1
|
Smith I. A new mode of action for unconventional NMDA receptors. eLife 2025; 14:e107049. [PMID: 40387815 PMCID: PMC12088670 DOI: 10.7554/elife.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Presynaptic NMDA receptors can shape timing-dependent long-term depression in a way that departs from their classic postsynaptic role.
Collapse
Affiliation(s)
- Ikuko Smith
- Department of Molecular, Cellular and Developmental Biology, Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
2
|
Ma S, Li S, Wang H, Li Y, Lu C, Li X. Terahertz radiation affects the dynamics of neurons by decreasing membrane area ratio. Brain Res Bull 2025; 227:111373. [PMID: 40339995 DOI: 10.1016/j.brainresbull.2025.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/10/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Terahertz radiation at specific frequencies and energies can mediate cellular morphology or function changes by exciting nonlinear resonance effects in proteins or DNA. However, the effects of terahertz radiation on neuronal morphology and function are currently unknown, and the correlation between neuronal morphology and kinetic properties after terahertz radiation remains to be elucidated. In this paper, we first characterized the changes in neuronal morphology by the relative ratio of neuronal cytosol to protruding membrane area. Analyzed the pattern of the influence of terahertz radiation on neuronal morphology and the cumulative effect. On this basis, this paper constructs a kinetic model of neurons regulated by terahertz radiation, investigates the influence law of terahertz radiation on the kinetic properties of neurons, and analyzes the correlation between neuronal morphology and kinetic properties. The results showed that terahertz radiation caused a decrease in the membrane area ratio of neuronal cytosol to protrusion, and this effect started on the first day of terahertz radiation and lasted until the end of terahertz radiation; terahertz radiation changed the neuronal discharge pattern by decreasing the membrane area ratio of neuronal cytosol to protrusion and lowered the frequency of neuronal inter-cluster discharges and amplitude of action potentials, and increased the neuronal intra-cluster discharge. In addition, terahertz radiation can increase the peak value of neuronal postsynaptic currents by decreasing the membrane area ratio. In summary, terahertz radiation can modulate neurons' morphology and change their firing patterns and kinetic properties by affecting their morphology. These predict that terahertz radiation at specific frequencies and energies can be developed as a novel, molecular-level neuromodulation technique for intervening or treating neuronal degenerative diseases.
Collapse
Affiliation(s)
- Shaoqing Ma
- School of Management Science and Information Engineering, Hebei University of Economics and Business, Shijiazhuang 050062, China; School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Siyu Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huan Wang
- School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China.
| | - Chengbiao Lu
- Henan International Key Laboratory for noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China; Pazhou Lab, Guangzhou 510330, China.
| |
Collapse
|
3
|
Chou CY, Wong HH, Guo C, Boukoulou KE, Huang C, Jannat J, Klimenko T, Li VY, Liang TA, Wu VC, Sjöström PJ. Principles of visual cortex excitatory microcircuit organization. Innovation (N Y) 2025; 6:100735. [PMID: 39872485 PMCID: PMC11763898 DOI: 10.1016/j.xinn.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025] Open
Abstract
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.
Collapse
Affiliation(s)
- Christina Y.C. Chou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hovy H.W. Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kiminou E. Boukoulou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Cleo Huang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Javid Jannat
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian Y. Li
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tasha A. Liang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian C. Wu
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
4
|
Sommer G, Rodríguez López C, Hirschkorn A, Calimano G, Marques-Lopes J, Milner TA, Glass MJ. Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause. BIOLOGY 2024; 13:819. [PMID: 39452127 PMCID: PMC11505520 DOI: 10.3390/biology13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure.
Collapse
Affiliation(s)
- Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Claudia Rodríguez López
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Adi Hirschkorn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Gianna Calimano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-HEALTH), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| |
Collapse
|
5
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
6
|
Schmidt CC, Tong R, Emptage NJ. GluN2A- and GluN2B-containing pre-synaptic N-methyl-d-aspartate receptors differentially regulate action potential-evoked Ca 2+ influx via modulation of SK channels. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230222. [PMID: 38853550 PMCID: PMC11343232 DOI: 10.1098/rstb.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) play a pivotal role in synaptic plasticity. While the functional role of post-synaptic NMDARs is well established, pre-synaptic NMDAR (pre-NMDAR) function is largely unexplored. Different pre-NMDAR subunit populations are documented at synapses, suggesting that subunit composition influences neuronal transmission. Here, we used electrophysiological recordings at Schaffer collateral-CA1 synapses partnered with Ca2+ imaging and glutamate uncaging at boutons of CA3 pyramidal neurones to reveal two populations of pre-NMDARs that contain either the GluN2A or GluN2B subunit. Activation of the GluN2B population decreases action potential-evoked Ca2+ influx via modulation of small-conductance Ca2+-activated K+ channels, while activation of the GluN2A population does the opposite. Critically, the level of functional expression of the subunits is subject to homeostatic regulation, bidirectionally affecting short-term facilitation, thus providing a capacity for a fine adjustment of information transfer. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Carla C. Schmidt
- Department of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
- Montreal Neurological Institute, 3801 University Street, Montreal, QuebecH3A 2B4, Canada
| | - Nigel J. Emptage
- Department of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| |
Collapse
|
7
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
8
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
9
|
Wong HHW, Watt AJ, Sjöström PJ. Synapse-specific burst coding sustained by local axonal translation. Neuron 2024; 112:264-276.e6. [PMID: 37944518 DOI: 10.1016/j.neuron.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 11/12/2023]
Abstract
Neurotransmission in the brain is unreliable, suggesting that high-frequency spike bursts rather than individual spikes carry the neural code. For instance, cortical pyramidal neurons rely on bursts in memory formation. Protein synthesis is another key factor in long-term synaptic plasticity and learning but is widely considered unnecessary for synaptic transmission. Here, however, we show that burst neurotransmission at synapses between neocortical layer 5 pyramidal cells depends on axonal protein synthesis linked to presynaptic NMDA receptors and mTOR. We localized protein synthesis to axons with laser axotomy and puromycylation live imaging. We whole-cell recorded connected neurons to reveal how translation sustained readily releasable vesicle pool size and replenishment rate. We live imaged axons and found sparsely docked RNA granules, suggesting synapse-specific regulation. In agreement, translation boosted neurotransmission onto excitatory but not inhibitory basket or Martinotti cells. Local axonal mRNA translation is thus a hitherto unappreciated principle for sustaining burst coding at specific synapse types.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada.
