound sleep effect" phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Xu J, Casanave R, Guo S. Larval zebrafish display dynamic learning of aversive stimuli in a constant visual surrounding. ACTA ACUST UNITED AC 2021; 28:228-238. [PMID: 34131054 PMCID: PMC8212779 DOI: 10.1101/lm.053425.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Balancing exploration and anti-predation are fundamental to the fitness and survival of all animal species from early life stages. How these basic survival instincts drive learning remains poorly understood. Here, using a light/dark preference paradigm with well-controlled luminance history and constant visual surrounding in larval zebrafish, we analyzed intra- and intertrial dynamics for two behavioral components, dark avoidance and center avoidance. We uncover that larval zebrafish display short-term learning of dark avoidance with initial sensitization followed by habituation; they also exhibit long-term learning that is sensitive to trial interval length. We further show that such stereotyped learning patterns is stimulus-specific, as they are not observed for center avoidance. Finally, we demonstrate at individual levels that long-term learning is under homeostatic control. Together, our work has established a novel paradigm to understand learning, uncovered sequential sensitization and habituation, and demonstrated stimulus specificity, individuality, as well as dynamicity in learning.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisico, San Francisco, California 94158, USA
| | - Romelo Casanave
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisico, San Francisco, California 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisico, San Francisco, California 94158, USA.,Program in Human Genetics, University of California at San Francisco, San Francisco, California 94158, USA.,Program in Biological Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
28
|
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 2021; 17:e1008943. [PMID: 34061829 PMCID: PMC8195410 DOI: 10.1371/journal.pgen.1008943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/11/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry Hsu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabio A. Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Roshan A. Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marc A. Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Friedrich RW, Wanner AA. Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annu Rev Neurosci 2021; 44:275-293. [PMID: 33730512 DOI: 10.1146/annurev-neuro-110220-013050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; .,Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
30
|
Dashti HS, Daghlas I, Lane JM, Huang Y, Udler MS, Wang H, Ollila HM, Jones SE, Kim J, Wood AR, Weedon MN, Aslibekyan S, Garaulet M, Saxena R. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat Commun 2021; 12:900. [PMID: 33568662 PMCID: PMC7876146 DOI: 10.1038/s41467-020-20585-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Daytime napping is a common, heritable behavior, but its genetic basis and causal relationship with cardiometabolic health remain unclear. Here, we perform a genome-wide association study of self-reported daytime napping in the UK Biobank (n = 452,633) and identify 123 loci of which 61 replicate in the 23andMe research cohort (n = 541,333). Findings include missense variants in established drug targets for sleep disorders (HCRTR1, HCRTR2), genes with roles in arousal (TRPC6, PNOC), and genes suggesting an obesity-hypersomnolence pathway (PNOC, PATJ). Association signals are concordant with accelerometer-measured daytime inactivity duration and 33 loci colocalize with loci for other sleep phenotypes. Cluster analysis identifies three distinct clusters of nap-promoting mechanisms with heterogeneous associations with cardiometabolic outcomes. Mendelian randomization shows potential causal links between more frequent daytime napping and higher blood pressure and waist circumference.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iyas Daghlas
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Miriam S Udler
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Heming Wang
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Ollila
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Samuel E Jones
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | | | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | | | - Marta Garaulet
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Physiology, University of Murcia, Murcia, Spain.
- IMIB-Arrixaca, Murcia, Spain.
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 2021; 14:606900. [PMID: 33536882 PMCID: PMC7847893 DOI: 10.3389/fnbeh.2020.606900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
High-throughput behavioral phenotyping is critical to genetic or chemical screening approaches. Zebrafish larvae are amenable to high-throughput behavioral screening because of their rapid development, small size, and conserved vertebrate brain architecture. Existing commercial behavioral phenotyping systems are expensive and not easily modified for new assays. Here, we describe a modular, highly adaptable, and low-cost system. Along with detailed assembly and operation instructions, we provide data acquisition software and a robust, parallel analysis pipeline. We validate our approach by analyzing stimulus response profiles in larval zebrafish, confirming prepulse inhibition phenotypes of two previously isolated mutants, and highlighting best practices for growing larvae prior to behavioral testing. Our new design thus allows rapid construction and streamlined operation of many large-scale behavioral setups with minimal resources and fabrication expertise, with broad applications to other aquatic organisms.
