1
|
Stacey WC. Finding a new normal: Thalamic stereo EEG reveals physiological fast ripples. Clin Neurophysiol 2025; 173:239-240. [PMID: 40082175 DOI: 10.1016/j.clinph.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Affiliation(s)
- William C Stacey
- Department of Neurology, University of Michigan, USA; Biointerfaces Institute, Department of Biomedical Engineering, University of Michigan, USA; Division of Neurology, VA Ann Arbor Health System, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Lisgaras CP, de la Prida LM, Bertram E, Cunningham M, Henshall D, Liu AA, Gnatkovsky V, Balestrini S, de Curtis M, Galanopoulou AS, Jacobs J, Jefferys JGR, Mantegazza M, Reschke CR, Jiruska P. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Epilepsia 2025; 66:1374-1393. [PMID: 39913107 PMCID: PMC12097480 DOI: 10.1111/epi.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchNew York State Office of Mental HealthOrangeburgNew YorkUSA
| | | | | | - Mark Cunningham
- Discipline of Physiology, School of MedicineTrinity College DublinDublinIreland
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
| | - David Henshall
- Department of Physiology and Medical PhysicsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Anli A. Liu
- Langone Medical CenterNew York UniversityNew YorkNew YorkUSA
- Department of Neurology, School of MedicineNew York UniversityNew YorkNew YorkUSA
- Neuroscience Institute, Langone Medical CenterNew York UniversityNew YorkNew YorkUSA
| | - Vadym Gnatkovsky
- Department of EpileptologyUniversity Hospital Bonn (UKB)BonnGermany
| | - Simona Balestrini
- Department of Neuroscience and Medical GeneticsMeyer Children's Hospital IRCSSFlorenceItaly
- University of FlorenceFlorenceItaly
- Department of Clinical & Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Marco de Curtis
- Epilepsy UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Julia Jacobs
- Alberta Children's Hospital Research Institute, Hotchkiss Brain InstituteAlberta Health Services & University of CalgaryCalgaryCanada
| | - John G. R. Jefferys
- Department of Physiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Massimo Mantegazza
- Université Côte d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- Inserm U1323Valbonne‐Sophia AntipolisFrance
| | - Cristina R. Reschke
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
3
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Lines J, Corkrum M, Aguilar J, Araque A. The Duality of Astrocyte Neuromodulation: Astrocytes Sense Neuromodulators and Are Neuromodulators. J Neurochem 2025; 169:e70054. [PMID: 40191899 PMCID: PMC11978396 DOI: 10.1111/jnc.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Neuromodulation encompasses different processes that regulate neuronal and network function. Classical neuromodulators originating from long-range nuclei, such as acetylcholine, norepinephrine, or dopamine, act with a slower time course and wider spatial range than fast synaptic transmission and action potential firing. Accumulating evidence in vivo indicates that astrocytes, which are known to actively participate in synaptic function at tripartite synapses, are also involved in neuromodulatory processes. The present article reviews recent findings obtained in vivo indicating that astrocytes express receptors for neuromodulators that elevate their internal calcium and stimulate the release of gliotransmitters, which regulate synaptic and network function, and hence mediate, at least partially, the effects of neuromodulators. In addition, we propose that astrocytes act in local support of neuromodulators by spatially and temporally integrating neuronal and neuromodulatory signals to regulate neural network function. The presence of astrocyte-neuron hysteresis loops suggests astrocyte-neuron interaction at tripartite synapses scales up to astrocyte-neuronal networks that modulate neural network function. We finally propose that astrocytes sense the environmental conditions, including neuromodulators and network function states, and provide homeostatic control that maximizes the dynamic range of neural network activity. In summary, we propose that astrocytes are critical in mediating the effects of neuromodulators, and they also act as neuromodulators to provide neural network homeostasis thus optimizing information processing in the brain. Hence, astrocytes sense ongoing neuronal activity along with neuromodulators and, acting as neuromodulators, inform the neurons about the state of the internal system and the external world.
Collapse
Affiliation(s)
- Justin Lines
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Corkrum
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan Aguilar
- Experimental Neurophysiology. Hospital Nacional de Parapléjicos. SESCAM. Finca de la Peraleda, S/N, 45071 Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Aleman-Zapata A, Capitan MM, Samanta A, Özsezer P, Agarwal K, Adam T, Rayan A, Genzel L. Differential contributions of CA3 and entorhinal cortex inputs to ripple patterns in the hippocampus. iScience 2025; 28:111782. [PMID: 39967864 PMCID: PMC11834075 DOI: 10.1016/j.isci.2025.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Hippocampal ripples project reactivated memories to many brain areas, and recently it has been proposed that different types of ripples exist whose information content is influenced by different regions. Utilizing a threshold-based approach, our study differentiated distinct ripple types in rats, clarifying the contributions of intra-hippocampal (CA3) and cortical (mEC) regions to these events. The findings reveal that different ripple types differ in the relative contributions of both regions to their generation, and interestingly cannabidiol ingestion primarily influences the CA3's input to the CA1, resulting in an increased occurrence of short ripples predominantly induced by cortical (mEC) activity and a corresponding decrease in long, intra-hippocampal sharp-wave ripples. This study highlights the critical interplay between the CA3 and entorhinal cortex dynamics in shaping the characteristics of hippocampal ripples.
Collapse
Affiliation(s)
- Adrian Aleman-Zapata
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Melisa Maidana Capitan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Anumita Samanta
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Pelin Özsezer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Kopal Agarwal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Tugdual Adam
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Abdelrahman Rayan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500GL Nijmegen, the Netherlands
| |
Collapse
|
7
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
8
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
9
|
Karaba LA, Robinson HL, Harvey RE, Chen W, Fernandez-Ruiz A, Oliva A. A hippocampal circuit mechanism to balance memory reactivation during sleep. Science 2024; 385:738-743. [PMID: 39146421 PMCID: PMC11428313 DOI: 10.1126/science.ado5708] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/17/2024]
Abstract
Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials ("BARR") during non-rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.
Collapse
Affiliation(s)
| | | | - Ryan E. Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Weiwei Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Xiang LY, Chen XY, Lu LM, Kong MH, Ji Q, Xiong Y, Xie MM, Jian XL, Zhu ZR. Mechanisms of Neuronal Reactivation in Memory Consolidation: A Perspective from Pathological Conditions. Neuroscience 2024; 551:196-204. [PMID: 38810690 DOI: 10.1016/j.neuroscience.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.