| | - Alanna J Watt
- Biology Department, McGill University, Montreal, QC H3G 0B1, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
10
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
11
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
12
|
Cheng X, Tang Y, Vidyadhara D, Li BZ, Zimmerman M, Pak A, Nareddula S, Edens PA, Chandra SS, Chubykin AA. Impaired pre-synaptic plasticity and visual responses in auxilin-knockout mice. iScience 2023; 26:107842. [PMID: 37766983 PMCID: PMC10520332 DOI: 10.1016/j.isci.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - D.J. Vidyadhara
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Electrical Engineering, University of Colorado, Denver, Denver, CO, USA
| | - Michael Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Alyssa Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| | - Alexander A. Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Watanabe A, Guo C, Sjöström PJ. The developmental profile of visual cortex astrocytes. iScience 2023; 26:106828. [PMID: 37250801 PMCID: PMC10212985 DOI: 10.1016/j.isci.2023.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
We investigated how astrocytes in layer 5 mouse visual cortex mature over postnatal days (P) 3-50. Across this age range, resting membrane potential increased, input resistance decreased, and membrane responses became more passive with age. Two-photon (2p) and confocal imaging of dye-loaded cells revealed that gap-junction coupling increased starting ∼P7. Morphological reconstructions revealed increased branch density but shorter branches after P20, suggesting that astrocyte branches may get pruned as tiling is established. Finally, we visualized spontaneous Ca2+ transients with 2p microscopy and found that Ca2+ events decorrelated, became more frequent and briefer with age. As astrocytes mature, spontaneous Ca2+ activity thus changes from relatively cell-wide, synchronous waves to local transients. Several astrocyte properties were stably mature from ∼P15, coinciding with eye opening, although morphology continued to develop. Our findings provide a descriptive foundation of astrocyte maturation, useful for the study of astrocytic impact on visual cortex critical period plasticity.
Collapse
Affiliation(s)
- Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, Irving Ludmer Building, McGill University, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Department of Anatomy and Cell Biology, Faculty of Science, McGill University, Strathcona Anatomy and Dentistry Building, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Per Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
14
|
Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A. Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 2023:S0166-2236(23)00105-4. [PMID: 37202300 DOI: 10.1016/j.tins.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity. Although GABAergic inhibition has classically been implicated in closing windows of plasticity, astrocytes and adenosinergic inhibition have also emerged more recently as key determinants of the duration of these periods of plasticity. Here, we review novel aspects of the involvement of GABAergic inhibition, the possible role of presynaptic NMDARs, and the emerging roles of astrocytes and adenosinergic inhibition in determining the duration of windows of plasticity in different brain regions.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - José Prius-Mengual
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
15
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
16
|
Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sci 2023; 13:brainsci13040686. [PMID: 37190651 DOI: 10.3390/brainsci13040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Terahertz waves lie within the rotation and oscillation energy levels of biomolecules, and can directly couple with biomolecules to excite nonlinear resonance effects, thus causing conformational or configuration changes in biomolecules. Based on this mechanism, we investigated the effect pattern of 0.138 THz radiation on the dynamic growth of neurons and synaptic transmission efficiency, while explaining the phenomenon at a more microscopic level. We found that cumulative 0.138 THz radiation not only did not cause neuronal death, but that it promoted the dynamic growth of neuronal cytosol and protrusions. Additionally, there was a cumulative effect of terahertz radiation on the promotion of neuronal growth. Furthermore, in electrophysiological terms, 0.138 THz waves improved synaptic transmission efficiency in the hippocampal CA1 region, and this was a slow and continuous process. This is consistent with the morphological results. This phenomenon can continue for more than 10 min after terahertz radiation ends, and these phenomena were associated with an increase in dendritic spine density. In summary, our study shows that 0.138 THz waves can modulate dynamic neuronal growth and synaptic transmission. Therefore, 0.138 terahertz waves may become a novel neuromodulation technique for modulating neuron structure and function.
Collapse
Affiliation(s)
- Shaoqing Ma
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Zhiwei Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shixiang Gong
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Chengbiao Lu
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
18
|
Küpper M, Porath K, Sellmann T, Bien CG, Köhling R, Kirschstein T. GluN2B inhibition rescues impaired potentiation and epileptogenicity at associational-commissural CA3 synapses in a model of anti-NMDAR encephalitis. Neurosci Lett 2023; 795:137031. [PMID: 36574811 DOI: 10.1016/j.neulet.2022.137031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune epilepsy associated with memory deficits. Research has demonstrated that anti-NMDAR inhibit long-term potentiation, and, at the same time, lead to disinhibition in the form of epileptiform afterpotentials in the potentiated state. While both effects may give rise to the key symptoms of the disease, the molecular basis of being simultaneously inhibitory and disinhibitory is difficult to explain. Here, we explored a possible involvement of the GluN2B subunit. To this aim, we injected cerebrospinal fluid from anti-NMDAR encephalitis patients into the rat hippocampus and prepared brain slices for in vitro field potential recordings. Associational-commissural-fiber-CA3 synapses from anti-NMDAR-treated animals showed increased field potential amplitudes with concomitantly enhanced paired-pulse ratios as compared to control tissue. GluN2B inhibition by Ro25-6981 mimicked these effects in controls but had no effect in anti-NMDAR tissues indicating a presynaptic and occluding effect of anti-NMDAR. We then induced potentiation of associational-commissural-fiber-CA3 synapses, and confirmed that slices from anti-NMDAR-treated animals showed reduced potentiation and pronounced epileptiform afterpotentials. Intriguingly, both effects were absent when Ro25-6981 was added in vitro before inducing potentiation. These results indicate that GluN2B-containing NMDARs, partially expressed presynaptically, show differential sensitivity to anti-NMDAR, and that altered GluN2B function is particularly apparent in the potentiated state rather than under baseline conditions. Since GluN2B inhibition rescued the effects of anti-NMDAR in the potentiated state, this opens the possibility that at least a subgroup of patients could benefit from a GluN2B antagonist.
Collapse
Affiliation(s)
- Maraike Küpper
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Medical School, Bielefeld, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Germany.
| |
Collapse
|
19
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
20
|
Shaoqing M, Zhiwei L, Shixiang G, Chengbiao L, Xiaoli L, Yingwei L. The laws and effects of terahertz wave interactions with neurons. Front Bioeng Biotechnol 2023; 11:1147684. [PMID: 37180041 PMCID: PMC10170412 DOI: 10.3389/fbioe.2023.1147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Terahertz waves lie within the energy range of hydrogen bonding and van der Waals forces. They can couple directly with proteins to excite non-linear resonance effects in proteins, and thus affect the structure of neurons. However, it remains unclear which terahertz radiation protocols modulate the structure of neurons. Furthermore, guidelines and methods for selecting terahertz radiation parameters are lacking. Methods: In this study, the propagation and thermal effects of 0.3-3 THz wave interactions with neurons were modelled, and the field strength and temperature variations were used as evaluation criteria. On this basis, we experimentally investigated the effects of cumulative radiation from terahertz waves on neuron structure. Results: The results show that the frequency and power of terahertz waves are the main factors influencing field strength and temperature in neurons, and that there is a positive correlation between them. Appropriate reductions in radiation power can mitigate the rise in temperature in the neurons, and can also be used in the form of pulsed waves, limiting the duration of a single radiation to the millisecond level. Short bursts of cumulative radiation can also be used. Broadband trace terahertz (0.1-2 THz, maximum radiated power 100 μW) with short duration cumulative radiation (3 min/day, 3 days) does not cause neuronal death. This radiation protocol can also promote the growth of neuronal cytosomes and protrusions. Discussion: This paper provides guidelines and methods for terahertz radiation parameter selection in the study of terahertz neurobiological effects. Additionally, it verifies that the short-duration cumulative radiation can modulate the structure of neurons.