Collapse
Affiliation(s)
- William Joo
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael D. Vivian
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brett J. Graham
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Ye Y, Liang Z, Xue L. Neuromedin U: potential roles in immunity and inflammation. Immunology 2021; 162:17-29. [PMID: 32888314 PMCID: PMC7730025 DOI: 10.1111/imm.13257] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of neuromedin U (NmU) from porcine spinal cord in 1985, this neuropeptide has been subsequently identified in many other species with multiple physiological and pathophysiological roles detected, ranging from smooth muscle contraction, feeding, energy balance to tumorigenesis. Intriguingly, NmU is also emerging to play pro-inflammatory roles involving immune cell activation and cytokine release in a neuron-dependent or neuron-independent manner. The NmU-mediated inflammatory responses have already been observed in worm infection, sepsis, autoimmune arthritis and allergic animal models. In this review, we focus on the roles of NmU in immunity and inflammation by highlighting the interactions between NmU and immune cells, summarizing the signalling mechanism involved in their reactions and discussing its potential contributions to inflammatory diseases.
Collapse
Affiliation(s)
- Yuan Ye
- The Respiratory Medicine UnitOxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
- Department of Respiratory and Critical Care MedicineWest China School of Medicine and West China HospitalSichuan UniversityChengduChina
| | - Zongan Liang
- Department of Respiratory and Critical Care MedicineWest China School of Medicine and West China HospitalSichuan UniversityChengduChina
| | - Luzheng Xue
- The Respiratory Medicine UnitOxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. eLife 2020; 9:54491. [PMID: 33337320 PMCID: PMC7748413 DOI: 10.7554/elife.54491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Although several sleep-regulating neuronal populations have been identified, little is known about how they interact with each other to control sleep/wake states. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017). Here we show using zebrafish that npvf-expressing neurons control sleep via the serotonergic raphe nuclei (RN), a hindbrain structure that is critical for sleep in both diurnal zebrafish and nocturnal mice. Using genetic labeling and calcium imaging, we show that npvf-expressing neurons innervate and can activate serotonergic RN neurons. We also demonstrate that chemogenetic or optogenetic stimulation of npvf-expressing neurons induces sleep in a manner that requires NPVF and serotonin in the RN. Finally, we provide genetic evidence that NPVF acts upstream of serotonin in the RN to maintain normal sleep levels. These findings reveal a novel hypothalamic-hindbrain neuronal circuit for sleep/wake control.
Collapse
Affiliation(s)
- Daniel A Lee
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Grigorios Oikonomou
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Tasha Cammidge
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Andrey Andreev
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Young Hong
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Hannah Hurley
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - David A Prober
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| |
Collapse
|
34
|
Honer M, Buscemi K, Barrett N, Riazati N, Orlando G, Nelson MD. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. J Neurogenet 2020; 34:440-452. [PMID: 33044108 DOI: 10.1080/01677063.2020.1830084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.