Collapse
Affiliation(s)
- Lei-Ying Xiang
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Xiao-Yi Chen
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Li-Ming Lu
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Ming-Hui Kong
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Qi Ji
- Department of Medical Psychology, Army Medical University, Chongqing, PR China
| | - Yu Xiong
- Department of Stomatology, Southwest Hospital, Chongqing, PR China
| | - Mei-Ming Xie
- Chinese People's Liberation Army Western Theater General Hospital, Chengdu, PR China
| | - Xin-Ling Jian
- No. 950 Hospital of the Chinese People's Liberation Army, Yecheng, PR China
| | - Zhi-Ru Zhu
- Department of Medical Psychology, Army Medical University, Chongqing, PR China.
| |
Collapse
|
11
|
Sánchez-Bellot C, de la Prida LM. Brain oscillations: Hippocampal-prefrontal ripples unfolded. Curr Biol 2024; 34:R637-R639. [PMID: 38981432 DOI: 10.1016/j.cub.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Memory consolidation is the process of translating memory traces from the hippocampus to the cortex. Hippocampal ripples are key in driving this transfer. A new study now shows that independent cortical ripples can suppress this communication. What could be the underlying mechanisms?
Collapse
|
12
|
Iwata T, Yanagisawa T, Ikegaya Y, Smallwood J, Fukuma R, Oshino S, Tani N, Khoo HM, Kishima H. Hippocampal sharp-wave ripples correlate with periods of naturally occurring self-generated thoughts in humans. Nat Commun 2024; 15:4078. [PMID: 38778048 PMCID: PMC11111804 DOI: 10.1038/s41467-024-48367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Core features of human cognition highlight the importance of the capacity to focus on information distinct from events in the here and now, such as mind wandering. However, the brain mechanisms that underpin these self-generated states remain unclear. An emerging hypothesis is that self-generated states depend on the process of memory replay, which is linked to sharp-wave ripples (SWRs), which are transient high-frequency oscillations originating in the hippocampus. Local field potentials were recorded from the hippocampus of 10 patients with epilepsy for up to 15 days, and experience sampling was used to describe their association with ongoing thought patterns. The SWR rates were higher during extended periods of time when participants' ongoing thoughts were more vivid, less desirable, had more imaginable properties, and exhibited fewer correlations with an external task. These data suggest a role for SWR in the patterns of ongoing thoughts that humans experience in daily life.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveals common waveform features across species. Commun Biol 2024; 7:211. [PMID: 38438533 PMCID: PMC10912113 DOI: 10.1038/s42003-024-05871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
The study of sharp-wave ripples has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy is considered a biomarker of dysfunction. Sharp-wave ripples exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine-learning models for automatic detection and analysis of these events. The machine-learning architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of ripple features recorded in the dorsal hippocampus of mice across awake and sleep conditions. When applied to data from the macaque hippocampus, these models are able to generalize detection and reveal shared properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize analysis of sharp-wave ripples, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Kari L Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
16
|
Sebastian ER, Quintanilla JP, Sánchez-Aguilera A, Esparza J, Cid E, de la Prida LM. Topological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations. Nat Neurosci 2023; 26:2171-2181. [PMID: 37946048 PMCID: PMC10689241 DOI: 10.1038/s41593-023-01471-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
The reactivation of experience-based neural activity patterns in the hippocampus is crucial for learning and memory. These reactivation patterns and their associated sharp-wave ripples (SWRs) are highly variable. However, this variability is missed by commonly used spectral methods. Here, we use topological and dimensionality reduction techniques to analyze the waveform of ripples recorded at the pyramidal layer of CA1. We show that SWR waveforms distribute along a continuum in a low-dimensional space, which conveys information about the underlying layer-specific synaptic inputs. A decoder trained in this space successfully links individual ripples with their expected sinks and sources, demonstrating how physiological mechanisms shape SWR variability. Furthermore, we found that SWR waveforms segregated differently during wakefulness and sleep before and after a series of cognitive tasks, with striking effects of novelty and learning. Our results thus highlight how the topological analysis of ripple waveforms enables a deeper physiological understanding of SWRs.
Collapse
Affiliation(s)
| | | | - Alberto Sánchez-Aguilera
- Instituto Cajal. CSIC, Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Elena Cid
- Instituto Cajal. CSIC, Madrid, Spain
| | | |
Collapse
|
17
|
Lisgaras CP, Scharfman HE. High Frequency Oscillations (>250Hz) Outnumber Interictal Spikes in Preclinical Studies of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564797. [PMID: 37961135 PMCID: PMC10634943 DOI: 10.1101/2023.10.30.564797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Interictal spikes (IIS) and seizures are well-documented in Alzheimer's disease (AD). IIS typically outnumber seizures, supporting their role as a prominent EEG biomarker in AD. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) also occur, but it is currently unknown how HFOs compare to IIS. Therefore, we asked whether the incidence of HFOs and IIS differed and if they are differentially affected by behavioral state. We used three mouse lines that simulate aspects of AD: Tg2576, presenilin 2 knockout, and Ts65Dn mice. We recorded and quantified HFOs and IIS in the hippocampus during wakefulness, slow-wave sleep, and rapid eye movement sleep. In all three mouse lines, HFOs were more frequent than IIS. High numbers of HFOs correlated with fewer IIS, suggesting for the first time possible competing dynamics among them in AD. Notably, HFOs occurred in more behavioral states than IIS. In summary, HFOs were the most abundant EEG abnormality when compared to IIS, and occurred in all behavioral states, suggesting they are a better biomarker than IIS. These findings pertained to three mouse lines, which is important because they simulate different aspects of AD. We also show that HFOs may inhibit IIS. SHORT SUMMARY Interictal spikes (IIS) and seizures are common in Alzheimer's disease (AD). IIS are more frequent than seizures and occur during earlier disease stages. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) occur, but a comparison between IIS and HFOs is lacking. Here we used 3 mouse lines with AD features and local field potential recordings to quantify IIS and HFOs. We found that HFOs outnumbered IIS and that their total numbers were inversely correlated with IIS. HFOs occurred during more behavioral states than IIS. Therefore, HFOs were the most abundant EEG abnormality, and this was generalizable across 3 types of preclinical AD.