Collapse
Affiliation(s)
- Ma Shaoqing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Li Zhiwei
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Gong Shixiang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Lu Chengbiao
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Xiaoli
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Yingwei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| |
Collapse
|
21
|
Fang ZH, Liao HL, Tang QF, Liu YJ, Zhang YY, Lin J, Yu HP, Zhou C, Li CJ, Liu F, Shen JF. Interactions Among Non-Coding RNAs and mRNAs in the Trigeminal Ganglion Associated with Neuropathic Pain. J Pain Res 2022; 15:2967-2988. [PMID: 36171980 PMCID: PMC9512292 DOI: 10.2147/jpr.s382692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies have demonstrated the contribution of non-coding RNAs (ncRNAs) to neuropathic pain. However, the expression profile of ncRNAs in the trigeminal ganglion (TG) and their functional mechanism underlying trigeminal neuropathic pain are still unclear. Methods In the present study, the trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve (CCI-ION) was used to study the expression profile and potential regulatory mechanism of miRNAs, lncRNAs, circRNAs, and mRNAs in the TG by RNA-sequencing (RNA-seq) and bioinformatics analysis. CCI-ION mice suffered from mechanical allodynia from 3 days to 28 days after surgery. Results The RNA-seq results discovered 67 miRNAs, 216 lncRNAs, 14 circRNAs, 595 mRNAs, and 421 genes were differentially expressed (DE) in the TG of CCI-ION mice 7 days after surgery. And 39 DEGs were known pain genes. Besides, 5 and 35 pain-related DE mRNAs could be targeted by 6 DE miRNAs and 107 DE lncRNAs, respectively. And 23 pain-related DEGs had protein–protein interactions (PPI) with each other. GO analysis indicated membrane-related cell components and binding-related molecular functions were significantly enriched. KEGG analysis showed that nociception-related signaling pathways were significantly enriched for DE ncRNAs and DEGs. Finally, the competing endogenous RNA (ceRNA) regulatory network of DE lncRNA/DE circRNA-DE miRNA-DE mRNA existed in the TG of mice with trigeminal neuropathic pain. Conclusion Our findings demonstrate ncRNAs are involved in the development of trigeminal neuropathic pain, possibly through the ceRNA mechanism, which brings a new bright into the study of trigeminal neuropathic pain and the development of novel treatments targeting ncRNAs.
Collapse
Affiliation(s)
- Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qing-Feng Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hao-Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
22
|
Leonardon B, Cathenaut L, Vial-Markiewicz L, Hugel S, Schlichter R, Inquimbert P. Modulation of GABAergic Synaptic Transmission by NMDA Receptors in the Dorsal Horn of the Spinal Cord. Front Mol Neurosci 2022; 15:903087. [PMID: 35860500 PMCID: PMC9289521 DOI: 10.3389/fnmol.2022.903087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal horn (DH) of the spinal cord is an important structure involved in the integration of nociceptive messages. Plastic changes in the properties of neuronal networks in the DH underlie the development of analgesia as well as of hyperalgesia and allodynia in acute and chronic pain states. Two key mechanisms are involved in these chronic pain states: increased electrical activities and glutamate release leading to the recruitment of NMDAr and plastic changes in the synaptic inhibition. Although: (1) the balance between excitation and inhibition is known to play a critical role in the spinal network; and (2) plastic changes in spinal excitation and inhibition have been studied separately, the relationship between these two mechanisms has not been investigated in detail. In the present work, we addressed the role of NMDA receptors in the modulation of GABAergic synaptic transmission in the DH network. Using tight-seal whole-cell recordings on adult mice DH neurons, we characterized the effect of NMDAr activation on inhibitory synaptic transmission and more especially on the GABAergic one. Our results show that, in a subset of neurons recorded in lamina II, NMDAr activation facilitates spontaneous and miniature GABAergic synaptic transmission with a target specificity on GABAergic interneurons. In contrast, NMDA reduced the mean amplitude of evoked GABAergic IPSCs. These results show that NMDAr modulate GABAergic transmission by a presynaptic mechanism of action. Using a pharmacological approach, we investigated the composition of NMDAr involved in this modulation of GABAergic synaptic transmission. We found that the NMDA-induced facilitation was mediated by the activation of NMDAr containing GluN2C/D subunits. Altogether, our results bring new insights on nociceptive information processing in the spinal cord network and plastic changes in synaptic inhibition that could underlie the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Benjamin Leonardon
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lou Cathenaut
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Louise Vial-Markiewicz
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Perrine Inquimbert
| |
Collapse
|
23
|
Mizusaki BEP, Li SSY, Costa RP, Sjöström PJ. Pre- and postsynaptically expressed spike-timing-dependent plasticity contribute differentially to neuronal learning. PLoS Comput Biol 2022; 18:e1009409. [PMID: 35700188 PMCID: PMC9236267 DOI: 10.1371/journal.pcbi.1009409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/27/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
A plethora of experimental studies have shown that long-term synaptic plasticity can be expressed pre- or postsynaptically depending on a range of factors such as developmental stage, synapse type, and activity patterns. The functional consequences of this diversity are not clear, although it is understood that whereas postsynaptic expression of plasticity predominantly affects synaptic response amplitude, presynaptic expression alters both synaptic response amplitude and short-term dynamics. In most models of neuronal learning, long-term synaptic plasticity is implemented as changes in connective weights. The consideration of long-term plasticity as a fixed change in amplitude corresponds more closely to post- than to presynaptic expression, which means theoretical outcomes based on this choice of implementation may have a postsynaptic bias. To explore the functional implications of the diversity of expression of long-term synaptic plasticity, we adapted a model of long-term plasticity, more specifically spike-timing-dependent plasticity (STDP), such that it was expressed either independently pre- or postsynaptically, or in a mixture of both ways. We compared pair-based standard STDP models and a biologically tuned triplet STDP model, and investigated the outcomes in a minimal setting, using two different learning schemes: in the first, inputs were triggered at different latencies, and in the second a subset of inputs were temporally correlated. We found that presynaptic changes adjusted the speed of learning, while postsynaptic expression was more efficient at regulating spike timing and frequency. When combining both expression loci, postsynaptic changes amplified the response range, while presynaptic plasticity allowed control over postsynaptic firing rates, potentially providing a form of activity homeostasis. Our findings highlight how the seemingly innocuous choice of implementing synaptic plasticity by single weight modification may unwittingly introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and postsynaptically expressed plasticity are not interchangeable, but enable complimentary functions. Differences between functional properties of pre- or postsynaptically expressed long-term plasticity have not yet been explored in much detail. In this paper, we used minimalist models of STDP with different expression loci, in search of fundamental functional consequences. Biologically, presynaptic expression acts mostly on neurotransmitter release, thereby altering short-term synaptic dynamics, whereas postsynaptic expression affects mainly synaptic gain. We compared models where plasticity was expressed only presynaptically or postsynaptically, or in both ways. We found that postsynaptic plasticity had a bigger impact over response times, while both pre- and postsynaptic plasticity were similarly capable of detecting correlated inputs. A model with biologically tuned expression of plasticity achieved the same outcome over a range of frequencies. Also, postsynaptic spiking frequency was not directly affected by presynaptic plasticity of short-term plasticity alone, however in combination with a postsynaptic component, it helped restrain positive feedback, contributing to activity homeostasis. In conclusion, expression locus may determine affinity for distinct coding schemes while also contributing to keep activity within bounds. Our findings highlight the importance of carefully implementing expression of plasticity in biological modelling, since the locus of expression may affect functional outcomes in simulations.
