1
|
Agarwal S, Bochkova J, Mohamed MK, Schaefer ML, Zhou A, Skinner J, Johns RA. Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice. Int J Mol Sci 2025; 26:981. [PMID: 39940749 PMCID: PMC11817073 DOI: 10.3390/ijms26030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
There is a growing concern worldwide about the potential harmful effects of anesthesia on brain development, based on studies in both humans and animals. In infants, repeated anesthesia exposure is linked to learning disabilities and attention disorders. Similarly, laboratory studies in mice show that neonates exposed to general anesthesia experience long-term cognitive and behavioral impairments. Inhaled anesthetics affect the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains. The disruption of the synaptic PSD95-PDZ2 domain-mediated protein interactions leads to a loss of spine plasticity and cognitive deficits in juvenile mice. The nitric oxide-mediated protein kinase-G signaling pathway enhances synaptic plasticity also by activating extracellular signal-regulated kinase, which subsequently phosphorylates cAMP-response element binding protein, a crucial transcription factor for memory formation. Exposure to isoflurane or postsynaptic density-95-PDZ2-wildtype peptides results in decreased levels of phosphorylated extracellular signal-regulated kinase (p-ERK) and phosphorylated cAMP-response element binding protein (p-CREB), which are critical for synaptic plasticity and memory formation. Pizotifen treatment after isoflurane or postsynaptic density-95-PDZ2-wildtype peptide exposure in mice prevented decline in p-ERK levels, preserved learning and memory functions at 5 weeks of age, and maintained mushroom spine density at 7 weeks of age. Protein kinase-G activation by components of the nitric oxide signaling pathway leads to the stabilization of dendritic spines and synaptic connections. Concurrently, the ERK/CREB pathway, which is crucial for synaptic plasticity and memory consolidation, is supported and maintained by pizotifen, thereby preventing cognitive deficits caused in response to isoflurane or postsynaptic density-95-PDZ2-wildtype peptide exposure. Activation of ERK signaling cascade by pizotifen helps to prevent cognitive impairment and spine loss in response to postsynaptic density-95-PDZ2 domain disruption.
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Jacqueline Bochkova
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - Mazen K. Mohamed
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - Michele L. Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Annika Zhou
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| |
Collapse
|
2
|
Bogomolovas J, Chen J. Illuminating understudied kinases: a generalizable biosensor development method applied to protein kinase N. Commun Biol 2025; 8:109. [PMID: 39843538 PMCID: PMC11754634 DOI: 10.1038/s42003-025-07510-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Protein kinases play crucial roles in regulating cellular processes, making real-time visualization of their activity essential for understanding signaling dynamics. While genetically encoded fluorescent biosensors have emerged as powerful tools for studying kinase activity, their development for many kinases remains challenging due to the lack of suitable substrate peptides. Here, we present a novel approach for identifying peptide substrates and demonstrate its effectiveness by developing a biosensor for Protein Kinase N (PKN) activity. Our method identified a new PKN substrate peptide that we optimized for use in a fluorescent biosensor design. The resulting biosensor shows specificity for PKN family kinases and can detect both overexpressed and endogenous PKN activity in live cells. Importantly, our biosensor revealed sustained basal PKN2 activity at the plasma membrane, identifying it as a PKN2 activity hotspot. This work not only provides a valuable tool for studying PKN signaling but also demonstrates a promising strategy for developing biosensors for other understudied kinases, potentially expanding our ability to monitor kinase activity across the human kinome.
