1
|
Villarin JM, Kellendonk C. An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology. Mol Psychiatry 2025:10.1038/s41380-025-03060-7. [PMID: 40405017 DOI: 10.1038/s41380-025-03060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
In applying model organisms to study the neurobiology of mental disorders, rodents offer unique potential for probing, with high spatiotemporal resolution, the neural and molecular mechanisms underlying behavior in a mammalian system. Furthermore, investigators can wield exceptional power to manipulate genes, molecules, and circuits in mice to pin down causal relationships. While these advantages have allowed us to understand much more deeply than ever before the brain mechanisms regulating complex behaviors, the impact of rodent models on developing therapeutic strategies for psychiatric disorders has remained thus far limited. Herein, we will discuss the opportunities and limits of using mouse models in the context of schizophrenia, a complex psychiatric disorder with strong genetic basis that poses various unmet clinical needs calling out for basic science research. We review approaches for employing behavioral, genetic, and circuit-based methods in rodents to inform schizophrenia symptomatology, pathophysiology, and, ultimately, treatment.
Collapse
Affiliation(s)
- Joseph M Villarin
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
| | - Christoph Kellendonk
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Kates WR, Murphy D, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. SCIENCE ADVANCES 2025; 11:eadq2807. [PMID: 40073125 PMCID: PMC11900866 DOI: 10.1126/sciadv.adq2807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear. We used a cross-species design to uncover the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. In LgDel mice, a model for 22q11DS, we found age-specific patterns of brain dysconnectivity, with widespread fMRI hyperconnectivity in juvenile mice reconfiguring to hippocampal hypoconnectivity over puberty. These changes correlated with developmental alterations in dendritic spine density, and both were transiently normalized by GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous pubertal hyperconnectivity-to-hypoconnectivity reconfiguration occurs in human 22q11DS, affecting cortical regions enriched for GSK3β-associated synaptic genes and autism-relevant transcripts. This dysconnectivity also predicts age-dependent social alterations in 22q11DS individuals. These results suggest that synaptic mechanisms underlie developmental brain dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Silvia Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Antea Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - David Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Elizabeth De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Michael Vincent Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), Pisa, Italy
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA,USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
3
|
Valeria S, Francesco T, Sonia A, Laura VP, Luca C, Marcello S, Roberta L, Patrizia P, Arnau BG, Roberto F, Miriam M. Sex-specific maladaptive responses to acute stress upon in utero THC exposure are mediated by dopamine. Pharmacol Res 2024; 210:107536. [PMID: 39622370 PMCID: PMC7617568 DOI: 10.1016/j.phrs.2024.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Cannabis remains by far the most consumed illicit drug in Europe. The availability of more potent cannabis has raised concerns regarding the enhanced health risks associated with its use, particularly among pregnant women. Growing evidence shows that cannabis use during pregnancy increases the risks of child psychopathology. We have previously shown that only male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of prenatal cannabinoid exposure (PCE), display a hyperdopaminergic phenotype associated with a differential susceptibility to acute THC- and stress-mediated effects on sensorimotor gating functions. Here, we explore the contribution of the hypothalamic-pituitary-adrenal (HPA) axis, key regulator of body adaptive stress responses, to the detrimental effects of acute stress on ventral tegmental area (VTA) dopamine neurons and sensorimotor gating function of PCE rats. We report a sex-dependent compromised balance in mRNA levels of genes encoding mineralocorticoid and glucocorticoid receptors in the VTA, alongside with stress-induced pre-pulse inhibition (PPI) impairment. Notably, VTA dopamine neuronal activity is causally linked to the manifestation of stress-dependent deterioration of PPI. Finally, pharmacological manipulations targeting glycogen-synthase-kinase-3-β signaling during postnatal development correct these stress-induced, sex-specific and dopamine-dependent disruption of PPI. Collectively, these results highlight the critical sex-dependent interplay between HPA axis and dopamine system in the regulation of sensorimotor gating functions in rats.
Collapse
Affiliation(s)
- Serra Valeria
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Traccis Francesco
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Aroni Sonia
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | | | - Concas Luca
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Serra Marcello
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Leone Roberta
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Porcu Patrizia
- Institute of Neurosciences, National Research Council (C.N.R.), Cagliari, Italy
| | | | - Frau Roberto
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Melis Miriam
- Dept. Biomedical Sciences, Div. Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| |
Collapse
|
4
|
de León Reyes NS, Bortolozzo-Gleich MH, Nomura Y, Fregola CG, Nieto M, Gogos JA, Leroy F. Interhemispheric CA1 projections support spatial cognition and are affected in a mouse model of the 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611389. [PMID: 39282348 PMCID: PMC11398471 DOI: 10.1101/2024.09.05.611389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Untangling the hippocampus connectivity is critical for understanding the mechanisms supporting learning and memory. However, the function of interhemispheric connections between hippocampal formations is still poorly understood. So far, two major hippocampal commissural projections have been characterized in rodents. Mossy cells from the hilus of the dentate gyrus project to the inner molecular layer of the contralateral dentate gyrus and CA3 and CA2 pyramidal neuron axonal collaterals to contralateral CA3, CA2 and CA1. In contrary, little is known about commissural projection from the CA1 region. Here, we show that CA1 pyramidal neurons from the dorsal hippocampus project to contralateral dorsal CA1 as well as dorsal subiculum. We further demonstrate that the interhemispheric projection from CA1 to dorsal subiculum supports spatial memory and spatial working memory in WT mice, two cognitive functions impaired in male mice from the Df16(A) +/- model of 22q11.2 deletion syndrome (22q11.2DS) associated with schizophrenia. Investigation of the CA1 interhemispheric projections in Df16(A) +/- mice revealed that these projections are disrupted with male mutants showing stronger anatomical defects compared to females. Overall, our results characterize a novel interhemispheric projection from dCA1 to dorsal subiculum and suggest that dysregulation of this projection may contribute to the cognitive deficits associated with the 22q11.2DS.