Collapse
|
18
|
Berndt M, Trusel M, Roberts TF, Pfeiffer BE, Volk LJ. Bidirectional synaptic changes in deep and superficial hippocampal neurons following in vivo activity. Neuron 2023; 111:2984-2994.e4. [PMID: 37689058 PMCID: PMC10958998 DOI: 10.1016/j.neuron.2023.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.
Collapse
Affiliation(s)
- Marcus Berndt
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Massimo Trusel
- UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Todd F Roberts
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| | - Lenora J Volk
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Psychiatry, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Clawson W, Waked B, Madec T, Ghestem A, Quilichini PP, Battaglia D, Bernard C. Perturbed Information Processing Complexity in Experimental Epilepsy. J Neurosci 2023; 43:6573-6587. [PMID: 37550052 PMCID: PMC10513075 DOI: 10.1523/jneurosci.0383-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we test the hypothesis that primitive processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex in experimental epilepsy in adult, male Wistar rats. We find that information storage and sharing are organized into substates across the stereotypic states of slow and theta oscillations in both epilepsy and control conditions. However, their internal composition and organization through time are disrupted in epilepsy, partially losing brain state selectivity compared with controls, and shifting toward a regimen of disorder. We propose that the alteration of information processing at this algorithmic level of computation, the theoretical intermediate level between structure and function, may be a mechanism behind the emergent and widespread comorbidities associated with epilepsy, and perhaps other disorders.SIGNIFICANCE STATEMENT Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we show that basic processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex (two regions involved in memory processes) in experimental epilepsy. Such disruption of information processing at the algorithmic level itself could underlie the general performance impairments in epilepsy.
Collapse
Affiliation(s)
- Wesley Clawson
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Benjamin Waked
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Tanguy Madec
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Antoine Ghestem
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Pascale P Quilichini
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Demian Battaglia
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
20
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveal common features across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547382. [PMID: 37461661 PMCID: PMC10349962 DOI: 10.1101/2023.07.02.547382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy and Alzheimer's disease is considered a biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal hippocampus of mice. When applied to data from the macaque hippocampus, these models were able to generalize detection and revealed shared SWR properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
| | - Kari L. Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
- Biomedical Engineering, Vanderbilt University, USA
| | | |
Collapse
|
22
|
Masala N, Pofahl M, Haubrich AN, Sameen Islam KU, Nikbakht N, Pasdarnavab M, Bohmbach K, Araki K, Kamali F, Henneberger C, Golcuk K, Ewell LA, Blaess S, Kelly T, Beck H. Targeting aberrant dendritic integration to treat cognitive comorbidities of epilepsy. Brain 2023; 146:2399-2417. [PMID: 36448426 PMCID: PMC10232249 DOI: 10.1093/brain/awac455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/22/2023] Open
Abstract
Memory deficits are a debilitating symptom of epilepsy, but little is known about mechanisms underlying cognitive deficits. Here, we describe a Na+ channel-dependent mechanism underlying altered hippocampal dendritic integration, degraded place coding and deficits in spatial memory. Two-photon glutamate uncaging experiments revealed a marked increase in the fraction of hippocampal first-order CA1 pyramidal cell dendrites capable of generating dendritic spikes in the kainate model of chronic epilepsy. Moreover, in epileptic mice dendritic spikes were generated with lower input synchrony, and with a lower threshold. The Nav1.3/1.1 selective Na+ channel blocker ICA-121431 reversed dendritic hyperexcitability in epileptic mice, while the Nav1.2/1.6 preferring anticonvulsant S-Lic did not. We used in vivo two-photon imaging to determine if aberrant dendritic excitability is associated with altered place-related firing of CA1 neurons. We show that ICA-121431 improves degraded hippocampal spatial representations in epileptic mice. Finally, behavioural experiments show that reversing aberrant dendritic excitability with ICA-121431 reverses hippocampal memory deficits. Thus, a dendritic channelopathy may underlie cognitive deficits in epilepsy and targeting it pharmacologically may constitute a new avenue to enhance cognition.
Collapse
Affiliation(s)
- Nicola Masala
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Martin Pofahl
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - André N Haubrich
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Khondker Ushna Sameen Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Negar Nikbakht
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Maryam Pasdarnavab
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Kirsten Bohmbach
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Kunihiko Araki
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Fateme Kamali
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 53127 Bonn, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kurtulus Golcuk
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Laura A Ewell
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-3950, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Tony Kelly
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Heinz Beck
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 53127 Bonn, Germany
| |
Collapse
|
23
|
Buhler CM, Basso JC, English DF. Hippocampal sharp wave-ripple dynamics in NREM sleep encode motivation for anticipated physical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532638. [PMID: 36993725 PMCID: PMC10055135 DOI: 10.1101/2023.03.14.532638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical activity is an integral part of every mammal's daily life, and as a driver of Darwinian fitness, required coordinated evolution of the body and brain. The decision to engage in physical activity is driven either by survival needs or by motivation for the rewarding qualities of physical activity itself. Rodents exhibit innate and learned motivation for voluntary wheel running, and over time run longer and farther, reflecting increased incentive salience and motivation for this consummatory behavior. Dynamic coordination of neural and somatic physiology are necessary to ensure the ability to perform behaviors that are motivationally variable. Hippocampal sharp wave-ripples (SWRs) have evolved both cognitive and metabolic functions, which in modern mammals may facilitate body-brain coordination. To determine if SWRs encode aspects of exercise motivation we monitored hippocampal CA1 SWRs and running behaviors in adult mice, while manipulating the incentive salience of the running experience. During non-REM (NREM) sleep, the duration of SWRs before (but not after) running positively correlated with future running duration, and larger pyramidal cell assemblies were activated in longer SWRs, suggesting that the CA1 network encodes exercise motivation at the level of neuronal spiking dynamics. Inter-Ripple-intervals (IRI) before but not after running were negatively correlated with running duration, reflecting more SWR bursting, which increases with learning. In contrast, SWR rates before and after running were positively correlated with running duration, potentially reflecting a tuning of metabolic demand for that day's anticipated and actual energy expenditure rather than motivation. These results suggest a novel role for CA1 in exercise behaviors and specifically that cell assembly activity during SWRs encodes motivation for anticipated physical activity. SIGNIFICANCE STATEMENT Darwinian fitness is increased by body-brain coordination through internally generated motivation, though neural substrates are poorly understood. Specific hippocampal rhythms (i.e., CA1 SWRs), which have a well-established role in reward learning, action planning and memory consolidation, have also been shown to modulate systemic [glucose]. Using a mouse model of voluntary physical activity that requires body-brain coordination, we monitored SWR dynamics when animals were highly motivated and anticipated rewarding exercise (i.e., when body-brain coordination is of heightened importance). We found that during non-REM sleep before exercise, SWR dynamics (which reflect cognitive and metabolic functions) were correlated with future time spent exercising. This suggests that SWRs support cognitive and metabolic facets that motivate behavior by coordinating the body and brain.