Collapse
Affiliation(s)
| | - Ju Chen
- Department of Medicine, UCSD, La Jolla, CA, USA.
| |
Collapse
|
3
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
4
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
5
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of protein kinase A activity dynamics. Sci Rep 2024; 14:3054. [PMID: 38321128 PMCID: PMC10847463 DOI: 10.1038/s41598-024-53313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Ph.D. Program in Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of Protein Kinase A activity dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565028. [PMID: 37961214 PMCID: PMC10635033 DOI: 10.1101/2023.10.31.565028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive, cannot easily target sparse or hard-to-transfect/infect cell types, and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I. Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Ph. D. Program in Neuroscience, Washington University in St. Louis
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Vu CQ, Arai S. Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors. BIOSENSORS 2023; 13:939. [PMID: 37887132 PMCID: PMC10605767 DOI: 10.3390/bios13100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Genetically encoded fluorescence lifetime biosensors have emerged as powerful tools for quantitative imaging, enabling precise measurement of cellular metabolites, molecular interactions, and dynamic cellular processes. This review provides an overview of the principles, applications, and advancements in quantitative imaging with genetically encoded fluorescence lifetime biosensors using fluorescence lifetime imaging microscopy (go-FLIM). We highlighted the distinct advantages of fluorescence lifetime-based measurements, including independence from expression levels, excitation power, and focus drift, resulting in robust and reliable measurements compared to intensity-based approaches. Specifically, we focus on two types of go-FLIM, namely Förster resonance energy transfer (FRET)-FLIM and single-fluorescent protein (FP)-based FLIM biosensors, and discuss their unique characteristics and benefits. This review serves as a valuable resource for researchers interested in leveraging fluorescence lifetime imaging to study molecular interactions and cellular metabolism with high precision and accuracy.
Collapse
Affiliation(s)
- Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Zhao J, Bang S, Furutani K, McGinnis A, Jiang C, Roberts A, Donnelly CR, He Q, James ML, Berger M, Ko MC, Wang H, Palmiter RD, Ji RR. PD-L1/PD-1 checkpoint pathway regulates hippocampal neuronal excitability and learning and memory behavior. Neuron 2023; 111:2709-2726.e9. [PMID: 37348508 PMCID: PMC10529885 DOI: 10.1016/j.neuron.2023.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexus Roberts
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael L James
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Miles Berger
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Overhoff M, Tellkamp F, Hess S, Tolve M, Tutas J, Faerfers M, Ickert L, Mohammadi M, De Bruyckere E, Kallergi E, Delle Vedove A, Nikoletopoulou V, Wirth B, Isensee J, Hucho T, Puchkov D, Isbrandt D, Krueger M, Kloppenburg P, Kononenko NL. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO J 2022; 41:e110963. [PMID: 36217825 PMCID: PMC9670194 DOI: 10.15252/embj.2022110963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.
Collapse
Affiliation(s)
- Melina Overhoff
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Frederik Tellkamp
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Simon Hess
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Marianna Tolve
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Janine Tutas
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Marcel Faerfers
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Lotte Ickert
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Milad Mohammadi
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Elodie De Bruyckere
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Emmanouela Kallergi
- Département des Neurosciences FondamentalesUniversity of LausanneLausanneSwitzerland
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | | | - Brunhilde Wirth
- Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Joerg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Dmytro Puchkov
- Leibniz Institute for Molecular Pharmacology (FMP)BerlinGermany
| | - Dirk Isbrandt
- Institute for Molecular and Behavioral Neuroscience, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany,Experimental NeurophysiologyGerman Center for Neurodegenerative DiseasesBonnGermany
| | - Marcus Krueger
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Natalia L Kononenko
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| |
Collapse
|
13
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
14
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
16
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
17
|
Hoerndli FJ, Brockie PJ, Wang R, Mellem JE, Kallarackal A, Doser RL, Pierce DM, Madsen DM, Maricq AV. MAPK signaling and a mobile scaffold complex regulate AMPA receptor transport to modulate synaptic strength. Cell Rep 2022; 38:110577. [PMID: 35354038 PMCID: PMC9965202 DOI: 10.1016/j.celrep.2022.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
Collapse
Affiliation(s)
- Frédéric J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Penelope J Brockie
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Rui Wang
- Pathology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jerry E Mellem
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Angy Kallarackal
- Department of Psychology, Mount Saint Mary's University, Emmitsburg, MD 21727, USA
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dayton M Pierce
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David M Madsen
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Andres V Maricq
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA.