Collapse
Affiliation(s)
- Beatriz Eymi Pimentel Mizusaki
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Programme, Departments of Medicine, Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Sally Si Ying Li
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Programme, Departments of Medicine, Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
- Department of Physiology, University of Bern, Bern, Switzerland
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Per Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Programme, Departments of Medicine, Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Sanderson TM, Ralph LT, Amici M, Ng AN, Kaang BK, Zhuo M, Kim SJ, Georgiou J, Collingridge GL. Selective Recruitment of Presynaptic and Postsynaptic Forms of mGluR-LTD. Front Synaptic Neurosci 2022; 14:857675. [PMID: 35615440 PMCID: PMC9126322 DOI: 10.3389/fnsyn.2022.857675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 μM) or a high (100 μM) concentration of (RS)-DHPG. We found that 30 μM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 μM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Thomas M. Sanderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Liam T. Ralph
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mascia Amici
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Jeong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- *Correspondence: Graham L. Collingridge,
| |
Collapse
|
25
|
Dedek A, Hildebrand ME. Advances and Barriers in Understanding Presynaptic N-Methyl-D-Aspartate Receptors in Spinal Pain Processing. Front Mol Neurosci 2022; 15:864502. [PMID: 35431805 PMCID: PMC9008455 DOI: 10.3389/fnmol.2022.864502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, N-methyl-D-aspartate (NMDA) receptors have been known to play a critical role in the modulation of both acute and chronic pain. Of particular interest are NMDA receptors expressed in the superficial dorsal horn (SDH) of the spinal cord, which houses the nociceptive processing circuits of the spinal cord. In the SDH, NMDA receptors undergo potentiation and increases in the trafficking of receptors to the synapse, both of which contribute to increases in excitability and plastic increases in nociceptive output from the SDH to the brain. Research efforts have primarily focused on postsynaptic NMDA receptors, despite findings that presynaptic NMDA receptors can undergo similar plastic changes to their postsynaptic counterparts. Recent technological advances have been pivotal in the discovery of mechanisms of plastic changes in presynaptic NMDA receptors within the SDH. Here, we highlight these recent advances in the understanding of presynaptic NMDA receptor physiology and their modulation in models of chronic pain. We discuss the role of specific NMDA receptor subunits in presynaptic membranes of nociceptive afferents and local SDH interneurons, including their modulation across pain modalities. Furthermore, we discuss how barriers such as lack of sex-inclusive research and differences in neurodevelopmental timepoints have complicated investigations into the roles of NMDA receptors in pathological pain states. A more complete understanding of presynaptic NMDA receptor function and modulation across pain states is needed to shed light on potential new therapeutic treatments for chronic pain.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael E. Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- *Correspondence: Michael E. Hildebrand,
| |
Collapse
|
26
|
Li Y, Cheng X, Liu X, Wang L, Ha J, Gao Z, He X, Wu Z, Chen A, Jewell LL, Sun Y. Treatment of Cerebral Ischemia Through NMDA Receptors: Metabotropic Signaling and Future Directions. Front Pharmacol 2022; 13:831181. [PMID: 35264964 PMCID: PMC8900870 DOI: 10.3389/fphar.2022.831181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive activation of N-methyl-d-aspartic acid (NMDA) receptors after cerebral ischemia is a key cause of ischemic injury. For a long time, it was generally accepted that calcium influx is a necessary condition for ischemic injury mediated by NMDA receptors. However, recent studies have shown that NMDA receptor signaling, independent of ion flow, plays an important role in the regulation of ischemic brain injury. The purpose of this review is to better understand the roles of metabotropic NMDA receptor signaling in cerebral ischemia and to discuss the research and development directions of NMDA receptor antagonists against cerebral ischemia. This mini review provides a discussion on how metabotropic transduction is mediated by the NMDA receptor, related signaling molecules, and roles of metabotropic NMDA receptor signaling in cerebral ischemia. In view of the important roles of metabotropic signaling in cerebral ischemia, NMDA receptor antagonists, such as GluN2B-selective antagonists, which can effectively block both pro-death metabotropic and pro-death ionotropic signaling, may have better application prospects.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Institute for the Development of Energy for African Sustainability, University of South Africa, Pretoria, South Africa.,Department of Chemical Engineering, University of South Africa, Florida, South Africa.,Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, China
| | - Xinying Liu
- Institute for the Development of Energy for African Sustainability, University of South Africa, Pretoria, South Africa
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Xiaoliang He
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhuo Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shanghai, China
| | - Linda L Jewell
- Department of Chemical Engineering, University of South Africa, Pretoria, South Africa
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
27
|
Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022; 210:109019. [PMID: 35278420 DOI: 10.1016/j.neuropharm.2022.109019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
NMDA receptors play vital roles in a broad array of essential brain functions, from synaptic transmission and plasticity to learning and memory. Historically, the fundamental roles of NMDARs were attributed to their specialized properties of ion flux. More recently, it has become clear that NMDARs also signal in an ion flux-independent manner. Here, we review these non-ionotropic NMDAR signaling mechanisms that have been reported to contribute to a broad array of neuronal functions and dysfunctions including synaptic transmission and plasticity, cell death and survival, and neurological disorders.