Collapse
|
24
|
Lafourcade CA, Sparks FT, Bordey A, Wyneken U, Mohammadi MH. Cannabinoid regulation of neurons in the dentate gyrus during epileptogenesis: Role of CB1R-associated proteins and downstream pathways. Epilepsia 2023. [PMID: 36869624 DOI: 10.1111/epi.17569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
The hippocampal formation plays a central role in the development of temporal lobe epilepsy (TLE), a disease characterized by recurrent, unprovoked epileptic discharges. TLE is a neurologic disorder characterized by acute long-lasting seizures (i.e., abnormal electrical activity in the brain) or seizures that occur in close proximity without recovery, typically after a brain injury or status epilepticus. After status epilepticus, epileptogenic hyperexcitability develops gradually over the following months to years, resulting in the emergence of chronic, recurrent seizures. Acting as a filter or gate, the hippocampal dentate gyrus (DG) normally prevents excessive excitation from propagating through the hippocampus, and is considered a critical region in the progression of epileptogenesis in pathological conditions. Importantly, lipid-derived endogenous cannabinoids (endocannabinoids), which are produced on demand as retrograde messengers, are central regulators of neuronal activity in the DG circuit. In this review, we summarize recent findings concerning the role of the DG in controlling hyperexcitability and propose how DG regulation by cannabinoids (CBs) could provide avenues for therapeutic interventions. We also highlight possible pathways and manipulations that could be relevant for the control of hyperexcitation. The use of CB compounds to treat epilepsies is controversial, as anecdotal evidence is not always validated by clinical trials. Recent publications shed light on the importance of the DG as a region regulating incoming hippocampal excitability during epileptogenesis. We review recent findings concerning the modulation of the hippocampal DG circuitry by CBs and discuss putative underlying pathways. A better understanding of the mechanisms by which CBs exert their action during seizures may be useful to improve therapies.
Collapse
Affiliation(s)
- Carlos A Lafourcade
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, New York, USA.,Current: Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Angelique Bordey
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ursula Wyneken
- Centro de Investigación e Innovación Biomédica, Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | |
Collapse
|
25
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández-Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's Disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528683. [PMID: 36824810 PMCID: PMC9949089 DOI: 10.1101/2023.02.15.528683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological disease, such as Alzheimer's Disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multi-layer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples (SPW-Rs), altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implicates that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory. Significant Statement Prevalence of neurodegenerative diseases and the number of people with dementia is increasing steadily. Therefore, novel treatment strategies for learning and memory disorders are urgently necessary. IEDs, apart from being a surrogate for epileptic brain regions, have also been linked to cognitive decline. Here we report that IEDs in human epilepsy patients and AD mouse models have similar local field potential characteristics and associated firing patterns of pyramidal cells and interneurons. Mice with more IEDs displayed fewer hippocampal SPW-Rs, poorer replay of spatial trajectories, and decreased memory performance. IED suppression is an unexplored target to treat cognitive dysfunction in neurodegenerative diseases.
Collapse
|
26
|
Hall AF, Wang DV. The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Prog Neurobiol 2023; 221:102396. [PMID: 36563928 PMCID: PMC9899323 DOI: 10.1016/j.pneurobio.2022.102396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
27
|
Lisgaras CP, Oliva A, Mckenzie S, LaFrancois J, Siegelbaum SA, Scharman HE. Hippocampal area CA2 controls seizure dynamics, interictal EEG abnormalities and social comorbidity in mouse models of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524149. [PMID: 36711983 PMCID: PMC9882187 DOI: 10.1101/2023.01.15.524149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, abnormal activity between seizures, and impaired behavior. CA2 pyramidal neurons (PNs) are potentially important because inhibiting them with a chemogenetic approach reduces seizure frequency in a mouse model of TLE. However, whether seizures could be stopped by timing inhibition just as a seizure begins is unclear. Furthermore, whether inhibition would reduce the cortical and motor manifestations of seizures are not clear. Finally, whether interictal EEG abnormalities and TLE comorbidities would be improved are unknown. Therefore, real-time optogenetic silencing of CA2 PNs during seizures, interictal activity and behavior were studied in 2 mouse models of TLE. CA2 silencing significantly reduced seizure duration and time spent in convulsive behavior. Interictal spikes and high frequency oscillations were significantly reduced, and social behavior was improved. Therefore, brief focal silencing of CA2 PNs reduces seizures, their propagation, and convulsive manifestations, improves interictal EEG, and ameliorates social comorbidities. HIGHLIGHTS Real-time CA2 silencing at the onset of seizures reduces seizure durationWhen CA2 silencing reduces seizure activity in hippocampus it also reduces cortical seizure activity and convulsive manifestations of seizuresInterictal spikes and high frequency oscillations are reduced by real-time CA2 silencingReal-time CA2 silencing of high frequency oscillations (>250Hz) rescues social memory deficits of chronic epileptic mice.
Collapse
|
28
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
29
|
Lippmann K, Klaft ZJ, Salar S, Hollnagel JO, Valero M, Maslarova A. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum. Neurobiol Dis 2022; 175:105929. [DOI: 10.1016/j.nbd.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
30
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Hodapp A, Kaiser ME, Thome C, Ding L, Rozov A, Klumpp M, Stevens N, Stingl M, Sackmann T, Lehmann N, Draguhn A, Burgalossi A, Engelhardt M, Both M. Dendritic axon origin enables information gating by perisomatic inhibition in pyramidal neurons. Science 2022; 377:1448-1452. [PMID: 36137045 DOI: 10.1126/science.abj1861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Information processing in neuronal networks involves the recruitment of selected neurons into coordinated spatiotemporal activity patterns. This sparse activation results from widespread synaptic inhibition in conjunction with neuron-specific synaptic excitation. We report the selective recruitment of hippocampal pyramidal cells into patterned network activity. During ripple oscillations in awake mice, spiking is much more likely in cells in which the axon originates from a basal dendrite rather than from the soma. High-resolution recordings in vitro and computer modeling indicate that these spikes are elicited by synaptic input to the axon-carrying dendrite and thus escape perisomatic inhibition. Pyramidal cells with somatic axon origin can be activated during ripple oscillations by blocking their somatic inhibition. The recruitment of neurons into active ensembles is thus determined by axonal morphological features.