| |
Collapse
|
18
|
Jullié D, Valbret Z, Stoeber M. Optical tools to study the subcellular organization of GPCR neuromodulation. J Neurosci Methods 2021; 366:109408. [PMID: 34763022 DOI: 10.1016/j.jneumeth.2021.109408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022]
Abstract
Modulation of neuronal circuit activity is key to information processing in the brain. G protein-coupled receptors (GPCRs), the targets of most neuromodulatory ligands, show extremely diverse expression patterns in neurons and receptors can be localized in various sub-neuronal membrane compartments. Upon activation, GPCRs promote signaling cascades that alter the level of second messengers, drive phosphorylation changes, modulate ion channel function, and influence gene expression, all of which critically impact neuron physiology. Because of its high degree of complexity, this form of interneuronal communication has remained challenging to integrate into our conceptual understanding of brain function. Recent technological advances in fluorescence microscopy and the development of optical biosensors now allow investigating neuromodulation with unprecedented resolution on the level of individual cells. In this review, we will highlight recent imaging techniques that enable determining the precise localization of GPCRs in neurons, with specific focus on the subcellular and nanoscale level. Downstream of receptors, we describe novel conformation-specific biosensors that allow for real-time monitoring of GPCR activation and of distinct signal transduction events in neurons. Applying these new tools has the potential to provide critical insights into the function and organization of GPCRs in neuronal cells and may help decipher the molecular and cellular mechanisms that underlie neuromodulation.
Collapse
Affiliation(s)
- Damien Jullié
- Department of Psychiatry, University of California San Francisco, San Francisco, USA.
| | - Zoé Valbret
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
20
|
Lodder B, Lee SJ, Sabatini BL. Real-Time, In Vivo Measurement of Protein Kinase A Activity in Deep Brain Structures Using Fluorescence Lifetime Photometry (FLiP). Curr Protoc 2021; 1:e265. [PMID: 34661994 DOI: 10.1002/cpz1.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biochemical state of neurons, and of cells in general, is regulated by extracellular factors, including neurotransmitters, neuromodulators, and growth hormones. Interactions of an animal with its environment trigger neuromodulator release and engage biochemical transduction cascades to modulate synapse and cell function. Although these processes are thought to enact behavioral adaption to changing environments, when and where in the brain they are induced has been mysterious because of the challenge of monitoring biochemical state in real time in defined neurons in behaving animals. Here, we describe a method allowing measurement of activity of protein kinase A (PKA), an important intracellular effector for neuromodulators, in freely moving mice. To monitor PKA activity in vivo, we use a genetically targeted sensor (FLIM-AKAR) and fluorescence lifetime photometry (FLiP). This article describes how to set up a FLiP system and obtain robust recordings of net PKA phosphorylation state in vivo. The methods should be generally useful to monitor other pathways for which fluorescence lifetime reporters exist. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Building a FLiP system Basic Protocol 2: FLIM-AKAR viral injection and fiber implantation for FLiP measurement Basic Protocol 3: Performing measurements using FLiP.
Collapse
Affiliation(s)
- Bart Lodder
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Boston, Massachusetts
| | - Suk Joon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021; 179:31-38. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Through the decades, 2-photon fluorescence microscopy has allowed visualization of microstructures, such as synapses, with high spatial resolution in deep brain tissue. However, signal transduction, such as protein activity and protein-protein interaction in neurons in tissues and in vivo, has remained elusive because of the technical difficulty of observing biochemical reactions at the level of subcellular resolution in light-scattering tissues. Recently, 2-photon fluorescence microscopy combined with fluorescence lifetime imaging microscopy (2pFLIM) has enabled visualization of various protein activities and protein-protein interactions at submicrometer resolution in tissue with a reasonable temporal resolution. Thus far, 2pFLIM has been extensively applied for imaging kinase and small GTPase activation in dendritic spines of hippocampal neurons in slice cultures. However, it has been recently applied to various subcellular structures, such as axon terminals and nuclei, and has increased our understanding of spatially organized molecular dynamics. One of the future directions of 2pFLIM utilization is to combine various optogenetic tools for manipulating protein activity. This combination allows the activation of specific proteins with light and visualization of its readout as the activation of downstream molecules. Here, we have introduced the recent application of 2pFLIM for neurons and present the utilization of a new optogenetic tool in combination with 2pFLIM.