Collapse
Affiliation(s)
- Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Natalie Barrett
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Niknaz Riazati
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Gerald Orlando
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
36
|
de Abreu MS, Genario R, Giacomini AC, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020; 445:3-11. [DOI: 10.1016/j.neuroscience.2019.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
37
|
Jaikumar G, Slabbekoorn H, Sireeni J, Schaaf M, Tudorache C. The role of the Glucocorticoid Receptor in the Regulation of Diel Rhythmicity. Physiol Behav 2020; 223:112991. [DOI: 10.1016/j.physbeh.2020.112991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023]
|
38
|
Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, Temmerman L, De Haes W, Fancsalszky L, Gottschalk A, Raizen DM, Nelson MD, Schoofs L, Beets I. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Sci Rep 2020; 10:9929. [PMID: 32555288 PMCID: PMC7303124 DOI: 10.1038/s41598-020-66536-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/22/2020] [Indexed: 01/26/2023] Open
Abstract
Sleep and wakefulness are fundamental behavioral states of which the underlying molecular principles are becoming slowly elucidated. Transitions between these states require the coordination of multiple neurochemical and modulatory systems. In Caenorhabditis elegans sleep occurs during a larval transition stage called lethargus and is induced by somnogenic neuropeptides. Here, we identify two opposing neuropeptide/receptor signaling pathways: NLP-22 promotes behavioral quiescence, whereas NLP-2 promotes movement during lethargus, by signaling through gonadotropin-releasing hormone (GnRH) related receptors. Both NLP-2 and NLP-22 belong to the RPamide neuropeptide family and share sequence similarities with neuropeptides of the bilaterian GnRH, adipokinetic hormone (AKH) and corazonin family. RPamide neuropeptides dose-dependently activate the GnRH/AKH-like receptors GNRR-3 and GNRR-6 in a cellular receptor activation assay. In addition, nlp-22-induced locomotion quiescence requires the receptor gnrr-6. By contrast, wakefulness induced by nlp-2 overexpression is diminished by deletion of either gnrr-3 or gnrr-6. nlp-2 is expressed in a pair of olfactory AWA neurons and cycles with larval periodicity, as reported for nlp-22, which is expressed in RIA. Our data suggest that the somnogenic NLP-22 neuropeptide signals through GNRR-6, and that both GNRR-3 and GNRR-6 are required for the wake-promoting action of NLP-2 neuropeptides.
Collapse
Affiliation(s)
- Petrus Van der Auwera
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Lotte Frooninckx
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Ryan T Vance
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Jan Watteyne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | | | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Luca Fancsalszky
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Liliane Schoofs
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
39
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
40
|
Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit. Nat Commun 2020; 11:2076. [PMID: 32350283 PMCID: PMC7190830 DOI: 10.1038/s41467-020-15964-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Learning and memory are regulated by neuromodulatory pathways, but the contribution and temporal requirement of most neuromodulators in a learning circuit are unknown. Here we identify the evolutionarily conserved neuromedin U (NMU) neuropeptide family as a regulator of C. elegans gustatory aversive learning. The NMU homolog CAPA-1 and its receptor NMUR-1 are required for the retrieval of learned salt avoidance. Gustatory aversive learning requires the release of CAPA-1 neuropeptides from sensory ASG neurons that respond to salt stimuli in an experience-dependent manner. Optogenetic silencing of CAPA-1 neurons blocks the expression, but not the acquisition, of learned salt avoidance. CAPA-1 signals through NMUR-1 in AFD sensory neurons to modulate two navigational strategies for salt chemotaxis. Aversive conditioning thus recruits NMU signaling to modulate locomotor programs for expressing learned avoidance behavior. Because NMU signaling is conserved across bilaterian animals, our findings incite further research into its function in other learning circuits.
Collapse
|
41
|
Abstract
Sleep is a ubiquitous and complex behavior in both its manifestation and regulation. Despite its essential role in maintaining optimal performance, health, and well-being, the genetic mechanisms underlying sleep remain poorly understood. Here, we review the forward genetic approaches undertaken in the last four years to elucidate the genes and gene pathways affecting sleep and its regulation. Despite an increasing number of studies and mining large databases, a coherent picture on “sleep” genes has yet to emerge. We highlight the results achieved by using unbiased genetic screens mainly in humans, mice, and fruit flies with an emphasis on normal sleep and make reference to lessons learned from the circadian field.
Collapse
Affiliation(s)
- Maxime Jan
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, 40515, USA
| | - Paul Franken
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
42
|
FUNATO H. Forward genetic approach for behavioral neuroscience using animal models. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:10-31. [PMID: 31932526 PMCID: PMC6974404 DOI: 10.2183/pjab.96.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Forward genetics is a powerful approach to understand the molecular basis of animal behaviors. Fruit flies were the first animal to which this genetic approach was applied systematically and have provided major discoveries on behaviors including sexual, learning, circadian, and sleep-like behaviors. The development of different classes of model organism such as nematodes, zebrafish, and mice has enabled genetic research to be conducted using more-suitable organisms. The unprecedented success of forward genetic approaches was the identification of the transcription-translation negative feedback loop composed of clock genes as a fundamental and conserved mechanism of circadian rhythm. This approach has now expanded to sleep/wakefulness in mice. A conventional strategy such as dominant and recessive screenings can be modified with advances in DNA sequencing and genome editing technologies.