Collapse
Affiliation(s)
- Alexander Hodapp
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin E Kaiser
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christian Thome
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany.,Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University, Linz, Austria.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Lingjun Ding
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience, IMPRS, Tübingen, Germany
| | - Andrei Rozov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany.,Federal Center of Brain Research and Neurotechnologies, Moscow, Russian Federation.,OpenLab of Neurobiology, Kazan Federal University, Kazan, Russian Federation
| | - Matthias Klumpp
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Nikolas Stevens
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Moritz Stingl
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tina Sackmann
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University, Linz, Austria.,Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
32
|
Curot J, Barbeau E, Despouy E, Denuelle M, Sol JC, Lotterie JA, Valton L, Peyrache A. Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain 2022; 146:561-575. [PMID: 36093747 PMCID: PMC9924905 DOI: 10.1093/brain/awac319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding the neuronal basis of epileptic activity is a major challenge in neurology. Cellular integration into larger scale networks is all the more challenging. In the local field potential, interictal epileptic discharges can be associated with fast ripples (200-600 Hz), which are a promising marker of the epileptogenic zone. Yet, how neuronal populations in the epileptogenic zone and in healthy tissue are affected by fast ripples remain unclear. Here, we used a novel 'hybrid' macro-micro depth electrode in nine drug-resistant epileptic patients, combining classic depth recording of local field potentials (macro-contacts) and two or three tetrodes (four micro-wires bundled together) enabling up to 15 neurons in local circuits to be simultaneously recorded. We characterized neuronal responses (190 single units) with the timing of fast ripples (2233 fast ripples) on the same hybrid and other electrodes that target other brain regions. Micro-wire recordings reveal signals that are not visible on macro-contacts. While fast ripples detected on the closest macro-contact to the tetrodes were always associated with fast ripples on the tetrodes, 82% of fast ripples detected on tetrodes were associated with detectable fast ripples on the nearest macro-contact. Moreover, neuronal recordings were taken in and outside the epileptogenic zone of implanted epileptic subjects and they revealed an interlay of excitation and inhibition across anatomical scales. While fast ripples were associated with increased neuronal activity in very local circuits only, they were followed by inhibition in large-scale networks (beyond the epileptogenic zone, even in healthy cortex). Neuronal responses to fast ripples were homogeneous in local networks but differed across brain areas. Similarly, post-fast ripple inhibition varied across recording locations and subjects and was shorter than typical inter-fast ripple intervals, suggesting that this inhibition is a fundamental refractory process for the networks. These findings demonstrate that fast ripples engage local and global networks, including healthy tissue, and point to network features that pave the way for new diagnostic and therapeutic strategies. They also reveal how even localized pathological brain dynamics can affect a broad range of cognitive functions.
Collapse
Affiliation(s)
- Jonathan Curot
- Correspondence to: Jonathan Curot, MD, PhD CerCo CNRS UMR 5549, Université Toulouse III CHU Purpan, Pavillon Baudot, 31052 Toulouse Cedex, France E-mail:
| | - Emmanuel Barbeau
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Elodie Despouy
- Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Marie Denuelle
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Jean Christophe Sol
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Faculty of Health, University of Toulouse, Paul Sabatier University, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Jean-Albert Lotterie
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Toulouse Neuro Imaging Center (ToNIC), INSERM, U1214, Toulouse, France
| | - Luc Valton
- Departments of Neurology and Neurosurgery, Toulouse University Hospital, Toulouse, France,Brain and Cognition Research Center (CerCo), Centre National de la Recherche Scientifique, UMR5549, Toulouse, France
| | - Adrien Peyrache
- Correspondence may also be addressed to: Adrien Peyrache, PhD Montreal Neurological Institute Department of Neurology and Neurosurgery McGill University, 3810 University Street Montreal, Quebec, Canada E-mail:
| |
Collapse
|
33
|
Valero M, Navas-Olive A, de la Prida LM, Buzsáki G. Inhibitory conductance controls place field dynamics in the hippocampus. Cell Rep 2022; 40:111232. [PMID: 36001959 PMCID: PMC9595125 DOI: 10.1016/j.celrep.2022.111232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal place cells receive a disparate collection of excitatory and inhibitory currents that endow them with spatially selective discharges and rhythmic activity. Using a combination of in vivo intracellular and extracellular recordings with opto/chemogenetic manipulations and computational modeling, we investigate the influence of inhibitory and excitatory inputs on CA1 pyramidal cell responses. At the cell bodies, inhibition leads and is stronger than excitation across the entire theta cycle. Pyramidal neurons fire on the ascending phase of theta when released from inhibition. Computational models equipped with the observed conductances reproduce these dynamics. In these models, place field properties are favored when the increased excitation is coupled with a reduction of inhibition within the field. As predicted by our simulations, firing rate within place fields and phase locking to theta are impaired by DREADDs activation of interneurons. Our results indicate that decreased inhibitory conductance is critical for place field expression. Valero et al. examine the influence of inhibition on place fields. They show that hippocampal neurons are dominated by inhibitory conductances during theta oscillations. A transient increase of excitation and drop of inhibition mediates place field emergence in simulations. Consistently, chemogenetic activation of interneurons deteriorates place cell properties in vivo.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Andrea Navas-Olive
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain
| | - Liset M de la Prida
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
34
|
Alemany-González M, Vilademunt M, Gener T, Puig MV. Postnatal environmental enrichment enhances memory through distinct neural mechanisms in healthy and trisomic female mice. Neurobiol Dis 2022; 173:105841. [PMID: 35988873 DOI: 10.1016/j.nbd.2022.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Stimulating lifestyles have powerful effects on cognitive abilities, especially when they are experienced early in life. Cognitive therapies are widely used to improve cognitive impairment due to intellectual disability, aging, and neurodegeneration, however the underlying neural mechanisms are poorly understood. We investigated the neural correlates of memory amelioration produced by postnatal environmental enrichment (EE) in diploid mice and the Ts65Dn mouse model of Down syndrome (trisomy 21). We recorded neural activities in brain structures key for memory processing, the hippocampus and the prefrontal cortex, during rest, sleep and memory performance in mice reared in non-enriched or enriched environments. Enriched wild-type animals exhibited enhanced neural synchrony in the hippocampus across different brain states (increased gamma oscillations, theta-gamma coupling, sleep ripples). Trisomic females showed increased theta and gamma rhythms in the hippocampus and prefrontal cortex across different brain states along with enlarged ripples and disrupted circuit gamma signals that were associated with memory deficits. These pathological activities were attenuated in their trisomic EE-reared peers. Our results suggest distinct neural mechanisms for the generation and rescue of healthy and pathological brain synchrony, respectively, by EE and put forward hippocampal-prefrontal hypersynchrony and miscommunication as major targets underlying the beneficial effects of EE in intellectual disability.