Collapse
Affiliation(s)
- Noelia S. de León Reyes
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | | | - Yuki Nomura
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Cristina García Fregola
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Joseph A. Gogos
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, NY, United States
| | - Félix Leroy
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| |
Collapse
|
5
|
Albeely AM, Williams OOF, Blight CR, Thériault RK, Perreault ML. Sex differences in neuronal oscillatory activity and memory in the methylazoxymethanol acetate model of schizophrenia. Schizophr Res 2024; 267:451-461. [PMID: 38643726 DOI: 10.1016/j.schres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-β. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | - Colin R Blight
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
6
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587339. [PMID: 38585897 PMCID: PMC10996624 DOI: 10.1101/2024.03.29.587339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper- to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3β, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- F G Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - S Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - A Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - M Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - D Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - N Barsotti
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - E De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - C Schleifer
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - L Kushan
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - C Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - A Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - F Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - M V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - M Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - C E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
7
|
Zhou T, Ho YY, Lee RX, Fath AB, He K, Scott J, Bajwa N, Hartley ND, Wilde J, Gao X, Li C, Hong E, Nassar MR, Wimmer RD, Singh T, Halassa MM, Feng G. Enhancement of mediodorsal thalamus rescues aberrant belief dynamics in a mouse model with schizophrenia-associated mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574745. [PMID: 38260581 PMCID: PMC10802391 DOI: 10.1101/2024.01.08.574745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Optimizing behavioral strategy requires belief updating based on new evidence, a process that engages higher cognition. In schizophrenia, aberrant belief dynamics may lead to psychosis, but the mechanisms underlying this process are unknown, in part, due to lack of appropriate animal models and behavior readouts. Here, we address this challenge by taking two synergistic approaches. First, we generate a mouse model bearing patient-derived point mutation in Grin2a (Grin2aY700X+/-), a gene that confers high-risk for schizophrenia and recently identified by large-scale exome sequencing. Second, we develop a computationally trackable foraging task, in which mice form and update belief-driven strategies in a dynamic environment. We found that Grin2aY700X+/- mice perform less optimally than their wild-type (WT) littermates, showing unstable behavioral states and a slower belief update rate. Using functional ultrasound imaging, we identified the mediodorsal (MD) thalamus as hypofunctional in Grin2aY700X+/- mice, and in vivo task recordings showed that MD neurons encoded dynamic values and behavioral states in WT mice. Optogenetic inhibition of MD neurons in WT mice phenocopied Grin2aY700X+/- mice, and enhancing MD activity rescued task deficits in Grin2aY700X+/- mice. Together, our study identifies the MD thalamus as a key node for schizophrenia-relevant cognitive dysfunction, and a potential target for future therapeutics.
Collapse
Affiliation(s)
- Tingting Zhou
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Yi-Yun Ho
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Ray X Lee
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Amanda B Fath
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Kathleen He
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jonathan Scott
- Department of Neuroscience, Tufts University School of Medicine
| | - Navdeep Bajwa
- Department of Neuroscience, Tufts University School of Medicine
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | - Jonathan Wilde
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Xian Gao
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Cui Li
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Evan Hong
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | | | - Ralf D Wimmer
- Department of Neuroscience, Tufts University School of Medicine
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | | | - Guoping Feng
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| |
Collapse
|
8
|
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol 2024; 84:102820. [PMID: 38091860 DOI: 10.1016/j.conb.2023.102820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
9
|
Gur RE, McDonald-McGinn DM, Moore TM, Gallagher RS, McClellan E, White L, Ruparel K, Hillman N, Crowley TB, McGinn DE, Zackai E, Emanuel BS, Calkins ME, Roalf DR, Gur RC. Psychosis spectrum features, neurocognition and functioning in a longitudinal study of youth with 22q11.2 deletion syndrome. Psychol Med 2023; 53:6763-6772. [PMID: 36987693 PMCID: PMC10600823 DOI: 10.1017/s0033291723000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/22/2022] [Accepted: 01/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Neuropsychiatric disorders are common in 22q11.2 Deletion Syndrome (22q11DS) with about 25% of affected individuals developing schizophrenia spectrum disorders by young adulthood. Longitudinal evaluation of psychosis spectrum features and neurocognition can establish developmental trajectories and impact on functional outcome. METHODS 157 youth with 22q11DS were assessed longitudinally for psychopathology focusing on psychosis spectrum symptoms, neurocognitive performance and global functioning. We contrasted the pattern of positive and negative psychosis spectrum symptoms and neurocognitive performance differentiating those with more prominent Psychosis Spectrum symptoms (PS+) to those without prominent psychosis symptoms (PS-). RESULTS We identified differences in the trajectories of psychosis symptoms and neurocognitive performance between the groups. The PS+ group showed age associated increase in symptom severity, especially negative symptoms and general nonspecific symptoms. Correspondingly, their level of functioning was worse and deteriorated more steeply than the PS- group. Neurocognitive performance was generally comparable in PS+ and PS- groups and demonstrated a similar age-related trajectory. However, worsening executive functioning distinguished the PS+ group from PS- counterparts. Notably, of the three executive function measures examined, only working memory showed a significant difference between the groups in rate of change. Finally, structural equation modeling showed that neurocognitive decline drove the clinical change. CONCLUSIONS Youth with 22q11DS and more prominent psychosis features show worsening of symptoms and functional decline driven by neurocognitive decline, most related to executive functions and specifically working memory. The results underscore the importance of working memory in the developmental progression of psychosis.
Collapse
Affiliation(s)
- Raquel E. Gur
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Donna M. McDonald-McGinn
- 22q and You Center, and Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tyler M. Moore
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - R. Sean Gallagher
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Emily McClellan
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren White
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Noah Hillman
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - T. Blaine Crowley
- 22q and You Center, and Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel E. McGinn
- 22q and You Center, and Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine Zackai
- 22q and You Center, and Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beverly S. Emanuel
- 22q and You Center, and Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica E. Calkins
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - David R. Roalf
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Ruben C. Gur
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Xu L, Liu Y, Long J, He X, Xie F, Yin Q, Chen M, Long D, Chen Y. Loss of spines in the prelimbic cortex is detrimental to working memory in mice with early-life adversity. Mol Psychiatry 2023; 28:3444-3458. [PMID: 37500828 PMCID: PMC10618093 DOI: 10.1038/s41380-023-02197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.
