1
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
2
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Yu YG, Han JH, Xue HX, Li WZ, Wu WN, Yin YY. The variations of endophilin A2-FoxO3a-autophagy signal in angiotensin II-induced dopaminergic neuron injury mouse model and by biochanin A. Can J Physiol Pharmacol 2021; 99:1298-1307. [PMID: 34310897 DOI: 10.1139/cjpp-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biochanin A (Bioch A) is a natural plant estrogen, with various biological activities such as anti-apoptosis, anti-oxidation, and suppression of inflammation. In this study, we investigated the protective effects of Bioch A on angiotensin II (AngII) - induced dopaminergic (DA) neuron damage in vivo and on molecular mechanisms. Spontaneous activity and motor ability of mice among groups was detected by open-field test and swim-test. The expression of TH, microtubule-associated proteins light chain 3B II (LC3BII)/LC3BI, beclin-1, P62, forkhead box class O3 (FoxO3), phosphorylated (p) FoxO3a/FoxO3a, FoxO3, and endophilin A2 were determined by Western blot and immunohistochemistry or immunofluorescence staining. Our results showed that AngII treatment significantly increased the behavioral dysfunction of mice and DA neuron damage. Meanwhile, AngII treatment increased the expression of LC3BII/LC3BI, beclin-1, P62, and FoxO3a and decreased the expression of endophilin A2 and p-FoxO3a/FoxO3a, however, Bioch A treatment alleviate these changes. In summary, these results suggest that Bioch A exerts protective effects on AngII-induced mouse model may be related to regulating endophilin A2, FoxO3a, and autophagy-related proteins; however, the specific mechanism is not yet clear and needs further study.
Collapse
Affiliation(s)
- Yi-Gui Yu
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Jun-Hui Han
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Hai-Xia Xue
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|