Collapse
Affiliation(s)
- Maria Alemany-González
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Marta Vilademunt
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
35
|
Liu B, Ran X, Yi Y, Zhang X, Chen H, Hu Y. Anticonvulsant Effect of Carbenoxolone on Chronic Epileptic Rats and Its Mechanism Related to Connexin and High-Frequency Oscillations. Front Mol Neurosci 2022; 15:870947. [PMID: 35615064 PMCID: PMC9125185 DOI: 10.3389/fnmol.2022.870947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This study was designed to investigate the influence and mechanism of gap junction carbenoxolone (CBX) on dynamic changes in the spectral power of ripples and fast ripples (FRs) in the hippocampus of chronic epileptic rats. Methods The lithium-pilocarpine (PILO) status epilepticus (SE) model (PILO group) and the CBX pretreatment model (CBX + PILO group) were established to analyze dynamic changes in the spectral power of ripples and FRs, and the dynamic expression of connexin (CX)26, CX32, CX36, and CX43 in the hippocampus of chronic epileptic rats. Results Within 28 days after SE, the number of spontaneous recurrent seizures (SRSs) in the PILO group was significantly higher than that in the CBX + PILO group. The average spectral power of FRs in the PILO group was significantly higher than the baseline level at 1 and 7 days after SE. The average spectral power of FRs in the PILO group was significantly higher than that in the CBX + PILO group at 1, 7, and 14 days after SE. Seizures induced an increase in CX43 expression at 1 and 7 days after SE, but had no significant effect on CX26, CX36, or CX32. CBX pretreatment did not affect the expression of CXs in the hippocampus of normal rats, but it inhibited the expression of CX43 in epileptic rats. The number of SRSs at 2 and 4 weeks after SE had the highest correlation with the average spectral power of FRs; the average spectral power of FRs was moderately correlated with the expression of CX43. Conclusion The results of this study indicate that the energy of FRs may be regulated by its interference with the expression of CX43, and thus, affect seizures. Blocking the expression of CX43 thereby reduces the formation of pathological high-frequency oscillations (HFOs), making it a promising strategy for the treatment of chronic epilepsy.
Collapse
Affiliation(s)
- Benke Liu
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xiao Ran
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yanjun Yi
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xinyu Zhang
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- *Correspondence: Yue Hu,
| |
Collapse
|
36
|
Rolotti SV, Blockus H, Sparks FT, Priestley JB, Losonczy A. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron 2022; 110:977-991.e4. [PMID: 35041805 PMCID: PMC8930454 DOI: 10.1016/j.neuron.2021.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The hippocampus plays a critical role in memory consolidation, mediated by coordinated network activity during sharp-wave ripple (SWR) events. Despite the link between SWRs and hippocampal plasticity, little is known about how network state affects information processing in dendrites, the primary sites of synaptic input integration and plasticity. Here, we monitored somatic and basal dendritic activity in CA1 pyramidal cells in behaving mice using longitudinal two-photon calcium imaging integrated with simultaneous local field potential recordings. We found immobility was associated with an increase in dendritic activity concentrated during SWRs. Coincident dendritic and somatic activity during SWRs predicted increased coupling during subsequent exploration of a novel environment. In contrast, somatic-dendritic coupling and SWR recruitment varied with cells' tuning distance to reward location during a goal-learning task. Our results connect SWRs with the stabilization of information processing within CA1 neurons and suggest that these mechanisms may be dynamically biased by behavioral demands.
Collapse
Affiliation(s)
- Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
37
|
Zutshi I, Valero M, Fernández-Ruiz A, Buzsáki G. Extrinsic control and intrinsic computation in the hippocampal CA1 circuit. Neuron 2022; 110:658-673.e5. [PMID: 34890566 PMCID: PMC8857017 DOI: 10.1016/j.neuron.2021.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
In understanding circuit operations, a key problem is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. We addressed this issue in the hippocampus by performing combined optogenetic and pharmacogenetic local and upstream inactivation. Silencing the medial entorhinal cortex (mEC) largely abolished extracellular theta and gamma currents in CA1 while only moderately affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. However, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields and reliable assembly expression as in the intact mouse. Thus, the CA1 network can induce and maintain coordinated cell assemblies with minimal reliance on its inputs, but these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Manuel Valero
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Antonio Fernández-Ruiz
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
38
|
Valero M, Zutshi I, Yoon E, Buzsáki G. Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics. Science 2022; 375:570-574. [PMID: 35113721 PMCID: PMC9632609 DOI: 10.1126/science.abm1891] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how excitatory (E) and inhibitory (I) inputs are integrated by neurons requires monitoring their subthreshold behavior. We probed the subthreshold dynamics using optogenetic depolarizing pulses in hippocampal neuronal assemblies in freely moving mice. Excitability decreased during sharp-wave ripples coupled with increased I. In contrast to this "negative gain," optogenetic probing showed increased within-field excitability in place cells by weakening I and unmasked stable place fields in initially non-place cells. Neuronal assemblies active during sharp-wave ripples in the home cage predicted spatial overlap and sequences of place fields of both place cells and unmasked preexisting place fields of non-place cells during track running. Thus, indirect probing of subthreshold dynamics in neuronal populations permits the disclosing of preexisting assemblies and modes of neuronal operations.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA,Corresponding author. (M.V.); (G.B.)