Collapse
Affiliation(s)
- Deborah K Park
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Ivar S Stein
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
28
|
Presynaptic NMDA Receptors Influence Ca2+ Dynamics by Interacting with Voltage-Dependent Calcium Channels during the Induction of Long-Term Depression. Neural Plast 2022; 2022:2900875. [PMID: 35178084 PMCID: PMC8844386 DOI: 10.1155/2022/2900875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
Spike-timing-dependent long-term depression (t-LTD) of glutamatergic layer (L)4-L2/3 synapses in developing neocortex requires activation of astrocytes by endocannabinoids (eCBs), which release glutamate onto presynaptic NMDA receptors (preNMDARs). The exact function of preNMDARs in this context is still elusive and strongly debated. To elucidate their function, we show that bath application of the eCB 2-arachidonylglycerol (2-AG) induces a preNMDAR-dependent form of chemically induced LTD (eCB-LTD) in L2/3 pyramidal neurons in the juvenile somatosensory cortex of rats. Presynaptic Ca2+ imaging from L4 spiny stellate axons revealed that action potential (AP) evoked Ca2+ transients show a preNMDAR-dependent broadening during eCB-LTD induction. However, blockade of voltage-dependent Ca2+ channels (VDCCs) did not uncover direct preNMDAR-mediated Ca2+ transients in the axon. This suggests that astrocyte-mediated glutamate release onto preNMDARs does not result in a direct Ca2+ influx, but that it instead leads to an indirect interaction with presynaptic VDCCs, boosting axonal Ca2+ influx. These results reveal one of the main remaining missing pieces in the signaling cascade of t-LTD at developing cortical synapses.
Collapse
|
29
|
Xie RG, Chu WG, Liu DL, Wang X, Ma SB, Wang F, Wang FD, Lin Z, Wu WB, Lu N, Liu YY, Han WJ, Zhang H, Bai ZT, Hu SJ, Tao HR, Kuner T, Zhang X, Kuner R, Wu SX, Luo C. Presynaptic NMDARs on spinal nociceptor terminals state-dependently modulate synaptic transmission and pain. Nat Commun 2022; 13:728. [PMID: 35132099 PMCID: PMC8821657 DOI: 10.1038/s41467-022-28429-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization. Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. Here, the authors show that also presynaptic NMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner.
Collapse
|
30
|
Inglebert Y, Debanne D. Calcium and Spike Timing-Dependent Plasticity. Front Cell Neurosci 2021; 15:727336. [PMID: 34616278 PMCID: PMC8488271 DOI: 10.3389/fncel.2021.727336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Since its discovery, spike timing-dependent synaptic plasticity (STDP) has been thought to be a primary mechanism underlying the brain's ability to learn and to form new memories. However, despite the enormous interest in both the experimental and theoretical neuroscience communities in activity-dependent plasticity, it is still unclear whether plasticity rules inferred from in vitro experiments apply to in vivo conditions. Among the multiple reasons why plasticity rules in vivo might differ significantly from in vitro studies is that extracellular calcium concentration use in most studies is higher than concentrations estimated in vivo. STDP, like many forms of long-term synaptic plasticity, strongly depends on intracellular calcium influx for its induction. Here, we discuss the importance of considering physiological levels of extracellular calcium concentration to study functional plasticity.
Collapse
Affiliation(s)
- Yanis Inglebert
- UNIS, UMR1072, INSERM, Aix-Marseille University, Marseille, France.,Department of Pharmacology and Therapeutics and Cell Information Systems, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
31
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
32
|
Obolenskaya M, Dotsenko V, Martsenyuk O, Ralchenko S, Krupko O, Pastukhov A, Filimonova N, Starosila D, Chernykh S, Borisova T. A new insight into mechanisms of interferon alpha neurotoxicity: Expression of GRIN3A subunit of NMDA receptors and NMDA-evoked exocytosis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110317. [PMID: 33785426 DOI: 10.1016/j.pnpbp.2021.110317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Neurological and psychiatric side effects accompany the high-dose interferon-alpha (IFNA) therapy. The primary genes responsible for these complications are mostly unknown. Our genome-wide search in mouse and rat genomes for the conservative genes containing IFN-stimulated response elements (ISRE) in their promoters revealed a new potential target gene of IFNA, Grin3α, which encodes the 3A subunit of NMDA receptor. This study aimed to explore the impact of IFNA on the expression of Grin3α and Ifnα genes and neurotransmitters endo/exocytosis in the mouse brain. We administered recombinant human IFN-alpha 2b (rhIFN-α2b) intracranially, and 24 h later, we isolated six brain regions and used the samples for RT-qPCR and western blot analysis. Synaptosomes were isolated from the cortex to analyze endo/exocytosis with acridine orange and L-[14C]glutamate. IFNA induced an increase in Grin3α mRNA and GRIN3A protein, but a decrease in Ifnα mRNA and protein. IFNA did not affect the accumulation and distribution of L-[14C]glutamate and acridine orange between synaptosomes and the extra-synaptosomal space. It caused the more significant acridine orange release activated by NMDA or glutamate than from control mice's synaptosomes. In response to IFNA, the newly discovered association between elevated Grin3α expression and NMDA- and glutamate-evoked neurotransmitters release from synaptosomes implies a new molecular mechanism of IFNA neurotoxicity.
Collapse
Affiliation(s)
- M Obolenskaya
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine.
| | - V Dotsenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Martsenyuk
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - S Ralchenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Krupko
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - N Filimonova
- Educational and scientific center "Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine
| | - D Starosila
- State Institution LV. Gromashevskiy Institute of Epidemiology and Infectious Diseases of the National Academy of Medical Sciences of, Kyiv, Ukraine
| | - S Chernykh
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| |
Collapse
|
33
|
NMDA receptors elicit flux-independent intracellular Ca 2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium 2021; 99:102454. [PMID: 34454368 DOI: 10.1016/j.ceca.2021.102454] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022]
Abstract
The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO and trigger neurovascular coupling (NVC). Neuronal and glial NMDARs may also operate in a flux-independent manner, although it is unclear whether their non-ionotropic mode of action is involved in NVC. Recently, endothelial NMDARs were found to trigger Ca2+-dependent NO production and induce NVC, but the underlying mode of signaling remains elusive. Herein, we report that GluN1 protein, as well as GluN2C and GluN3B transcripts and proteins, were expressed and that NMDA did not elicit inward currents, but induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in the human brain microvascular endothelial cell line, hCMEC/D3. A multidisciplinary approach, including live cell imaging, whole-cell patch-clamp recordings, pharmacological manipulation and gene targeting, revealed that NMDARs increase the [Ca2+]i in a flux-independent manner in hCMEC/D3 cells. The Ca2+ response to NMDA was triggered by endogenous Ca2+ release from the endoplasmic reticulum and the lysosomal Ca2+ stores and sustained by store-operated Ca2+ entry. Unexpectedly, pharmacological and genetic blockade of mGluR1 and mGluR5 dramatically impaired NMDARs-mediated Ca2+ signals. These findings indicate that NMDARs may increase the endothelial [Ca2+]i in a flux-independent manner via group 1 mGluRs. However, imaging of DAF-FM fluorescence revealed that NMDARs may also induce Ca2+-dependent NO release by signaling in a flux-dependent manner. These findings, therefore, shed novel light on the mechanisms whereby brain microvascular endothelium decodes glutamatergic signaling and regulates NVC.