Collapse
|
22
|
Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods 2021; 362:109298. [PMID: 34339753 PMCID: PMC8659126 DOI: 10.1016/j.jneumeth.2021.109298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.
Collapse
Affiliation(s)
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction. eLife 2021; 10:e64644. [PMID: 34374340 PMCID: PMC8363267 DOI: 10.7554/elife.64644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.
Collapse
Affiliation(s)
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatic, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, Bioengineering Department, George Mason UniversityFairfaxUnited States
- Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
| |
Collapse
|
24
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
25
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Isaac AR, de Velasco PC, Fraga KYD, Tavares-do-Carmo MDG, Campos RMP, Iannotti FA, Verde R, Martins DBG, Santos TA, Ferreira BK, de Mello FG, Di Marzo V, Andrade-da-Costa BLDS, de Melo Reis RA. Maternal omega-3 intake differentially affects the endocannabinoid system in the progeny`s neocortex and hippocampus: Impact on synaptic markers. J Nutr Biochem 2021; 96:108782. [PMID: 34038760 DOI: 10.1016/j.jnutbio.2021.108782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Karla Yasmin Dias Fraga
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Tavares-do-Carmo
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Danyelly Bruneska Gondim Martins
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaysa Aragão Santos
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna Klippel Ferreira
- Departamento de Bioquímica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy; Canada Exellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and NUTRISS-INAF Universitè Laval, Quebec City, Canada
| | | | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Okuda KS, Keyser MS, Gurevich DB, Sturtzel C, Mason EA, Paterson S, Chen H, Scott M, Condon ND, Martin P, Distel M, Hogan BM. Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis. eLife 2021; 10:62196. [PMID: 34003110 PMCID: PMC8175085 DOI: 10.7554/elife.62196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mikaela S Keyser
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - David B Gurevich
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Caterina Sturtzel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Elizabeth A Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Huijun Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mark Scott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Martin Distel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| |
Collapse
|
28
|
Simultaneous readout of multiple FRET pairs using photochromism. Nat Commun 2021; 12:2005. [PMID: 33790271 PMCID: PMC8012603 DOI: 10.1038/s41467-021-22043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells. Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.
Collapse
|
29
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
32
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
33
|
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat Chem Biol 2020; 17:39-46. [PMID: 32989297 DOI: 10.1038/s41589-020-00660-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.
Collapse
|
34
|
Doser RL, Amberg GC, Hoerndli FJ. Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans. J Neurosci 2020; 40:7405-7420. [PMID: 32847966 PMCID: PMC7511182 DOI: 10.1523/jneurosci.0902-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
The AMPA subtype of synaptic glutamate receptors (AMPARs) plays an essential role in cognition. Their function, numbers, and change at synapses during synaptic plasticity are tightly regulated by neuronal activity. Although we know that long-distance transport of AMPARs is essential for this regulation, we do not understand the associated regulatory mechanisms of it. Neuronal transmission is a metabolically demanding process in which ATP consumption and production are tightly coupled and regulated. Aerobic ATP synthesis unavoidably produces reactive oxygen species (ROS), such as hydrogen peroxide, which are known modulators of calcium signaling. Although a role for calcium signaling in AMPAR transport has been described, there is little understanding of the mechanisms involved and no known link to physiological ROS signaling. Here, using real-time in vivo imaging of AMPAR transport in the intact C. elegans nervous system, we demonstrate that long-distance synaptic AMPAR transport is bidirectionally regulated by calcium influx and activation of calcium/calmodulin-dependent protein kinase II. Quantification of in