| | - Ipshita Zutshi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, South Korea
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA,Neuroscience Institute and Department of Neurology, Langone Medical Center, New York, NY 10016, USA,Center for Neural Science, New York University, New York, NY 10003, USA,Corresponding author. (M.V.); (G.B.)
| |
Collapse
|
39
|
Oberländer K, Witte V, Mallien AS, Gass P, Bengtson CP, Bading H. Dysregulation of Npas4 and Inhba expression and an altered excitation-inhibition balance are associated with cognitive deficits in DBA/2 mice. Learn Mem 2022; 29:55-70. [PMID: 35042829 PMCID: PMC8774195 DOI: 10.1101/lm.053527.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Differences in the learning associated transcriptional profiles between mouse strains with distinct learning abilities could provide insight into the molecular basis of learning and memory. The inbred mouse strain DBA/2 shows deficits in hippocampus-dependent memory, yet the transcriptional responses to learning and the underlying mechanisms of the impairments are unknown. Comparing DBA/2J mice with the reference standard C57BL/6N mouse strain we verify an enhanced susceptibility to kainic acid induced seizures, confirm impairments in hippocampus-dependent spatial memory tasks and uncover additional behavioral abnormalities including deficits in hippocampus-independent learning. Surprisingly, we found no broad dysfunction of the DBA/2J strain in immediate early gene (IEG) activation but instead report brain region-specific and gene-specific alterations. The learning-associated IEGs Arc, c-Fos, and Nr4a1 showed no DBA/2J deficits in basal or synaptic activity induced gene expression in hippocampal or cortical primary neuronal cultures or in the CA1, CA3, or retrosplenial cortex following spatial object recognition (SOR) training in vivo. However, the parietal cortex showed reduced and the dentate gyrus showed enhanced SOR-evoked induction of most IEGs. All DBA/2J hippocampal regions exhibited elevated basal expression of inhibin β A (Inhba) and a learning-associated superinduction of the transcription factor neuronal Per-Arnt-Sim domain protein 4 (Npas4) known to regulate the synaptic excitation-inhibition balance. In line with this, CA1 pyramidal neurons of DBA/2J mice showed fewer inhibitory and more excitatory miniature postsynaptic currents but no alteration in most other electrophysiological properties or gross dendritic morphology. The dysregulation of Npas4 and Inhba expression and synaptic connectivity may underlie the cognitive deficits and increased susceptibility to seizures of DBA/2J mice.
Collapse
Affiliation(s)
- Kristin Oberländer
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Victoria Witte
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - C. Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Bowman C, Richter U, Jones CR, Agerskov C, Herrik KF. Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat. Front Psychiatry 2022; 13:737295. [PMID: 35153870 PMCID: PMC8830299 DOI: 10.3389/fpsyt.2022.737295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has emerged as a breakthrough therapy for major depressive disorder. Using local field potential recordings in freely moving rats, we studied resting state EEG profiles induced by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic; or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant effects of ketamine. As human electroencephalography (EEG) is predominantly recorded in a passive state, head-mounted accelerometers were used with rats to determine active and passive states at a high temporal resolution to offer the highest translatability. In general, pharmacological effects for the three drugs were more pronounced in (or restricted to) the passive state. Specifically, during inactive periods clozapine induced increases in delta (0.1-4 Hz), gamma (30-60 Hz) and higher frequencies (>100 Hz). Importantly, it reversed the ketamine-induced reduction in low beta power (10-20 Hz) and potentiated ketamine-induced increases in gamma and high frequency oscillations (130-160 Hz). Naltrexone inhibited frequencies above 50 Hz and significantly reduced the ketamine-induced increase in high frequency oscillations. However, some frequency band changes, such as clozapine-induced decreases in delta power, were only seen in locomoting rats. These results emphasise the potential in differentiating between activity states to capture drug effects and translate to human resting state EEG. Furthermore, the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone may have implications for the understanding of psychotomimetic as well as rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Christien Bowman
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Bio Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ulrike Richter
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | - Christopher R Jones
- Department of Pharmacokinetic and Pharmacodynamic Modeling and Simulation, Lundbeck, Copenhagen, Denmark
| | - Claus Agerskov
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | | |
Collapse
|
41
|
Jones EAA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, Koutsodendris N, Nelson M, Yoon SY, Huang K, Yuan H, Gill TM, Huang Y, Frank LM. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep 2021; 37:110159. [PMID: 34965435 PMCID: PMC9069800 DOI: 10.1016/j.celrep.2021.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.
Collapse
Affiliation(s)
- Emily A. Aery Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jason S. Bant
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anna K. Gillespie
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Maxine Nelson
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Ky Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Heidi Yuan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Theodore M. Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA,Departments of Neurology and Pathology, University of California, San Francisco, CA 94143, USA,Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead contact,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| |
Collapse
|
42
|
de la Prida LM. Threaded Structure of a Pathological Oblivion. Epilepsy Curr 2021; 21:457-459. [PMID: 34924858 PMCID: PMC8652317 DOI: 10.1177/15357597211042189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Hsu SY, Jura B, Shih MH, Meyrand P, Tsai FS, Bem T. Recognition of post-learning alteration of hippocampal ripples by convolutional neural network differs in the wild-type and AD mice. Sci Rep 2021; 11:21241. [PMID: 34711860 PMCID: PMC8553820 DOI: 10.1038/s41598-021-00598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Evidence indicates that sharp-wave ripples (SWRs) are primary network events supporting memory processes. However, some studies demonstrate that even after disruption of awake SWRs the animal can still learn spatial task or that SWRs may be not necessary to establish a cognitive map of the environment. Moreover, we have found recently that despite a deficit of sleep SWRs the APP/PS1 mice, a model of Alzheimer’s disease, show undisturbed spatial reference memory. Searching for a learning-related alteration of SWRs that could account for the efficiency of memory in these mice we use convolutional neural networks (CNN) to discriminate pre- and post-learning 256 ms samples of LFP signals, containing individual SWRs. We found that the fraction of samples that were correctly recognized by CNN in majority of discrimination sessions was equal to ~ 50% in the wild-type (WT) and only 14% in APP/PS1 mice. Moreover, removing signals generated in a close vicinity of SWRs significantly diminished the number of such highly recognizable samples in the WT but not in APP/PS1 group. These results indicate that in WT animals a large subset of SWRs and signals generated in their proximity may contain learning-related information whereas such information seem to be limited in the AD mice.