Collapse
|
34
|
Falcón-Moya R, Martínez-Gallego I, Rodríguez-Moreno A. Kainate receptor modulation of glutamatergic synaptic transmission in the CA2 region of the hippocampus. J Neurochem 2021; 158:1083-1093. [PMID: 34293825 DOI: 10.1111/jnc.15481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Kainate (KA) receptors (KARs) are important modulators of synaptic transmission. We studied here the role of KARs on glutamatergic synaptic transmission in the CA2 region of the hippocampus where the actions of these receptors are unknown. We observed that KA depresses glutamatergic synaptic transmission at Schaffer collateral-CA2 synapses; an effect that was antagonized by NBQX (a KA/AMPA receptors antagonist) under condition where AMPA receptors were previously blocked. The study of paired-pulse facilitation ratio, miniature responses, and fluctuation analysis indicated a presynaptic locus of action for KAR. Additionally, we determined the action mechanism for this depression of glutamate release mediated by the activation of KARs. We found that inhibition of protein kinase A suppressed the effect of KAR activation on evoked excitatory post-synaptic current, an effect that was not suppressed by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was not present, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR-mediated depression of glutamate release was not suppressed by treatments that affect calcium entry trough voltage-dependent calcium channels or calcium release from intracellular stores. We conclude that KARs present at these synapses mediate a depression of glutamate release through a mechanism that involves the activation of G protein and protein kinase A.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Irene Martínez-Gallego
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
35
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
36
|
Wong HHW, Camiré O, Sjöström PJ. The secret life of memory receptors. eLife 2021; 10:71178. [PMID: 34259634 PMCID: PMC8279758 DOI: 10.7554/elife.71178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical hippocampal NMDA memory receptor also controls the release of the transmitter glutamate and the growth factor BDNF.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Olivier Camiré
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
37
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
38
|
Lituma PJ, Kwon HB, Alviña K, Luján R, Castillo PE. Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. eLife 2021; 10:e66612. [PMID: 34061025 PMCID: PMC8186907 DOI: 10.7554/elife.66612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Neurotransmitter release is a highly controlled process by which synapses can critically regulate information transfer within neural circuits. While presynaptic receptors - typically activated by neurotransmitters and modulated by neuromodulators - provide a powerful way of fine-tuning synaptic function, their contribution to activity-dependent changes in transmitter release remains poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at mossy fiber boutons in the rodent hippocampus can be activated by physiologically relevant patterns of activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs facilitate brain-derived neurotrophic factor release and contribute to presynaptic calcium rise. Taken together, our results indicate that by increasing presynaptic calcium, preNMDARs fine-tune mossy fiber neurotransmission and can control information transfer during dentate granule cell burst activity that normally occur in vivo.
Collapse
Affiliation(s)
- Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hyung-Bae Kwon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La ManchaAlbaceteSpain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
39
|
Kesner P, Schohl A, Warren EC, Ma F, Ruthazer ES. Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development. Cell Rep 2021; 32:107955. [PMID: 32726620 DOI: 10.1016/j.celrep.2020.107955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
To study contributions of N-methyl-D-aspartate receptors (NMDARs) in presynaptic and postsynaptic neurons of the developing visual system, we microinject antisense Morpholino oligonucleotide (MO) against GluN1 into one cell of two-cell-stage Xenopus laevis embryos. The resulting bilateral segregation of MO induces postsynaptic NMDAR (postNMDAR) knockdown in tectal neurons on one side and presynaptic NMDAR (preNMDAR) knockdown in ganglion cells projecting to the other side. PostNMDAR knockdown reduces evoked NMDAR- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated retinotectal currents. Although the frequency of spontaneous synaptic events is increased, the probability of evoked release is reduced. PreNMDAR knockdown results in larger evoked and unitary synaptic responses. Structurally, postNMDAR and preNMDAR knockdown produce complementary effects. Axonal arbor complexity is reduced by preNMDAR-MO and increased by postNMDAR-MO, whereas tectal dendritic arbors exhibit the inverse. The current study illustrates distinct roles for pre- and postNMDARs in circuit development and reveals extensive transsynaptic regulation of form and function.
Collapse
Affiliation(s)
- Philip Kesner
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Anne Schohl
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Elodie C Warren
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Fan Ma
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada.
| |
Collapse
|
40
|
Chen QY, Li XH, Lu JS, Liu Y, Lee JHA, Chen YX, Shi W, Fan K, Zhuo M. NMDA GluN2C/2D receptors contribute to synaptic regulation and plasticity in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:60. [PMID: 33766086 PMCID: PMC7995764 DOI: 10.1186/s13041-021-00744-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION N-Methyl-D-aspartate receptors (NMDARs) play a critical role in different forms of plasticity in the central nervous system. NMDARs are always assembled in tetrameric form, in which two GluN1 subunits and two GluN2 and/or GluN3 subunits combine together. Previous studies focused mainly on the hippocampus. The anterior cingulate cortex (ACC) is a key cortical region for sensory and emotional functions. NMDAR GluN2A and GluN2B subunits have been previously investigated, however much less is known about the GluN2C/2D subunits. RESULTS In the present study, we found that the GluN2C/2D subunits are expressed in the pyramidal cells of ACC of adult mice. Application of a selective antagonist of GluN2C/2D, (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl) piperazine-2,3-dicarboxylic acid (UBP145), significantly reduced NMDAR-mediated currents, while synaptically evoked EPSCs were not affected. UBP145 affected neither the postsynaptic long-term potentiation (post-LTP) nor the presynaptic LTP (pre-LTP). Furthermore, the long-term depression (LTD) was also not affected by UBP145. Finally, both UBP145 decreased the frequency of the miniature EPSCs (mEPSCs) while the amplitude remained intact, suggesting that the GluN2C/2D may be involved in presynaptic regulation of spontaneous glutamate release. CONCLUSIONS Our results provide direct evidence that the GluN2C/2D contributes to evoked NMDAR mediated currents and mEPSCs in the ACC, which may have significant physiological implications.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Yinglu Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Jung-Hyun Alex Lee
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Yu-Xin Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China. .,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China. .,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.