Collapse
Affiliation(s)
- Liping Xu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yue Liu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jingyi Long
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands
| | - Xiulan He
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fanbing Xie
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qiao Yin
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Michael Chen
- University of California, Los Angeles, CA, 90095, USA
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
13
|
Kupferschmidt DA, Cummings KA, Joffe ME, MacAskill A, Malik R, Sánchez-Bellot C, Tejeda HA, Yarur Castillo H. Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. J Neurosci 2022; 42:8468-8476. [PMID: 36351822 PMCID: PMC9665918 DOI: 10.1523/jneurosci.1136-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the 2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC (mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways, and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations relevant to psychiatric disease.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35233
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Andrew MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
| | - Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, 94158
| | - Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
- Laboratorio de Circuitos Neuronales, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 28002
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| |
Collapse
|
14
|
Sauer JF, Bartos M. Disrupted-in-schizophrenia-1 is required for normal pyramidal cell-interneuron communication and assembly dynamics in the prefrontal cortex. eLife 2022; 11:79471. [PMID: 36239988 PMCID: PMC9566853 DOI: 10.7554/elife.79471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
We interrogated prefrontal circuit function in mice lacking Disrupted-in-schizophrenia-1 (Disc1-mutant mice), a risk factor for psychiatric disorders. Single-unit recordings in awake mice revealed reduced average firing rates of fast-spiking interneurons (INTs), including optogenetically identified parvalbumin-positive cells, and a lower proportion of INTs phase-coupled to ongoing gamma oscillations. Moreover, we observed decreased spike transmission efficacy at local pyramidal cell (PYR)-INT connections in vivo, suggesting a reduced excitatory effect of local glutamatergic inputs as a potential mechanism of lower INT rates. On the network level, impaired INT function resulted in altered activation of PYR assemblies: While assembly activations defined as coactivations within 25 ms were observed equally often, the expression strength of individual assembly patterns was significantly higher in Disc1-mutant mice. Our data, thus, reveal a role of Disc1 in shaping the properties of prefrontal assembly patterns by setting INT responsiveness to glutamatergic drive.
Collapse
Affiliation(s)
- Jonas-Frederic Sauer
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
16
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
17
|
Lv X, Zhang X, Zhao Q, Li C, Zhang T, Yang X. Acute stress promotes brain oscillations and hippocampal-cortical dialog in emotional processing. Biochem Biophys Res Commun 2022; 598:55-61. [PMID: 35151204 DOI: 10.1016/j.bbrc.2022.01.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Hippocampal-cortical circuit oscillations in local field potential (LFP) represent network-level signals which promotes behavior. Investigating these signals promote our understanding on how the brain process cognition and emotion, and provide further perspectives into electroencephalogram endophenotypes, especially under the pathological state. The physiological adaptive stress responses to threatening stimuli are critical for individuals. The disturbance of stress response may lead to psychiatric disorders such as major depressive disorder (MDD). To quantitatively examine the effects of acute stress on hippocampal-cortical circuit, we recorded LFPs in the hippocampus (HC) and the medial prefrontal cortex (mPFC). We analyzed three major LFP oscillations with their temporal coupling. Consistent with our hypothesis that strengthened communication of hippocampal-cortical circuit may occur in stress adaption, we found that intensive acute stress induced enhanced ripple-delta-spindle coupling. The LFP coupling may facilitate the recruitment of relevant structures in hippocampal-cortical circuit, in response to acute stress, and play a role in emotional encoding migration.
Collapse
Affiliation(s)
- Xin Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qian Zhao
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiangyu Yang
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.
| |
Collapse
|
18
|
Sohal VS. Transforming Discoveries About Cortical Microcircuits and Gamma Oscillations Into New Treatments for Cognitive Deficits in Schizophrenia. Am J Psychiatry 2022; 179:267-276. [PMID: 35360913 DOI: 10.1176/appi.ajp.20220147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major cause of disability in schizophrenia is cognitive impairment, which remains largely refractory to existing treatments. This reflects the fact that antipsychotics and other therapies have not been designed to address specific brain abnormalities that cause cognitive impairment. This overview proposes that understanding how specific cellular and synaptic loci within cortical microcircuits contribute to cortical gamma oscillations may reveal treatments for cognitive impairment. Gamma oscillations are rhythmic patterns of high frequency (∼30-100 Hz) neuronal activity that are synchronized within and across brain regions, generated by a class of inhibitory interneurons that express parvalbumin, and recruited during a variety of cognitive tasks. In schizophrenia, both parvalbumin interneuron function and task-evoked gamma oscillations are deficient. While it has long been controversial whether gamma oscillations are merely a biomarker of circuit function or actually contribute to information processing by neuronal networks, recent neurobiological studies in mice have shown that disrupting or enhancing synchronized gamma oscillations can reproduce or ameliorate cognitive deficits resembling those seen in schizophrenia. In fact, transiently enhancing the synchrony of parvalbumin interneuron-generated gamma oscillations can lead to long-lasting improvements in cognition in mice that model aspects of schizophrenia. Gamma oscillations emerge from specific patterns of connections between a variety of cell types within cortical microcircuits. Thus, a critical next step is to understand how specific cell types and synapses generate gamma oscillations, mediate the effects of gamma oscillations on information processing, and/or undergo plasticity following the induction of gamma oscillations. Modulating these circuit loci, potentially in combination with other approaches such as cognitive training and brain stimulation, may yield potent and selective interventions for enhancing cognition in schizophrenia.
Collapse
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| |
Collapse
|
19
|
S-SCAM inhibits Axin-dependent synaptic function of GSK3β in a sex-dependent manner. Sci Rep 2022; 12:4090. [PMID: 35260764 PMCID: PMC8904762 DOI: 10.1038/s41598-022-08220-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
S-SCAM/MAGI-2 gene duplication is associated with schizophrenia (SCZ). S-SCAM overexpression in the forebrain induces SCZ-like phenotypes in a transgenic (Tg) mouse model. Interestingly, S-SCAM Tg mice show male-specific impairments in synaptic plasticity and working memory. However, mechanisms underlying the sex-specific deficits remain unknown. Here we report that S-SCAM Tg mice have male-specific deficits in synaptic GSK3β functions, as shown by reduced synaptic protein levels and increased inhibitory phosphorylation of GSK3β. This GSK3β hyper-phosphorylation was associated with increased CaMKII activities. Notably, synaptic levels of Axin1, to which GSK3β binds in competition with S-SCAM, were also reduced in male S-SCAM Tg mice. We demonstrated that Axin-binding is required for the S-SCAM overexpression-induced synaptic GSK3β reduction. Axin stabilization using XAV939 rescued the GSK3β deficits and restored the temporal activation of GSK3β during long-term depression in S-SCAM overexpressing neurons. Interestingly, synaptic Axin2 levels were increased in female S-SCAM Tg mice. Female sex hormone 17β-estradiol increased Axin2 expression and increased synaptic GSK3β levels in S-SCAM overexpressing neurons. These results reveal the role of S-SCAM in controlling Axin-dependent synaptic localization of GSK3β. Moreover, our studies point out the pathological relevance of GSK3β hypofunction found in humans and contribute to understanding the molecular underpinnings of sex differences in SCZ.