Collapse
Affiliation(s)
- Sheng-Yi Hsu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Bartosz Jura
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.,Institute of Applied Psychology, Jagiellonian University, Cracow, Poland
| | - Mau-Hsiang Shih
- Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Pierre Meyrand
- Neurocentre Magendie, INSERM U1215, University Bordeaux, Bordeaux, France
| | - Feng-Sheng Tsai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Research Center for Interneural Computing, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Tiaza Bem
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
44
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
45
|
Dubanet O, Ferreira Gomes Da Silva A, Frick A, Hirase H, Beyeler A, Leinekugel X. Probing the polarity of spontaneous perisomatic GABAergic synaptic transmission in the mouse CA3 circuit in vivo. Cell Rep 2021; 36:109381. [PMID: 34260906 DOI: 10.1016/j.celrep.2021.109381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/18/2020] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
The hypothesis that reversed, excitatory GABA may be involved in various brain pathologies, including epileptogenesis, is appealing but controversial because of the technical difficulty of probing endogenous GABAergic synaptic function in vivo. We overcome this challenge by non-invasive extracellular recording of neuronal firing responses to optogenetically evoked and spontaneously occurring inhibitory perisomatic GABAergic field potentials, generated by individual parvalbumin interneurons on their target pyramidal cells. Our direct probing of GABAergic transmission suggests a rather anecdotal participation of excitatory GABA in two specific models of epileptogenesis in the mouse CA3 circuit in vivo, even though this does not preclude its expression in other brain areas or pathological conditions. Our approach allows the detection of distinct alterations of inhibition during spontaneous activity in vivo, with high sensitivity. It represents a promising tool for the investigation of excitatory GABA in different pathological conditions that may affect the hippocampal circuit.
Collapse
Affiliation(s)
- Olivier Dubanet
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Arnaldo Ferreira Gomes Da Silva
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France
| | - Andreas Frick
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Beyeler
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Xavier Leinekugel
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France.
| |
Collapse
|
46
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
47
|
Vera J, Lippmann K. Post-stroke epileptogenesis is associated with altered intrinsic properties of hippocampal pyramidal neurons leading to increased theta resonance. Neurobiol Dis 2021; 156:105425. [PMID: 34119635 DOI: 10.1016/j.nbd.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3-8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- Jorge Vera
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristina Lippmann
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
48
|
Cid E, Marquez-Galera A, Valero M, Gal B, Medeiros DC, Navarron CM, Ballesteros-Esteban L, Reig-Viader R, Morales AV, Fernandez-Lamo I, Gomez-Dominguez D, Sato M, Hayashi Y, Bayés À, Barco A, Lopez-Atalaya JP, de la Prida LM. Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Rep 2021; 35:109229. [PMID: 34107264 DOI: 10.1016/j.celrep.2021.109229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis.
Collapse
Affiliation(s)
- Elena Cid
- Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, 28002 Madrid, Spain; Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | | | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Rita Reig-Viader
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan
| | - Yasunori Hayashi
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Àlex Bayés
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain.
| | | |
Collapse
|
49
|
Núñez-Ochoa MA, Chiprés-Tinajero GA, González-Domínguez NP, Medina-Ceja L. Causal relationship of CA3 back-projection to the dentate gyrus and its role in CA1 fast ripple generation. BMC Neurosci 2021; 22:37. [PMID: 34001031 PMCID: PMC8130286 DOI: 10.1186/s12868-021-00641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pathophysiological evidence from temporal lobe epilepsy models highlights the hippocampus as the most affected structure due to its high degree of neuroplasticity and control of the dynamics of limbic structures, which are necessary to encode information, conferring to it an intrinsic epileptogenicity. A loss in this control results in observable oscillatory perturbations called fast ripples, in epileptic rats those events are found in CA1, CA3, and the dentate gyrus (DG), which are the principal regions of the trisynaptic circuit of the hippocampus. The present work used Granger causality to address which relationships among these three regions of the trisynaptic circuit are needed to cause fast ripples in CA1 in an in vivo model. For these purposes, male Wistar rats (210-300 g) were injected with a single dose of pilocarpine hydrochloride (2.4 mg/2 µl) into the right lateral ventricle and video-monitored 24 h/day to detect spontaneous and recurrent seizures. Once detected, rats were implanted with microelectrodes in these regions (fixed-recording tungsten wire electrodes, 60-μm outer diameter) ipsilateral to the pilocarpine injection. A total of 336 fast ripples were recorded and probabilistically characterized, from those fast ripples we made a subset of all the fast ripple events associated with sharp-waves in CA1 region (n = 40) to analyze them with Granger Causality. RESULTS Our results support existing evidence in vitro in which fast ripple events in CA1 are initiated by CA3 multiunit activity and describe a general synchronization in the theta band across the three regions analyzed DG, CA3, and CA1, just before the fast ripple event in CA1 have begun. CONCLUSION This in vivo study highlights the causal participation of the CA3 back-projection to the DG, a connection commonly overlooked in the trisynaptic circuit, as a facilitator of a closed-loop among these regions that prolongs the excitatory activity of CA3. We speculate that the loss of inhibitory drive of DG and the mechanisms of ripple-related memory consolidation in which also the CA3 back-projection to DG has a fundamental role might be underlying processes of the fast ripples generation in CA1.
Collapse
Affiliation(s)
- Miguel A Núñez-Ochoa
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Gustavo A Chiprés-Tinajero
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Nadia P González-Domínguez
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
50
|
Valero M, Viney TJ, Machold R, Mederos S, Zutshi I, Schuman B, Senzai Y, Rudy B, Buzsáki G. Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex. Nat Neurosci 2021; 24:401-411. [PMID: 33619404 PMCID: PMC9662703 DOI: 10.1038/s41593-021-00797-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.1 and are weakly immunoreactive to neuronal nitric oxide synthase. DSA neurons are weakly excited by deep-layer pyramidal cells and strongly inhibited by several other GABAergic cell types. Spiking of DSA neurons modified the sequential firing order of other neurons at down-up transitions. Optogenetic activation of ID2+Nkx2.1+ interneurons in the posterior parietal cortex during NREM sleep, but not during waking, interfered with consolidation of cue discrimination memory. Despite their sparsity, DSA neurons perform critical physiological functions.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Robert Machold
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Sara Mederos
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Ipshita Zutshi
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Benjamin Schuman
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Yuta Senzai
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bernardo Rudy
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|