vivo calcium dynamics revealed that modest, physiological increases in ROS decrease calcium transients in C. elegans glutamatergic neurons. By combining genetic and pharmacological manipulation of ROS levels and calcium influx, we reveal a mechanism in which physiological increases in ROS cause a decrease in synaptic AMPAR transport and delivery by modulating activity-dependent calcium signaling. Together, our results identify a novel role for oxidant signaling in the regulation of synaptic AMPAR transport and delivery, which in turn could be critical for coupling the metabolic demands of neuronal activity with excitatory neurotransmission.SIGNIFICANCE STATEMENT Synaptic AMPARs are critical for excitatory synaptic transmission. The disruption of their synaptic localization and numbers is associated with numerous psychiatric, neurologic, and neurodegenerative conditions. However, very little is known about the regulatory mechanisms controlling transport and delivery of AMPAR to synapses. Here, we describe a novel physiological signaling mechanism in which ROS, such as hydrogen peroxide, modulate AMPAR transport by modifying activity-dependent calcium signaling. Our findings provide the first evidence in support of a mechanistic link between physiological ROS signaling, AMPAR transport, localization, and excitatory transmission. This is of fundamental and clinical significance since dysregulation of intracellular calcium and ROS signaling is implicated in aging and the pathogenesis of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Gregory C Amberg
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
35
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
36
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
37
|
Mo GCH, Posner C, Rodriguez EA, Sun T, Zhang J. A rationally enhanced red fluorescent protein expands the utility of FRET biosensors. Nat Commun 2020; 11:1848. [PMID: 32296061 PMCID: PMC7160135 DOI: 10.1038/s41467-020-15687-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/20/2020] [Indexed: 11/30/2022] Open
Abstract
Genetically encoded Förster Resonance Energy Transfer (FRET)-based biosensors are powerful tools to illuminate spatiotemporal regulation of cell signaling in living cells, but the utility of the red spectrum for biosensing was limited due to a lack of bright and stable red fluorescent proteins. Here, we rationally improve the photophysical characteristics of the coral-derived fluorescent protein TagRFP-T. We show that a new single-residue mutant, super-TagRFP (stagRFP) has nearly twice the molecular brightness of TagRFP-T and negligible photoactivation. stagRFP facilitates significant improvements on multiple green-red biosensors as a FRET acceptor and is an efficient FRET donor that supports red/far-red FRET biosensing. Capitalizing on the ability of stagRFP to couple with multiple FRET partners, we develop a novel multiplex method to examine the confluence of signaling activities from three kinases simultaneously in single living cells, providing evidence for a role of Src family kinases in regulating growth factor induced Akt and ERK activities.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Clara Posner
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Chen QY, Zhang ZL, Liu Q, Chen CJ, Zhang XK, Xu PY, Zhuo M. Presynaptic long-term potentiation requires extracellular signal-regulated kinases in the anterior cingulate cortex. Mol Pain 2020; 16:1744806920917245. [PMID: 32264746 PMCID: PMC7144679 DOI: 10.1177/1744806920917245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinases are widely expressed protein kinases in neurons, which serve as important intracellular signaling molecules for central plasticity such as long-term potentiation. Recent studies demonstrate that there are two major forms of long-term potentiation in cortical areas related to pain: postsynaptic long-term potentiation and presynaptic long-term potentiation. In particular, presynaptic long-term potentiation in the anterior cingulate cortex has been shown to contribute to chronic pain-related anxiety. In this review, we briefly summarized the components and roles of extracellular signal-regulated kinases in neuronal signaling, especially in the presynaptic long-term potentiation of anterior cingulate cortex, and discuss the possible molecular mechanisms and functional implications in pain-related emotional disorders.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhi-Ling Zhang
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao-Jun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangdong, China
| | - Xiao-Kang Zhang