Collapse
|
20
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Lee Y, Bortolotto ZA, Bradley CA, Sanderson TM, Zhuo M, Kaang BK, Collingridge GL. The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory. Front Mol Neurosci 2022; 14:804130. [PMID: 35153671 PMCID: PMC8829050 DOI: 10.3389/fnmol.2021.804130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a Ser/Thr protein kinase that regulates many cellular processes, including synaptic plasticity. Previously, we reported that inhibition of GSK-3 prevents the induction of one of the major forms of synaptic plasticity, N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD), in hippocampal slices. In the present study, we have investigated the effects of inhibiting GSK-3 on learning and memory in healthy naïve animals. Systemic administration of a highly selective GSK-3 inhibitor, CT99021, reversibly blocked NMDAR-dependent LTD in the CA1 region of the hippocampus in anesthetized adult mice. In behavioral tasks, CT99021 had no effect on locomotor activity, anxiety, hippocampus-dependent contextual fear memory, and hippocampus-dependent reversal learning. However, CT99021 facilitated the rate of learning in the Morris water maze (MWM) and T-maze and enhanced the accuracy of long-term spatial memory in the MWM. These findings suggest that GSK-3 regulates the accuracy of spatial memory acquisition and recall.
Collapse
Affiliation(s)
- Yeseul Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clarrisa A. Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genes and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas M. Sanderson
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Bong-Kiun Kaang,
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Graham L. Collingridge,
| |
Collapse
|
22
|
Strüber M, Sauer JF, Bartos M. Parvalbumin expressing interneurons control spike-phase coupling of hippocampal cells to theta oscillations. Sci Rep 2022; 12:1362. [PMID: 35079030 PMCID: PMC8789780 DOI: 10.1038/s41598-022-05004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Encoding of information by hippocampal neurons is defined by the number and the timing of action potentials generated relative to ongoing network oscillations in the theta (5–14 Hz), gamma (30–80 Hz) and ripple frequency range (150–200 Hz). The exact mechanisms underlying the temporal coupling of action potentials of hippocampal cells to the phase of rhythmic network activity are not fully understood. One critical determinant of action potential timing is synaptic inhibition provided by a complex network of Gamma-amino-hydroxy-butyric acid releasing (GABAergic) interneurons. Among the various GABAergic cell types, particularly Parvalbumin-expressing cells are powerful regulators of neuronal activity. Here we silenced Parvalbumin-expressing interneurons in hippocampal areas CA1 and the dentate gyrus in freely moving mice using the optogenetic silencing tool eNpHR to determine their influence on spike timing in principal cells. During optogenetic inhibition of Parvalbumin-expressing cells, local field potential recordings revealed no change in power or frequency of CA1 or dentate gyrus network oscillations. However, CA1 pyramidal neurons exhibited significantly reduced spike-phase coupling to CA1 theta, but not gamma or ripple oscillations. These data suggest that hippocampal Parvalbumin-expressing interneurons are particularly important for an intact theta-based temporal coding scheme of hippocampal principal cell populations.
Collapse
|
23
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
24
|
Brain microstructural abnormalities in 22q11.2 deletion syndrome: A systematic review of diffusion tensor imaging studies. Eur Neuropsychopharmacol 2021; 52:96-135. [PMID: 34358796 DOI: 10.1016/j.euroneuro.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a severe genetic syndrome characterized by cognitive deficits and neuropsychiatric disorders, particularly schizophrenia. Neuroimaging alterations have been extensively reported in 22q11DS, both in gray and white matter structures. However, a considerable variability among the results affects the generalizability of the findings to date. Herein, we reviewed diffusion tensor imaging (DTI) findings in 22q11DS, their association with psychosis and cognition, and the implications of DTI studies on neurodevelopment in 22q11DS. We also investigated differences between 22q11DS and schizophrenic patients without 22q11DS. Using an online search of PubMed and Embase, we identified studies investigating DTI findings in 22q11DS. After selecting eligible studies in accordance with the preferred reporting items for systematic reviews and meta-analyses guideline, we included thirty-one studies. Overall, 22q11DS patients show altered structural connectivity and disrupted microstructural organization of most cortical and subcortical structures and white matter tracts. Moreover, despite a significant heterogeneity in the results, reduced diffusivity measures and elevated fractional anisotropy were observed. However controversial, compared to typically developing children, 22q11DS patients reached the peak of fractional anisotropy (FA) and the trough of radial diffusivity (RD) at an older age, which shows neurodevelopmental delay. DTI measures were also associated with psychotic symptoms and cognitive deficits. In conclusion, this study provides a comprehensive review of microstructural alterations in 22q11DS. Future larger investigations on this syndrome could potentially lead to the detection of early diagnostic imaging markers for genetically induced schizophrenia, thus improving the treatment and, ultimately, the outcome.
Collapse
|
25
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Favicchia I, Flore G, Cioffi S, Lania G, Baldini A, Illingworth E. Pharmacological Rescue of the Brain Cortex Phenotype of Tbx1 Mouse Mutants: Significance for 22q11.2 Deletion Syndrome. Front Mol Neurosci 2021; 14:663598. [PMID: 34552467 PMCID: PMC8450345 DOI: 10.3389/fnmol.2021.663598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Tbx1 mutant mice are a widely used model of 22q11.2 deletion syndrome (22q11.2DS) because they manifest a broad spectrum of physical and behavioral abnormalities that is similar to that found in 22q11.2DS patients. In Tbx1 mutants, brain abnormalities include changes in cortical cytoarchitecture, hypothesized to be caused by the precocious differentiation of cortical progenitors. The objectives of this research are to identify drugs that have efficacy against the brain phenotype, and through a phenotypic rescue approach, gain insights into the pathogenetic mechanisms underlying Tbx1 haploinsufficiency. Experimental Approach Disease model: Tbx1 heterozygous and homozygous embryos. We tested the ability of two FDA-approved drugs, the LSD1 inhibitor Tranylcypromine and Vitamin B12, to rescue the Tbx1 mutant cortical phenotype. Both drugs have proven efficacy against the cardiovascular phenotype, albeit at a much reduced level compared to the rescue achieved in the brain. Methods In situ hybridization and immunostaining of histological brain sections using a subset of molecular markers that label specific cortical regions or cell types. Appropriate quantification and statistical analysis of gene and protein expression were applied to identify cortical abnormalities and to determine the level of phenotypic rescue achieved. Results Cortical abnormalities observed in Tbx1 mutant embryos were fully rescued by both drugs. Intriguingly, rescue was obtained with both drugs in Tbx1 homozygous mutants, indicating that they function through mechanisms that do not depend upon Tbx1 function. This was particularly surprising for Vitamin B12, which was identified through its ability to increase Tbx1 gene expression. Conclusion To our knowledge, this is only the second example of drugs to be identified that ameliorate phenotypes caused by the mutation of a single gene from the 22q11.2 homologous region of the mouse genome. This one drug-one gene approach might be important because there is evidence that the brain phenotype in 22q11.2DS patients is multigenic in origin, unlike the physical phenotypes, which are overwhelmingly attributable to Tbx1 haploinsufficiency. Therefore, effective treatments will likely involve the use of multiple drugs that are targeted to the function of specific genes within the deleted region.