Collapse
Affiliation(s)
- Hiromasa FUNATO
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
43
|
Ahi EP, Brunel M, Tsakoumis E, Schmitz M. Transcriptional study of appetite regulating genes in the brain of zebrafish (Danio rerio) with impaired leptin signalling. Sci Rep 2019; 9:20166. [PMID: 31882937 PMCID: PMC6934527 DOI: 10.1038/s41598-019-56779-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The hormone leptin is a key regulator of body weight, food intake and metabolism. In mammals, leptin acts as an anorexigen and inhibits food intake centrally by affecting the appetite centres in the hypothalamus. In teleost fish, the regulatory connections between leptin and other appetite-regulating genes are largely unknown. In the present study, we used a zebrafish mutant with a loss of function leptin receptor to investigate brain expression patterns of 12 orexigenic and 24 anorexigenic genes under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). Expression patterns were compared to wild-type zebrafish, in order to identify leptin-dependent differentially expressed genes under different feeding conditions. We provide evidence that the transcription of certain orexigenic and anorexigenic genes is influenced by leptin signalling in the zebrafish brain. We found that the expression of orexigenic genes was not affected by impaired leptin signalling under normal feeding conditions; however, several orexigenic genes showed increased transcription during fasting and refeeding, including agrp, apln, galr1a and cnr1. This suggests an inhibitory effect of leptin signal on the transcription of these orexigenic genes during short-term fasting and refeeding in functional zebrafish. Most pronounced effects were observed in the group of anorexigenic genes, where the impairment of leptin signalling resulted in reduced gene expression in several genes, including cart family, crhb, gnrh2, mc4r, pomc and spx, in the control group. This suggests a stimulatory effect of leptin signal on the transcription of these anorexigenic genes under normal feeding condition. In addition, we found multiple gain and loss in expression correlations between the appetite-regulating genes, in zebrafish with impaired leptin signal, suggesting the presence of gene regulatory networks downstream of leptin signal in zebrafish brain. The results provide the first evidence for the effects of leptin signal on the transcription of various appetite-regulating genes in zebrafish brain, under different feeding conditions. Altogether, these transcriptional changes suggest an anorexigenic role for leptin signal, which is likely to be mediated through distinct set of appetite-regulating genes under different feeding conditions.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
44
|
Ren X, Dong F, Zhuang Y, Wang Y, Ma W. Effect of neuromedin U on allergic airway inflammation in an asthma model. Exp Ther Med 2019; 19:809-816. [PMID: 32010240 PMCID: PMC6966147 DOI: 10.3892/etm.2019.8283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Asthma is a major inflammatory airway disease with high incidence and mortality rates. The Global Initiative for Asthma released a report called ‘The Global Burden of Asthma’ in 2004. However, the specific pathogenesis of asthma remains unclear. An increasing number of studies have demonstrated that neuromedin U (NMU) plays a pleiotropic role in the pathogenesis of asthma. NMU is a highly structurally conserved neuropeptide that was first purified from porcine spinal cord and named for its contractile effect on the rat uterus. NMU amplifies type 2 innate lymphoid cell (ILC2)-driven allergic lung inflammation. The NMU receptors (NMURs), designated as NMUR1 and NMUR2, belong to the G protein-coupled receptor family. NMUR1 has also been found in immune cells, including ILC2s, mast cells and eosinophils. In view of the important roles of NMU in the pathogenesis of asthma, the present review evaluates the potential mechanisms underlying the impact of NMU on asthma and its association with asthma therapy.