- The First Affiliated Hospital of Gan-Nan Medical University, Ganzhopu, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
40
|
Watabe T, Terai K, Sumiyama K, Matsuda M. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. ACS Sens 2020; 5:719-730. [PMID: 32101394 DOI: 10.1021/acssensors.9b01941] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been developed for the visualization of signaling molecule activities. Currently, most of them are comprised of cyan and yellow fluorescent proteins (CFP and YFP), precluding the use of multiple FRET biosensors within a single cell. Moreover, the FRET biosensors based on CFP and YFP are incompatible with the optogenetic tools that operate at blue light. To overcome these problems, here, we have developed FRET biosensors with red-shifted excitation and emission wavelengths. We chose mKOκ and mKate2 as the favorable donor and acceptor pair by calculating the Förster distance. By optimizing the order of fluorescent proteins and modulatory domains of the FRET biosensors, we developed a FRET biosensor backbone named "Booster". The performance of the protein kinase A (PKA) biosensor based on the Booster backbone (Booster-PKA) was comparable to that of AKAR3EV, a previously developed FRET biosensor comprising CFP and YFP. For the proof of concept, we first showed simultaneous monitoring of activities of two protein kinases with Booster-PKA and ERK FRET biosensors based on CFP and YFP. Second, we showed monitoring of PKA activation by Beggiatoa photoactivated adenylyl cyclase, an optogenetic generator of cyclic AMP. Finally, we presented PKA activity in living tissues of transgenic mice expressing Booster-PKA. Collectively, the results demonstrate the effectiveness and versatility of Booster biosensors as an imaging tool in vitro and in vivo.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka 565-0874, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
O'Banion CP, Yasuda R. Fluorescent sensors for neuronal signaling. Curr Opin Neurobiol 2020; 63:31-41. [PMID: 32203701 DOI: 10.1016/j.conb.2020.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Dissecting neuronal structure and function in relation to behavior is an immense undertaking. Researchers require imaging tools to study neuronal activity and biochemical signaling in situ in order to study the roles of neuronal and biochemical activity in information processing. A large number of genetically encoded fluorescent biosensors have been reported in the literature over the past few years as there is a push to develop new technology in neuroscience. Here, we review the classes and characteristics of fluorescent biosensors and highlight some considerations that investigators should keep in mind when choosing their tool. In addition, we discuss recent advances in biosensor development.
Collapse
Affiliation(s)
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, United States.
| |
Collapse
|
42
|
Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons. J Neurosci 2020; 40:2593-2605. [PMID: 32047054 PMCID: PMC7096145 DOI: 10.1523/jneurosci.2071-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. We show that (1) the cooperativity rules governing the induction of synaptic LTP depend on dendritic location; (2) LTP of input patterns that are subthreshold or suprathreshold to evoke local dendritic spikes (d-spikes) requires different spatial organization; and (3) input patterns evoking d-spikes can strengthen nearby, nonsynchronous synapses by local heterosynaptic plasticity crosstalk mediated by NMDAR-dependent MEK/ERK signaling. These results suggest that multiple mechanisms can trigger spatially organized synaptic plasticity on various spatial and temporal scales, enriching the ability of neurons to use synaptic clustering for information processing. SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how neuronal feature selectivity is established via the combination of dendritic processing of synaptic input patterns with long-term synaptic plasticity. As these processes have been mostly studied separately, the relationship between the rules of integration and rules of plasticity remained elusive. Here we explore how the fine-grained spatial pattern and the form of voltage integration determine plasticity of different excitatory synaptic input patterns in perisomatic dendrites of CA1 pyramidal cells. We demonstrate that the plasticity rules depend highly on three factors: (1) the location of the input within the dendritic branch (proximal vs distal), (2) the strength of the input pattern (subthreshold or suprathreshold for dendritic spikes), and (3) the stimulation of neighboring synapses.