Collapse
Affiliation(s)
- Ilaria Favicchia
- Department of Chemistry and Biology, "Adolfo Zambelli", University of Salerno, Fisciano, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Antonio Baldini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, "Adolfo Zambelli", University of Salerno, Fisciano, Italy
| |
Collapse
|
27
|
Jones ZB, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Alters Neural Oscillations in Mice. Front Neural Circuits 2021; 15:647856. [PMID: 33776658 PMCID: PMC7994333 DOI: 10.3389/fncir.2021.647856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence suggests that schizophrenia is a disorder of the brain’s communication, a result of functional and structural dysconnectivities. Patients with schizophrenia exhibit irregular neuronal circuit and network activity, but the causes and consequences of such activity remain largely unknown. Inhibition of 14-3-3 proteins in the mouse brain leads to the expression of multiple schizophrenia endophenotypes. Here we investigated how 14-3-3 inhibition alters neuronal network activity in the mouse hippocampus (HPC) and prefrontal cortex (PFC), key brain regions implicated in schizophrenia pathophysiology. We implanted monopolar recording electrodes in these two regions to record local field potentials both at rest and during a cognitive task. Through our assessment of band power, coherence, and phase-amplitude coupling, we found that neural oscillations in the theta and gamma frequency ranges were altered as a result of 14-3-3 dysfunction. Utilizing transgenic and viral mouse models to assess the effects of chronic and acute 14-3-3 inhibition on oscillatory activities, respectively, we observed several fundamental similarities and differences between the two models. We localized viral mediated 14-3-3 protein inhibition to either the HPC or PFC, allowing us to assess the individual contributions of each region to the observed changes in neural oscillations. These findings identify a novel role of 14-3-3 proteins in neural oscillations that may have implications for our understanding of schizophrenia neurobiology.
Collapse
Affiliation(s)
- Zachary B Jones
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
28
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
29
|
Jung F, Carlén M. Neuronal oscillations and the mouse prefrontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:337-372. [PMID: 33785151 DOI: 10.1016/bs.irn.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The mouse prefrontal cortex (PFC) encompasses a collection of agranual brain regions in the rostral neocortex and is considered to be critically involved in the neuronal computations underlying intentional behaviors. Flexible behavioral responses demand coordinated integration of sensory inputs with state, goal and memory information in brain-wide neuronal networks. Neuronal oscillations are proposed to provide a temporal scaffold for coordination of neuronal network activity and routing of information. In the present book chapter, we review findings on the role neuronal oscillations in prefrontal functioning, with a specific focus on research in mice. We discuss discoveries pertaining to local prefrontal processing, as well to interactions with other brain regions. We also discuss how the recent discovery of brain-wide respiration-entrained rhythms (RR) warrant re-evaluation of certain findings on slow oscillations (<10Hz) in prefrontal functioning.
Collapse
Affiliation(s)
- Felix Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Huo Q, Tabassum S, Chen M, Sun M, Deng Y, Zheng X, Li Y, Chen J, Long C, Yang L. Amyloid-β Protein Precursor Deficiency Changes Neuronal Electrical Activity and Levels of Mitochondrial Proteins in the Medial Prefrontal Cortex. J Alzheimers Dis 2021; 81:1469-1482. [PMID: 33935084 DOI: 10.3233/jad-201557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuropathological features of Alzheimer's disease are characterized by the deposition of amyloid-β (Aβ) plaques and impairments in synaptic activity and memory. However, we know little about the physiological role of amyloid-β protein precursor (AβPP) from which Aβ derives. OBJECTIVE Evaluate APP deficiency induced alterations in neuronal electrical activity and mitochondrial protein expression. METHODS Utilizing electrophysiological, biochemical, pharmacological, and behavioral tests, we revealed aberrant local field potential (LFP), extracellular neuronal firing and levels of mitochondrial proteins. RESULT We show that APP knockout (APP-/-) leads to increased gamma oscillations in the medial prefrontal cortex (mPFC) at 1-2 months old, which can be restored by baclofen (Bac), a γ-aminobutyric acid type B receptor (GABABR) agonist. A higher dose and longer exposure time is required for Bac to suppress neuronal firing in APP-/- mice than in wild type animals, indicating enhanced GABABR mediated activity in the mPFC of APP-/- mice. In line with increased GABABR function, the glutamine synthetase inhibitor, L-methionine sulfonate, significantly increases GABABR levels in the mPFC of APP-/- mice and this is associated with a significantly lower incidence of death. The results suggest that APP-/- mice developed stronger GABABR mediated inhibition. Using HEK 293 as an expression system, we uncover that AβPP functions to suppress GABABR expression. Furthermore, APP-/- mice show abnormal expression of several mitochondrial proteins. CONCLUSION APP deficiency leads to both abnormal network activity involving defected GABABR and mitochondrial dysfunction, suggesting critical role of AβPP in synaptic and network function.
Collapse
Affiliation(s)
- Qingwei Huo
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ming Chen
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mengyao Sun
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yueming Deng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xingzhi Zheng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
31
|
GSK3β inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia. Neuropsychopharmacology 2020; 45:2207-2218. [PMID: 32859995 PMCID: PMC7784891 DOI: 10.1038/s41386-020-00819-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Cortical gamma oscillations are believed to be involved in mental processes which are disturbed in schizophrenia. For example, the magnitudes of sensory-evoked oscillations, as measured by auditory steady-state responses (ASSRs) at 40 Hz, are robustly diminished, whereas the baseline gamma power is enhanced in schizophrenia. Such dual gamma oscillation abnormalities are also present in a mouse model of N-methyl-D-aspartate receptor hypofunction (Ppp1r2cre/Grin1 knockout mice). However, it is unclear whether the abnormal gamma oscillations are associated with dysfunction in schizophrenia. We found that glycogen synthase kinase-3 (GSK3) is overactivated in corticolimbic parvalbumin-positive GABAergic interneurons in Grin1 mutant mice. Here we addressed whether GSK3β inhibition reverses both abnormal gamma oscillations and behavioral deficits with high correlation by pharmacological and genetic approach. We demonstrated that the paralog selective-GSK3β inhibitor, but not GSK3α inhibitor, normalizes the diminished ASSRs, excessive baseline gamma power, and deficits in spatial working memory and prepulse inhibition (PPI) of acoustic startle in Grin1 mutant mice. Cell-type specific GSK3B knockdown, but not GSK3A knockdown, also reversed abnormal gamma oscillations and behavioral deficits. Moreover, GSK3B knockdown, but not GSK3A knockdown, reverses the mutants' in vivo spike synchrony deficits. Finally, ex vivo patch-clamp recording from pairs of neighboring cortical pyramidal neurons showed a reduction of synchronous spontaneous inhibitory-postsynaptic-current events in mutants, which was reversed by GSK3β inhibition genetically and pharmacologically. Together, GSK3β inhibition in corticolimbic interneurons ameliorates the deficits in spatial working memory and PPI, presumably by restoration of synchronous GABA release, synchronous spike firing, and evoked-gamma power increase with lowered baseline power.