Collapse
Affiliation(s)
- Xiaojie Ren
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuerong Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yong Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wuhua Ma
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
45
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
46
|
Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019; 20:embr.201846807. [PMID: 30804011 PMCID: PMC6399599 DOI: 10.15252/embr.201846807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep is a fundamental conserved physiological state in animals and humans. It may serve multiple functions, ranging from energy conservation to higher brain operation. Understanding sleep functions and the underlying mechanisms requires the study of sleeplessness and its consequences. The traditional approach to remove sleep is sleep deprivation (SD) by sensory stimulation. However, stimulation-induced SD can be stressful and can cause non-specific side effects. An emerging alternative method is "genetic SD", which removes sleep using genetics or optogenetics. Sleep requires sleep-active neurons and their regulators. Thus, genetic impairment of sleep circuits might lead to more specific and comprehensive sleep loss. Here, I discuss the advantages and limits of genetic SD in key genetic sleep model animals: rodents, zebrafish, fruit flies and roundworms, and how the study of genetic SD alters our view of sleep functions. Genetic SD typically causes less severe phenotypes compared with stimulation-induced SD, suggesting that sensory stimulation-induced SD may have overestimated the role of sleep, calling for a re-investigation of sleep functions.
Collapse
Affiliation(s)
- Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
47
|
Burg L, Palmer N, Kikhi K, Miroshnik ES, Rueckert H, Gaddy E, MacPherson Cunningham C, Mattonet K, Lai SL, Marín-Juez R, Waring RB, Stainier DYR, Balciunas D. Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish. PLoS Genet 2018; 14:e1007754. [PMID: 30427827 PMCID: PMC6261631 DOI: 10.1371/journal.pgen.1007754] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/28/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Many eukaryotic genes play essential roles in multiple biological processes in several different tissues. Conditional mutants are needed to analyze genes with such pleiotropic functions. In vertebrates, conditional gene inactivation has only been feasible in the mouse, leaving other model systems to rely on surrogate experimental approaches such as overexpression of dominant negative proteins and antisense-based tools. Here, we have developed a simple and straightforward method to integrate loxP sequences at specific sites in the zebrafish genome using the CRISPR/Cas9 technology and oligonucleotide templates for homology directed repair. We engineered conditional (floxed) mutants of tbx20 and fleer, and demonstrate excision of exons flanked by loxP sites using tamoxifen-inducible CreERT2 recombinase. To demonstrate broad applicability of our method, we also integrated loxP sites into two additional genes, aldh1a2 and tcf21. The ease of this approach will further expand the use of zebrafish to study various aspects of vertebrate biology, especially post-embryonic processes such as regeneration. Some genes are expressed and function in a single tissue, and the effect of their loss on that tissue can be readily determined. Frequently, however, genes that are necessary for the development or maintenance of one tissue are also important for other tissues or cell types. Genes of the latter type are difficult to analyze because of the complications resulting from an organism having multiple defects in different tissues. The solution pioneered by mouse geneticists is to inactivate the gene of interest in only one tissue at a time. This elegant approach requires the ability to make specific edits to the genome, a technology that was not readily available to zebrafish researchers until recently. Using the CRISPR/Cas9 genome editing tool, we have developed a simple, reliable, and efficient method to insert DNA sequences into the zebrafish genome that enable conditional gene inactivation. Our methodology will be useful not only for the study of genes that play important roles in multiple tissues, but also for the genetic analysis of biological processes which occur in adult animals.
Collapse
Affiliation(s)
- Leonard Burg
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nicholas Palmer
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Khrievono Kikhi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Evgeniya S. Miroshnik
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Helen Rueckert
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Eleanor Gaddy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Carlee MacPherson Cunningham
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Richard B. Waring
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
In vivo cell type-specific CRISPR gene editing for sleep research. J Neurosci Methods 2018; 316:99-102. [PMID: 30439390 DOI: 10.1016/j.jneumeth.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
Abstract
Sleep is an innate behavior conserved in all animals and, in vertebrates, is regulated by neuronal circuits in the brain. The conventional techniques of forward and reverse genetics have enabled researchers to investigate the molecular mechanisms that regulate sleep and arousal. However, functional interrogation of genes in specific cell subtypes in the brain remains a challenge. Here, we review the background of newly developed gene-editing technologies using engineered CRISPR/Cas9 system and describe the application to interrogate gene functions within genetically-defined brain cell populations in sleep research.
Collapse
|
49
|
Abstract
Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems.
Collapse
|
50
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|