Collapse
|
43
|
Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci 2020; 21:121-138. [DOI: 10.1038/s41583-020-0264-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
44
|
Abstract
The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
45
|
Du CP, Wang M, Geng C, Hu B, Meng L, Xu Y, Cheng B, Wang N, Zhu QJ, Hou XY. Activity-Induced SUMOylation of Neuronal Nitric Oxide Synthase Is Associated with Plasticity of Synaptic Transmission and Extracellular Signal-Regulated Kinase 1/2 Signaling. Antioxid Redox Signal 2020; 32:18-34. [PMID: 31642335 DOI: 10.1089/ars.2018.7669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aims: Neuronal nitric oxide synthase (nNOS) and nitric oxide (NO) signaling have been implicated in learning, memory, and underlying long-lasting synaptic plasticity. In this study, we aimed at detecting whether nNOS is a target protein of SUMOylation in the hippocampus and its contributions to hippocampal long-term potentiation (LTP) of synaptic transmission. Results: We showed that N-methyl-d-aspartate receptor-dependent neuronal activity enhancement induced the attachment of small ubiquitin-like modifier 1 (SUMO1) to nNOS. Protein inhibitor of activated STAT3 (PIAS3) promoted SUMO1 conjugation at K725 and K739 on nNOS, which upregulated NO production and nNOS S1412 phosphorylation (activation). In addition, the N-terminus (amino acids 43-86) of PIAS3 bound nNOS directly. Tat-tagged PIAS3 segment representing amino acids 43-86, a cell-permeable peptide containing PIAS3 residues 43-86, suppressed activity-induced nNOS SUMOylation by disrupting PIAS3-nNOS association. It also decreased LTP-related expression of Arc and brain-derived neurotrophic factor and blocked signaling via extracellular signal-regulated kinase (ERK) 1/2 and Elk-1 in the hippocampus. More importantly, PIAS3-mediated nNOS SUMOylation was required for activity-regulated ERK1/2 activation in nNOS-positive neurons and hippocampal LTP induction. Innovation and Conclusion: These findings indicated that network activity-regulated nNOS SUMOylation underlies excitatory synaptic LTP by facilitating nNOS-NO-ERK1/2 signal cascades.
Collapse
Affiliation(s)
- Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mei Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bin Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Bao Cheng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Qiu-Ju Zhu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Zhang Z, Zhang J, Li J, Zhang J, Chen L, Li Y, Guo G. Ketamine Regulates Phosphorylation of CRMP2 To Mediate Dendritic Spine Plasticity. J Mol Neurosci 2019; 70:353-364. [PMID: 31808033 DOI: 10.1007/s12031-019-01419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
Ketamine is widely used in infants and young children for anesthesia, and subanesthetic doses of ketamine make neurons form new protrusions and promote synapse formation. However, the precise pathological mechanisms remain to be elucidated. In this study, we demonstrated that ketamine administration significantly increased dendritic spine density and maturity in rat cortical neurons in vivo and in vitro. Western blot analysis showed that CRMP2 protein expression was significantly increased in cerebral cortex of ketamine group, and phosphorylation levels of CRMP at Thr514 and Ser522 were significantly reduced. Furthermore, overexpression of CRMP2 promoted the growth of cortical neuron processes and dendritic spines. Although the dendritic field was more complex after adding ketamine and the density of dendritic spines increased, there was no statistical difference and no obvious superposition effect was observed. Moreover, both Ser522 mutant construction of CRMP2, GFP-CRMP2-522D, and mcherry-CDK5 showed similar inhibitory effects on neurite outgrowth, which could be rescued by ketamine. The frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were significantly inhibited when GFP-CRMP2-522D and mCherry-CDK5 were transfected into cortical neurons and this trend could also be rescued by ketamine. In general, this study reveals a new mechanism by which ketamine promotes the growth and development of dendritic spines in developing cortical neurons.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528308, Guangdong, China.,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - JiFeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Neurology, The First Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China. .,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
47
|
Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 2019; 8:49257. [PMID: 31724947 PMCID: PMC6948953 DOI: 10.7554/elife.49257] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert P Ray
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Teri-Tb Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brandi Sharp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Paul Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
48
|
Kruijssen DLH, Wierenga CJ. Single Synapse LTP: A Matter of Context? Front Cell Neurosci 2019; 13:496. [PMID: 31780899 PMCID: PMC6861208 DOI: 10.3389/fncel.2019.00496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
The most commonly studied form of synaptic plasticity is long-term potentiation (LTP). Over the last 15 years, it has been possible to induce structural and functional LTP in dendritic spines using two-photon glutamate uncaging, allowing for studying the signaling mechanisms of LTP with single synapse resolution. In this review, we compare different stimulation methods to induce single synapse LTP and discuss how LTP is expressed. We summarize the underlying signaling mechanisms that have been studied with high spatiotemporal resolution. Finally, we discuss how LTP in a single synapse can be affected by excitatory and inhibitory synapses nearby. We argue that single synapse LTP is highly dependent on context: the choice of induction method, the history of the dendritic spine and the dendritic vicinity crucially affect signaling pathways and expression of single synapse LTP.