Collapse
|
32
|
Chini M, Hanganu-Opatz IL. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci 2020; 44:227-240. [PMID: 33246578 DOI: 10.1016/j.tins.2020.10.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
The role of the prefrontal cortex (PFC) takes center stage among unanswered questions in modern neuroscience. The PFC has a Janus-faced nature: it enables sophisticated cognitive and social abilities that reach their maximum expression in humans, yet it underlies some of the devastating symptoms of psychiatric disorders. Accordingly, appropriate prefrontal development is crucial for many high-order cognitive abilities and dysregulation of this process has been linked to various neuropsychiatric diseases. Reviewing recent advances in the field, with a primary focus on rodents and humans, we highlight why, despite differences across species, a cross-species approach is a fruitful strategy for understanding prefrontal development. We briefly review the developmental contribution of molecules and extensively discuss how electrical activity controls the early maturation and wiring of prefrontal areas, as well as the emergence and refinement of input-output circuitry involved in cognitive processing. Finally, we highlight the mechanisms of developmental dysfunction and their relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
33
|
Solot CB, Moore TM, Crowley TB, Gerdes M, Moss E, McGinn DE, Emanuel BS, Zackai EH, Gallagher S, Calkins ME, Ruparel K, Gur RC, McDonald-McGinn D, Gur RE. Early language measures associated with later psychosis features in 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2020; 183:392-400. [PMID: 32715620 PMCID: PMC8050829 DOI: 10.1002/ajmg.b.32812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS) is associated with impaired cognitive functions and increased risk for schizophrenia spectrum disorders. Speech and language deficits are prominent, with evidence of decline anteceding emergence of psychosis. There is paucity of data examining language function in children with 22q11DS with follow-up assessment of psychosis spectrum (PS) symptoms. We examined the association between early language measures, obtained clinically, and PS status, obtained on average 10.1 years later, in 166 youths with 22q11DS, with repeated language testing in 48. Participants were administered the Preschool Language Scale (receptive/expressive), and/or, for school aged children, the Clinical Evaluation of Language Fundamentals (receptive/expressive), and age appropriate IQ tests. The structured interview for prodromal syndromes (SIPS) assessed PS symptoms. We found that performance on all preschool measures showed age associated decline, and males performed more poorly on core composite (receptive/expressive) and receptive language measures. For language assessment later in childhood, poorer performance was consistently associated with subsequent PS status. Furthermore, steeper age-related decline was seen in the PS group across language measures and marginally for full-scale IQ. These findings suggest that while preschool language testing is useful in characterizing performance decline in individuals with 22q11DS, it does not robustly differentiate those with subsequent PS from those without. However, language testing in the school age population can help identify individuals with 22q11DS who are at risk for psychosis. Such data are needed for elucidating a lifespan trajectory for affected individuals and may help understand pathways to psychosis applicable to the general population.
Collapse
Affiliation(s)
- Cynthia B. Solot
- Department of Speech-Language Pathology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tyler M. Moore
- Department of Psychiatry, Brain Behavior Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - T. Blaine Crowley
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marsha Gerdes
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Edward Moss
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel E. McGinn
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Beverly S. Emanuel
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sean Gallagher
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kosha Ruparel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna McDonald-McGinn
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia
| |
Collapse
|
34
|
Aceto G, Re A, Mattera A, Leone L, Colussi C, Rinaudo M, Scala F, Gironi K, Barbati SA, Fusco S, Green T, Laezza F, D'Ascenzo M, Grassi C. GSK3β Modulates Timing-Dependent Long-Term Depression Through Direct Phosphorylation of Kv4.2 Channels. Cereb Cortex 2020; 29:1851-1865. [PMID: 29790931 DOI: 10.1093/cercor/bhy042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3β knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3β influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3β and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3β role in synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agnese Re
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Andrea Mattera
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Claudia Colussi
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Marco Rinaudo
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Katia Gironi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Thomas Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
35
|
Khlghatyan J, Beaulieu JM. CRISPR-Cas9-Mediated Intersectional Knockout of Glycogen Synthase Kinase 3β in D2 Receptor-Expressing Medial Prefrontal Cortex Neurons Reveals Contributions to Emotional Regulation. CRISPR J 2020; 3:198-210. [PMID: 32584144 PMCID: PMC7307679 DOI: 10.1089/crispr.2019.0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) activity is regulated by dopamine D2 receptor signaling and can be inhibited by psychoactive drugs in a D2 receptor-dependent manner. However, GSK3β is ubiquitously expressed in the brain, and D2 receptor-expressing cells are distributed as a mosaic in multiple cortical regions. This complicates the interrogation of GSK3β functions in cortical D2 cells in a circuit-defined manner using conventional animal models. We used a CRISPR-Cas9-mediated intersectional approach to achieve targeted deletion of GSK3β in D2-expressing neurons of the adult medial prefrontal cortex (mPFC). Isolation and analysis of ribosome-associated RNA specifically from mPFC D2 neurons lacking GSK3β demonstrated large-scale translatome alterations. Deletion of GSK3β in mPFC D2 neurons revealed its contribution to anxiety-related, cognitive, and social behaviors. Our results underscore the viability of an intersectional knockout approach to study functions of a ubiquitous gene in a network-defined fashion while uncovering the contribution of GSK3β expressed in mPFC D2 neurons in the regulation of behavioral dimensions related to mood and emotions. This advances our understanding of GSK3β action at a brain circuit level and can potentially lead to the development of circuit selective therapeutics.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, Toronto, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, Toronto, Canada
| |
Collapse
|
36
|
Sex Differences in Cognitive Impairment Induced by Cerebral Microhemorrhage. Transl Stroke Res 2020; 12:316-330. [PMID: 32440818 DOI: 10.1007/s12975-020-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
It has been suggested that cerebral microhemorrhages (CMHs) could be involved in cognitive decline. However, little is known about the sex-dependency of this effect. Using a multimodal approach combining behavioral tests, in vivo imaging, biochemistry, and molecular biology, we studied the cortical and hippocampal impact of a CMH in male and female mice (C57BL/6J) 6 weeks post-induction using a collagenase-induced model. Our work shows for the first time that a single cortical CMH exerts sex-specific effects on cognition. It notably induced visuospatial memory impairment in males only. This sex difference might be explained by cortical changes secondary to the lesion. In fact, the CMH induced an upregulation of ERα mRNA only in the female cortex. Besides, in male mice, we observed an impairment of pathways associated to neuronal, glial, or vascular functions: decrease in the P-GSK3β/GSK3β ratio, in BDNF and VEGF levels, and in microvascular water mobility. The CMH also exerted spatial remote effects in the hippocampus by increasing the number of astrocytes in both sexes, increasing the mean area occupied by each astrocyte in males, and decreasing hippocampal BDNF in females suggesting a cortical-hippocampal network impairment. This work demonstrates that a CMH could directly affect cognition in a sex-specific manner and highlights the need to study both sexes in preclinical models.