| |
Collapse
|
41
|
Kuhlmann N, Wagner Valladolid M, Quesada-Ramírez L, Farrer MJ, Milnerwood AJ. Chronic and Acute Manipulation of Cortical Glutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Front Cell Neurosci 2021; 15:569031. [PMID: 33679324 PMCID: PMC7930618 DOI: 10.3389/fncel.2021.569031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In contrast to the prenatal topographic development of sensory cortices, striatal circuit organization is slow and requires the functional maturation of cortical and thalamic excitatory inputs throughout the first postnatal month. While mechanisms regulating synapse development and plasticity are quite well described at excitatory synapses of glutamatergic neurons in the neocortex, comparatively little is known of how this translates to glutamate synapses onto GABAergic neurons in the striatum. Here we investigate excitatory striatal synapse plasticity in an in vitro system, where glutamate can be studied in isolation from dopamine and other neuromodulators. We examined pre-and post-synaptic structural and functional plasticity in GABAergic striatal spiny projection neurons (SPNs), co-cultured with glutamatergic cortical neurons. After synapse formation, medium-term (24 h) TTX silencing increased the density of filopodia, and modestly decreased dendritic spine density, when assayed at 21 days in vitro (DIV). Spine reductions appeared to require residual spontaneous activation of ionotropic glutamate receptors. Conversely, chronic (14 days) TTX silencing markedly reduced spine density without any observed increase in filopodia density. Time-dependent, biphasic changes to the presynaptic marker Synapsin-1 were also observed, independent of residual spontaneous activity. Acute silencing (3 h) did not affect presynaptic markers or postsynaptic structures. To induce rapid, activity-dependent plasticity in striatal neurons, a chemical NMDA receptor-dependent “long-term potentiation (LTP)” paradigm was employed. Within 30 min, this increased spine and GluA1 cluster densities, and the percentage of spines containing GluA1 clusters, without altering the presynaptic signal. The results demonstrate that the growth and pruning of dendritic protrusions is an active process, requiring glutamate receptor activity in striatal projection neurons. Furthermore, NMDA receptor activation is sufficient to drive glutamatergic structural plasticity in SPNs, in the absence of dopamine or other neuromodulators.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucía Quesada-Ramírez
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Calmodulin Bidirectionally Regulates Evoked and Spontaneous Neurotransmitter Release at Retinal Ribbon Synapses. eNeuro 2021; 8:ENEURO.0257-20.2020. [PMID: 33293457 PMCID: PMC7808332 DOI: 10.1523/eneuro.0257-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
For decades, a role for the Ca2+-binding protein calmodulin (CaM) in Ca2+-dependent presynaptic modulation of synaptic transmission has been recognized. Here, we investigated the influence of CaM on evoked and spontaneous neurotransmission at rod bipolar (RB) cell→AII amacrine cell synapses in the mouse retina. Our work was motivated by the observations that expression of CaM in RB axon terminals is extremely high and that [Ca2+] in RB terminals normally rises sufficiently to saturate endogenous buffers, making tonic CaM activation likely. Taking advantage of a model in which RBs can be stimulated by expressed channelrhodopsin-2 (ChR2) to avoid dialysis of the presynaptic terminal, we found that inhibition of CaM dramatically decreased evoked release by inhibition of presynaptic Ca channels while at the same time potentiating both Ca2+-dependent and Ca2+-independent spontaneous release. Remarkably, inhibition of myosin light chain kinase (MLCK), but not other CaM-dependent targets, mimicked the effects of CaM inhibition on evoked and spontaneous release. Importantly, initial antagonism of CaM occluded the effect of subsequent inhibition of MLCK on spontaneous release. We conclude that CaM, by acting through MLCK, bidirectionally regulates evoked and spontaneous release at retinal ribbon synapses.
Collapse
|
43
|
Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: there's no coincidence. J Physiol 2020; 599:367-387. [PMID: 33141440 DOI: 10.1113/jp280059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short-term and long-term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse-type-specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Sabine Rannio
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Victoria Jones
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Aurore Thomazeau
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - P Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
44
|
Manninen T, Saudargiene A, Linne ML. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Comput Biol 2020; 16:e1008360. [PMID: 33170856 PMCID: PMC7654831 DOI: 10.1371/journal.pcbi.1008360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes have been shown to modulate synaptic transmission and plasticity in specific cortical synapses, but our understanding of the underlying molecular and cellular mechanisms remains limited. Here we present a new biophysicochemical model of a somatosensory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-dependent long-term depression (t-LTD) in vivo. By applying the synapse model and electrophysiological data recorded from rodent somatosensory cortex, we show that a signal from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signaling, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling, induces t-LTD which is sensitive to the temporal difference between post- and presynaptic firing. We predict for the first time the dynamics of astrocyte-mediated molecular mechanisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynaptic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sensory processing with slow non-neuronal processing to modulate synaptic properties in the brain. Our results suggest that astrocytes play a critical role in synaptic computation during postnatal development and are of paramount importance in guiding the development of brain circuit functions, learning and memory.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
45
|
Taylor CP, Harris EW. Analgesia with Gabapentin and Pregabalin May Involve N-Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. J Pharmacol Exp Ther 2020; 374:161-174. [PMID: 32321743 DOI: 10.1124/jpet.120.266056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 03/08/2025] Open
Abstract
The gabapentinoid drugs gabapentin and pregabalin (Neurontin and Lyrica) are mainstay treatments for neuropathic pain and preventing focal seizures. Both drugs have similar effects to each other in animal models and clinically. Studies have shown that a protein first identified as an auxiliary subunit of voltage-gated calcium channels (the α 2 δ-subunit type 1 [α 2 δ-1], or Ca V a2d1) is the high-affinity binding site for gabapentin and pregabalin and is required for the efficacy of these drugs. The α 2 δ-1 protein is required for the ability of gabapentin and pregabalin to reduce neurotransmitter release in neuronal tissue, consistent with a therapeutic mechanism of action via voltage-gated calcium channels. However, recent studies have revealed that α 2 δ-1 interacts with several proteins in addition to voltage-gated calcium channels, and these additional proteins could be involved in gabapentinoid pharmacology. Furthermore, gabapentin and pregabalin have been shown to modify the action of a subset of N-methyl-d-aspartate-sensitive glutamate receptors, neurexin-1α, and thrombospondin proteins by binding to α 2 δ-1. Thus, these effects may contribute substantially to gabapentinoid therapeutic mechanism of action. SIGNIFICANCE STATEMENT: It is widely believed that gabapentin and pregabalin act by modestly reducing the membrane localization and activation of voltage-gated calcium channels at synaptic endings in spinal cord and neocortex via binding to the α 2 δ-1 protein. However, recent findings show that the α 2 δ-1 protein also interacts with N-methyl-d-aspartate-sensitive glutamate receptors, neurexin-1α, thrombospondins (adhesion molecules), and other presynaptic proteins. These newly discovered interactions, in addition to actions at calcium channels, may be important mediators of gabapentin and pregabalin therapeutic effects.