Collapse
Affiliation(s)
- Dennis L H Kruijssen
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| | - Corette J Wierenga
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Ohadi D, Schmitt DL, Calabrese B, Halpain S, Zhang J, Rangamani P. Computational Modeling Reveals Frequency Modulation of Calcium-cAMP/PKA Pathway in Dendritic Spines. Biophys J 2019; 117:1963-1980. [PMID: 31668749 PMCID: PMC7031750 DOI: 10.1016/j.bpj.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines are the primary excitatory postsynaptic sites that act as subcompartments of signaling. Ca2+ is often the first and most rapid signal in spines. Downstream of calcium, the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway plays a critical role in the regulation of spine formation, morphological modifications, and ultimately, learning and memory. Although the dynamics of calcium are reasonably well-studied, calcium-induced cAMP/PKA dynamics, particularly with respect to frequency modulation, are not fully explored. In this study, we present a well-mixed model for the dynamics of calcium-induced cAMP/PKA dynamics in dendritic spines. The model is constrained using experimental observations in the literature. Further, we measured the calcium oscillation frequency in dendritic spines of cultured hippocampal CA1 neurons and used these dynamics as model inputs. Our model predicts that the various steps in this pathway act as frequency modulators for calcium, and the high frequency of calcium input is filtered by adenylyl cyclase 1 and phosphodiesterases in this pathway such that cAMP/PKA only responds to lower frequencies. This prediction has important implications for noise filtering and long-timescale signal transduction in dendritic spines. A companion manuscript presents a three-dimensional spatial model for the same pathway.
Collapse
Affiliation(s)
- Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Barbara Calabrese
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Shelley Halpain
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
50
|
Risperidone Ameliorates Prefrontal Cortex Neural Atrophy and Oxidative/Nitrosative Stress in Brain and Peripheral Blood of Rats with Neonatal Ventral Hippocampus Lesion. J Neurosci 2019; 39:8584-8599. [PMID: 31519825 DOI: 10.1523/jneurosci.1249-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023] Open
Abstract
Reduction of the dendritic arbor length and the lack of dendritic spines in the pyramidal cells of the prefrontal cortex (PFC) are prevalent pathological features in schizophrenia (SZ). Neonatal ventral hippocampus lesion (NVHL) in male rats reproduces these neuronal characteristics and here we describe how this is a consequence of BDNF/TrkB pathway disruption. Moreover, COX-2 proinflammatory state, as well as Nrf-2 antioxidant impairment, triggers oxidative/nitrosative stress, which also contributes to dendritic spine impairments in the PFC. Interestingly, oxidative/nitrosative stress was also detected in the periphery of NVHL animals. Furthermore, risperidone treatment had a neurotrophic effect on the PFC and antioxidant effects on the brain and periphery of NVHL animals; these cellular effects were related to behavioral improvement. Our data highlight the link between brain development and immune response, as well as several other factors to understand mechanisms related to the pathophysiology of SZ.SIGNIFICANCE STATEMENT Prefrontal cortex dysfunction in schizophrenia can be a consequence of morphological abnormalities and oxidative/nitrosative stress, among others. Here, we detailed how impaired plasticity-related pathways and oxidative/nitrosative stress are part of the dendritic spine pathology and their modulation by atypical antipsychotic risperidone treatment in rats with neonatal ventral hippocampus lesion. Moreover, we found that animals with neonatal ventral hippocampus lesion had oxidative/nitrosative stress in the brain as well as in the peripheral blood, an important issue for the translational approaches of this model. Then, risperidone restored plasticity and reduced oxidative/nitrosative stress of prefrontal cortex pyramidal cells, and ultimately improved the behavior of lesioned animals. Moreover, risperidone had differential effects than the brain on peripheral blood oxidative/nitrosative stress.
Collapse
|