Collapse
|
37
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
38
|
Li YC, Panikker P, Xing B, Yang SS, Alexandropoulos C, McEachern EP, Akumuo R, Zhao E, Gulchina Y, Pletnikov MV, Urs NM, Caron MG, Elefant F, Gao WJ. Deletion of Glycogen Synthase Kinase-3β in D 2 Receptor-Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor-Dependent Synaptic Plasticity. Biol Psychiatry 2020; 87:745-755. [PMID: 31892408 PMCID: PMC7103512 DOI: 10.1016/j.biopsych.2019.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortical dopaminergic systems are critically involved in prefrontal cortex (PFC) functions, especially in working memory and neurodevelopmental disorders such as schizophrenia. GSK-3β (glycogen synthase kinase-3β) is highly associated with cAMP (cyclic adenosine monophosphate)-independent dopamine D2 receptor (D2R)-mediated signaling to affect dopamine-dependent behaviors. However, the mechanisms underlying the GSK-3β modulation of cognitive function via D2Rs remains unclear. METHODS This study explored how conditional cell-type-specific ablation of GSK-3β in D2R+ neurons (D2R-GSK-3β-/-) in the brain affects synaptic function in the medial PFC (mPFC). Both male and female (postnatal days 60-90) mice, including 140 D2R, 24 D1R, and 38 DISC1 mice, were used. RESULTS This study found that NMDA receptor (NMDAR) function was significantly increased in layer V pyramidal neurons in mPFC of D2R-GSK-3β-/- mice, along with increased dopamine modulation of NMDAR-mediated current. Consistently, NR2A and NR2B protein levels were elevated in mPFC of D2R-GSK-3β-/- mice. This change was accompanied by a significant increase in enrichment of activator histone mark H3K27ac at the promoters of both Grin2a and Grin2b genes. In addition, altered short- and long-term synaptic plasticity, along with an increased spine density in layer V pyramidal neurons, were detected in D2R-GSK-3β-/- mice. Indeed, D2R-GSK-3β-/- mice also exhibited a resistance of working memory impairment induced by injection of NMDAR antagonist MK-801. Notably, either inhibiting GSK-3β or disrupting the D2R-DISC1 complex was able to reverse the mutant DISC1-induced decrease of NMDAR-mediated currents in the mPFC. CONCLUSIONS This study demonstrates that GSK-3β modulates cognition via D2R-DISC1 interaction and epigenetic regulation of NMDAR expression and function.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rita Akumuo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Elise Zhao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Felice Elefant
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK3β-dependent modulation of Kv4.2 channels. Proc Natl Acad Sci U S A 2020; 117:8143-8153. [PMID: 32209671 DOI: 10.1073/pnas.1917423117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3β (GSK3β) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3β activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3β in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3β in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3β. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3β. We found increased levels of active GSK3β and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3β knockdown. Furthermore, knockdown of GSK3β in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3β-dependent tLTP changes in CUMS mice. Our results identify GSK3β regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3β-Kv4.2 axis may be an attractive therapeutic target for MDD.
Collapse
|
40
|
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin (Shanghai) 2020; 52:219-230. [PMID: 32147679 DOI: 10.1093/abbs/gmz156] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved and multifunctional serine/threonine protein kinase widely distributed in eukaryotic cells. GSK-3 is originally thought to be an enzyme that regulates glycogen synthesis. It was subsequently found that GSK-3 influences many critical cellular functions, such as cell structure, neural plasticity, gene expression, and neuronal survival. Recently, GSK-3 has been found to be associated with cognition, and its dysregulation leads to cognitive impairments in many diseases, including Alzheimer's disease, diabetes, depression, Parkinson's disease, and others. In this review, we summarized the current knowledge about the structure of GSK-3, the regulation of GSK-3 activity, and its role in cognitive function and cognitive-related disease.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
41
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
42
|
Tian X, Richard A, El-Saadi MW, Bhandari A, Latimer B, Van Savage I, Holmes K, Klein RL, Dwyer D, Goeders NE, Yang XW, Lu XH. Dosage sensitivity intolerance of VIPR2 microduplication is disease causative to manifest schizophrenia-like phenotypes in a novel BAC transgenic mouse model. Mol Psychiatry 2019; 24:1884-1901. [PMID: 31444475 DOI: 10.1038/s41380-019-0492-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified copy number variations (CNVs) at chromosomal locus 7q36.3 that significantly contribute to the risk of schizophrenia, with all of the microduplications occurring within a single gene: vasoactive intestinal peptide receptor 2 (VIPR2). To confirm disease causality and translate such a genetic vulnerability into mechanistic and pathophysiological insights, we have developed a series of conditional VIPR2 bacterial artificial chromosome (BAC) transgenic mouse models of VIPR2 CNV. VIPR2 CNV mouse model recapitulates gene expression and signaling deficits seen in human CNV carriers. VIPR2 microduplication in mice elicits prominent dorsal striatal dopamine dysfunction, cognitive, sensorimotor gating, and social behavioral deficits preceded by an increase of striatal cAMP/PKA signaling and the disrupted early postnatal striatal development. Genetic removal of VIPR2 transgene expression via crossing with Drd1a-Cre BAC transgenic mice rescued the dopamine D2 receptor abnormality and multiple behavioral deficits, implicating a pathogenic role of VIPR2 overexpression in dopaminoceptive neurons. Thus, our results provide further evidence to support the GWAS studies that the dosage sensitivity intolerance of VIPR2 is disease causative to manifest schizophrenia-like dopamine, cognitive, and social behavioral deficits in mice. The conditional BAC transgenesis offers a novel strategy to model CNVs with a gain-of -copies and facilitate the genetic dissection of when/where/how the genetic vulnerabilities affect development, structure, and function of neural circuits. Our findings have important implications for therapeutic development, and the etiology-relevant mouse model provides a useful preclinical platform for drug discovery.