Collapse
Affiliation(s)
- Charles P Taylor
- CP Taylor Consulting, Chelsea, Michigan (C.P.T.) and Cambrium Group, Raleigh, North Carolina (E.W.H.)
| | - Eric W Harris
- CP Taylor Consulting, Chelsea, Michigan (C.P.T.) and Cambrium Group, Raleigh, North Carolina (E.W.H.)
| |
Collapse
|
46
|
Horvath PM, Piazza MK, Monteggia LM, Kavalali ET. Spontaneous and evoked neurotransmission are partially segregated at inhibitory synapses. eLife 2020; 9:52852. [PMID: 32401197 PMCID: PMC7250572 DOI: 10.7554/elife.52852] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Synaptic transmission is initiated via spontaneous or action-potential evoked fusion of synaptic vesicles. At excitatory synapses, glutamatergic receptors activated by spontaneous and evoked neurotransmission are segregated. Although inhibitory synapses also transmit signals spontaneously or in response to action potentials, they differ from excitatory synapses in both structure and function. Therefore, we hypothesized that inhibitory synapses may have different organizing principles. We report picrotoxin, a GABAAR antagonist, blocks neurotransmission in a use-dependent manner at rat hippocampal synapses and therefore can be used to interrogate synaptic properties. Using this tool, we uncovered partial segregation of inhibitory spontaneous and evoked neurotransmission. We found up to 40% of the evoked response is mediated through GABAARs which are only activated by evoked neurotransmission. These data indicate GABAergic spontaneous and evoked neurotransmission processes are partially non-overlapping, suggesting they may serve divergent roles in neuronal signaling.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States.,Neuroscience Program, Vanderbilt University, Nashville, United States
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| |
Collapse
|
47
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
48
|
Brock JA, Thomazeau A, Watanabe A, Li SSY, Sjöström PJ. A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:11. [PMID: 32292337 PMCID: PMC7118219 DOI: 10.3389/fnsyn.2020.00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
Long-term synaptic plasticity is widely believed to underlie learning and memory in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has been the subject of considerable debate for many decades. More recently, it is generally agreed that the locus of plasticity depends on a number of factors, such as developmental stage, induction protocol, and synapse type. Since presynaptic expression alters not just the gain but also the short-term dynamics of a synapse, whereas postsynaptic expression only modifies the gain, the locus has fundamental implications for circuits dynamics and computations in the brain. It therefore remains crucial for our understanding of neuronal circuits to know the locus of expression of long-term plasticity. One classical method for elucidating whether plasticity is pre- or postsynaptically expressed is based on analysis of the coefficient of variation (CV), which serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a practical guide to using CV analysis for the purposes of exploring the locus of expression of long-term plasticity, primarily aimed at beginners in the field. We provide relatively simple intuitive background to an otherwise theoretically complex approach as well as simple mathematical derivations for key parametric relationships. We list important pitfalls of the method, accompanied by accessible computer simulations to better illustrate the problems (downloadable from GitHub), and we provide straightforward solutions for these issues.
Collapse
Affiliation(s)
- Jennifer A Brock
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Aurore Thomazeau
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sally Si Ying Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
49
|
Delatour LC, Yeh PWL, Yeh HH. Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cereb Cortex 2020; 30:1735-1751. [PMID: 31647550 PMCID: PMC7132917 DOI: 10.1093/cercor/bhz199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses a range of cognitive and behavioral deficits, with aberrances in the function of cerebral cortical pyramidal neurons implicated in its pathology. However, the mechanisms underlying these aberrances, including whether they persist well beyond ethanol exposure in utero, remain to be explored. We addressed these issues by employing a mouse model of FASD in which pregnant mice were exposed to binge-type ethanol from embryonic day 13.5 through 16.5. In both male and female offspring (postnatal day 28-32), whole-cell patch clamp recording of layer V/VI somatosensory cortex pyramidal neurons revealed increases in the frequency of excitatory and inhibitory postsynaptic currents. Furthermore, expressing channelrhodopsin in either GABAergic interneurons (Nkx2.1Cre-Ai32) or glutamatergic pyramidal neurons (Emx1IRES Cre-Ai32) revealed a shift in optically evoked paired-pulse ratio. These findings are consistent with an excitatory-inhibitory imbalance with prenatal ethanol exposure due to diminished inhibitory but enhanced excitatory synaptic strength. Prenatal ethanol exposure also altered the density and morphology of spines along the apical dendrites of pyramidal neurons. Thus, while both presynaptic and postsynaptic mechanisms are affected following prenatal exposure to ethanol, there is a prominent presynaptic component that contributes to altered inhibitory and excitatory synaptic transmission in the somatosensory cortex.
Collapse
Affiliation(s)
- Laurie C Delatour
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
50
|
Zhou L, Flores J, Noël A, Beauchet O, Sjöström PJ, LeBlanc AC. Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Acta Neuropathol Commun 2019; 7:210. [PMID: 31843022 PMCID: PMC6915996 DOI: 10.1186/s40478-019-0856-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Activated Caspase-6 (Casp6) is associated with age-dependent cognitive impairment and Alzheimer disease (AD). Mice expressing human Caspase-6 in hippocampal CA1 neurons develop age-dependent cognitive deficits, neurodegeneration and neuroinflammation. This study assessed if methylene blue (MB), a phenothiazine that inhibits caspases, alters Caspase-6-induced neurodegeneration and cognitive impairment in mice. Aged cognitively impaired Casp6-overexpressing mice were treated with methylene blue in drinking water for 1 month. Methylene blue treatment did not alter Caspase-6 levels, assessed by RT-PCR, western blot and immunohistochemistry, but inhibited fluorescently-labelled Caspase-6 activity in acute brain slice intact neurons. Methylene blue treatment rescued Caspase-6-induced episodic and spatial memory deficits measured by novel object recognition and Barnes maze, respectively. Methylene blue improved synaptic function of hippocampal CA1 neurons since theta-burst long-term potentiation (LTP), measured by field excitatory postsynaptic potentials (fEPSPs) in acute brain slices, was successfully induced in the Schaffer collateral-CA1 pathway in methylene blue-treated, but not in vehicle-treated, Caspase-6 mice. Increased neuroinflammation, measured by ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia numbers and subtypes, and glial fibrillary acidic protein (GFAP)-positive astrocytes, were decreased by methylene blue treatment. Therefore, methylene blue reverses Caspase-6-induced cognitive deficits by inhibiting Caspase-6, and Caspase-6-mediated neurodegeneration and neuroinflammation. Our results indicate that Caspase-6-mediated damage is reversible months after the onset of cognitive deficits and suggest that methylene blue could benefit Alzheimer disease patients by reversing Caspase-6-mediated cognitive decline.
Collapse
Affiliation(s)
- Libin Zhou
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
| | - Joseph Flores
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Anastasia Noël
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Olivier Beauchet
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, the BRaIN Program, Department of Neurology and Neurosurgery, McGill University, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4 Canada
| | - Andrea C. LeBlanc
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC H3A 0G4 Canada
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC H3T 1E2 Canada
| |
Collapse
|