Collapse
Affiliation(s)
- Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Adam Richard
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Aakriti Bhandari
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Isabella Van Savage
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Kevlyn Holmes
- California Lutheran University, Thousand Oaks, CA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Human Behaviors, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
43
|
Mukai J, Cannavò E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, Chang CY, Cai Y, Lomvardas S, Takata A, Xu B, Gogos JA. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice. Neuron 2019; 104:471-487.e12. [PMID: 31606247 DOI: 10.1016/j.neuron.2019.09.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
SETD1A, a lysine-methyltransferase, is a key schizophrenia susceptibility gene. Mice carrying a heterozygous loss-of-function mutation of the orthologous gene exhibit alterations in axonal branching and cortical synaptic dynamics accompanied by working memory deficits. We show that Setd1a binds both promoters and enhancers with a striking overlap between Setd1a and Mef2 on enhancers. Setd1a targets are highly expressed in pyramidal neurons and display a complex pattern of transcriptional up- and downregulations shaped by presumed opposing functions of Setd1a on promoters and Mef2-bound enhancers. Notably, evolutionarily conserved Setd1a targets are associated with neuropsychiatric genetic risk burden. Reinstating Setd1a expression in adulthood rescues cognitive deficits. Finally, we identify LSD1 as a major counteracting demethylase for Setd1a and show that its pharmacological antagonism results in a full rescue of the behavioral and morphological deficits in Setd1a-deficient mice. Our findings advance understanding of how SETD1A mutations predispose to schizophrenia (SCZ) and point to novel therapeutic interventions.
Collapse
Affiliation(s)
- Jun Mukai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Enrico Cannavò
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Ziyi Sun
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pratibha Thakur
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Chia-Yuan Chang
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yifei Cai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
44
|
Canetta S, Kellendonk C. When Time Matters: An Adolescent Intervention to Prevent Adult Brain Dysfunction. Cell 2019; 178:1282-1284. [PMID: 31474365 DOI: 10.1016/j.cell.2019.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Can we one day prevent mental disorders? Mukherjee et al. (2019) use a genetic mouse model of schizophrenia-risk with established abnormalities in adult hippocampal-prefrontal circuit function and cognitive behaviors to identify circuit-specific treatments during adolescence that prevent the onset of the adult deficits.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
45
|
Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell 2019; 178:1387-1402.e14. [DOI: 10.1016/j.cell.2019.07.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 07/11/2019] [Indexed: 01/03/2023]
|
46
|
Cortical-wide functional correlations are associated with stress-induced cardiac dysfunctions in individual rats. Sci Rep 2019; 9:10581. [PMID: 31332238 PMCID: PMC6646347 DOI: 10.1038/s41598-019-47171-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Mental stress-induced biological responses considerably differ across animals, which may be explained by intrinsic brain activity patterns. To address this hypothesis, we recorded local field potential signals from six cortical areas, electrocardiograms, and electromyograms from freely moving rats. Based on their stress-induced changes in cardiac signals, individual defeated rats were classified into stress susceptible and resilient groups. Rats with lower correlations in theta power across wide ranges of cortical regions before the stress challenge had higher probability to be stress-susceptible rats as defined based on the irregularity of heartbeat signals. A combination of principal component analysis and the support vector machine algorithm revealed that functional connections across cortical regions could be predictive factors accounting for individual differences in future stress susceptibility. These results suggest that individual differences in cortical activity may be a mechanism that causes abnormal activity of peripheral organs in response to mental stress episodes. This evidence will advance the understanding of the neurophysiological correlates of mind-body associations during mental stress exposure.
Collapse
|
47
|
Diamantopoulou A, Gogos JA. Neurocognitive and Perceptual Processing in Genetic Mouse Models of Schizophrenia: Emerging Lessons. Neuroscientist 2019; 25:597-619. [PMID: 30654694 DOI: 10.1177/1073858418819435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past two decades, the number of animal models of psychiatric disorders has grown exponentially. Of these, genetic animal models that are modeled after rare but highly penetrant mutations hold great promise for deciphering critical molecular, synaptic, and neurocircuitry deficits of major psychiatric disorders, such as schizophrenia. Animal models should aim to focus on core aspects rather than capture the entire human disease. In this context, animal models with strong etiological validity, where behavioral and neurophysiological phenotypes and the features of the disease being modeled are in unambiguous homology, are being used to dissect both elementary and complex cognitive and perceptual processing deficits present in psychiatric disorders at the level of neurocircuitry, shedding new light on critical disease mechanisms. Recent progress in neuroscience along with large-scale initiatives that propose a consistent approach in characterizing these deficits across different laboratories will further enhance the efficacy of these studies that will ultimately lead to identifying new biological targets for drug development.
Collapse
Affiliation(s)
- Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA.,Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
48
|
Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ SCHIZOPHRENIA 2019; 5:1. [PMID: 30643138 PMCID: PMC6386769 DOI: 10.1038/s41537-018-0069-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins is genetically linked to several psychiatric disorders, including schizophrenia. Our 14-3-3 functional knockout (FKO) mice, as well as other 14-3-3 knockout models, have been shown to exhibit behavioral endophenotypes related to schizophrenia. While specific forebrain regions, such as the prefrontal cortex (PFC) and hippocampus (HP), have been implicated in schizophrenic pathophysiology, the role of these brain regions in the top-down control of specific schizophrenia-associated behaviors has not been examined. Here, we used an adeno-associated virus (AAV) delivered shRNA to knock down the expression of the 14-3-3-inhibitor transgene, thus selectively restoring the function of 14-3-3 in the forebrain of the 14-3-3 FKO mice, we found that injection of the AAV-shRNA into both the PFC and the HP is necessary to attenuate psychomotor activity of the 14-3-3 FKO mice. Furthermore, we found that acute inhibition of 14-3-3, through the delivery of an AAV expressing the 14-3-3 inhibitor to both the PFC and HP, can trigger psychomotor agitation. Interestingly, when assessing the two brain regions separately, we determined that AAV-mediated expression of the 14-3-3 inhibitor specifically within the HP alone is sufficient to induce several behavioral deficits including hyperactivity, impaired associative learning and memory, and reduced sensorimotor gating. In addition, we show that post-synaptic NMDA receptor levels are regulated by acute 14-3-3 manipulations. Taken together, findings from this study directly link 14-3-3 inhibition in specific forebrain regions to certain schizophrenia-associated endophenotypes.
Collapse
|
49
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
50
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|