1
|
Sierksma MC, Borst JGG. Developmental fine-tuning of medial superior olive neurons mitigates their predisposition to contralateral sound sources. PLoS Biol 2024; 22:e3002586. [PMID: 38683852 PMCID: PMC11081505 DOI: 10.1371/journal.pbio.3002586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Köppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. J Neurosci 2024; 44:e0940232023. [PMID: 37989591 PMCID: PMC10851688 DOI: 10.1523/jneurosci.0940-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Tiffany Wang
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Ira Kraemer
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Paula T Kuokkanen
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| |
Collapse
|
3
|
Lee J, Clause A, Kandler K. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus. J Neurosci 2023; 43:7766-7779. [PMID: 37734946 PMCID: PMC10648534 DOI: 10.1523/jneurosci.0920-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Amanda Clause
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
4
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Koeppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526884. [PMID: 36778252 PMCID: PMC9915572 DOI: 10.1101/2023.02.02.526884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.
Collapse
|
5
|
Drucker B, Goldwyn JH. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris. BIOLOGICAL CYBERNETICS 2023; 117:143-162. [PMID: 37129628 DOI: 10.1007/s00422-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
A principal cue for sound source localization is the difference in arrival times of sounds at an animal's two ears (interaural time difference, ITD). Neurons that process ITDs are specialized to compare the timing of inputs with submillisecond precision. In the barn owl, ITD processing begins in the nucleus laminaris (NL) region of the auditory brain stem. Remarkably, NL neurons are sensitive to ITDs in high-frequency sounds (kilohertz-range). This contrasts with ITD-based sound localization in analogous regions in mammals where ITD sensitivity is typically restricted to lower-frequency sounds. Guided by previous experiments and modeling studies of tone-evoked responses of NL neurons, we propose NL neurons achieve high-frequency ITD sensitivity if they respond selectively to the small-amplitude, high-frequency oscillations in their inputs, and remain relatively non-responsive to mean input level. We use a biophysically based model to study the effects of soma-axon coupling on dynamics and function in NL neurons. First, we show that electrical separation of the soma from the axon region in the neuron enhances high-frequency ITD sensitivity. This soma-axon coupling configuration promotes linear subthreshold dynamics and rapid spike initiation, making the model more responsive to input oscillations, rather than mean input level. Second, we provide new evidence for the essential role of phasic dynamics for high-frequency neural coincidence detection. Transforming our model to the phasic firing mode further tunes the model to respond selectively to the oscillating inputs that carry ITD information. Similar structural and dynamical mechanisms specialize mammalian auditory brain stem neurons for ITD sensitivity, and thus, our work identifies common principles of ITD processing and neural coincidence detection across species and for sounds at widely different frequencies.
Collapse
Affiliation(s)
- Ben Drucker
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 10587, USA
| | - Joshua H Goldwyn
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA.
| |
Collapse
|
6
|
Haragopal H, Winters BD. Principal neuron diversity in the murine lateral superior olive supports multiple sound localization strategies and segregation of information in higher processing centers. Commun Biol 2023; 6:432. [PMID: 37076594 PMCID: PMC10115857 DOI: 10.1038/s42003-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Principal neurons (PNs) of the lateral superior olive nucleus (LSO) in the brainstem of mammals compare information between the two ears and enable sound localization on the horizontal plane. The classical view of the LSO is that it extracts ongoing interaural level differences (ILDs). Although it has been known for some time that LSO PNs have intrinsic relative timing sensitivity, recent reports further challenge conventional thinking, suggesting the major function of the LSO is detection of interaural time differences (ITDs). LSO PNs include inhibitory (glycinergic) and excitatory (glutamatergic) neurons which differ in their projection patterns to higher processing centers. Despite these distinctions, intrinsic property differences between LSO PN types have not been explored. The intrinsic cellular properties of LSO PNs are fundamental to how they process and encode information, and ILD/ITD extraction places disparate demands on neuronal properties. Here we examine the ex vivo electrophysiology and cell morphology of inhibitory and excitatory LSO PNs in mice. Although overlapping, properties of inhibitory LSO PNs favor time coding functions while those of excitatory LSO PNs favor integrative level coding. Inhibitory and excitatory LSO PNs exhibit different activation thresholds, potentially providing further means to segregate information in higher processing centers. Near activation threshold, which may be physiologically similar to the sensitive transition point in sound source location for LSO, all LSO PNs exhibit single-spike onset responses that can provide optimal time encoding ability. As stimulus intensity increases, LSO PN firing patterns diverge into onset-burst cells, which can continue to encode timing effectively regardless of stimulus duration, and multi-spiking cells, which can provide robust individually integrable level information. This bimodal response pattern may produce a multi-functional LSO which can encode timing with maximum sensitivity and respond effectively to a wide range of sound durations and relative levels.
Collapse
Affiliation(s)
- Hariprakash Haragopal
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Bradley D Winters
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
7
|
Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023; 80:102707. [PMID: 36924615 DOI: 10.1016/j.conb.2023.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.
Collapse
|
8
|
Feldhoff F, Toepfer H, Harczos T, Klefenz F. Periodicity Pitch Perception Part III: Sensibility and Pachinko Volatility. Front Neurosci 2022; 16:736642. [PMID: 35356050 PMCID: PMC8959216 DOI: 10.3389/fnins.2022.736642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.
Collapse
Affiliation(s)
- Frank Feldhoff
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Hannes Toepfer
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Tamas Harczos
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- audifon GmbH & Co. KG, Kölleda, Germany
| | - Frank Klefenz
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
| |
Collapse
|
9
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Kladisios N, Fischer L, Felmy F. Minimal Number of Required Inputs for Temporally Precise Action Potential Generation in Auditory Brainstem Nuclei. Front Cell Neurosci 2020; 14:592213. [PMID: 33250717 PMCID: PMC7674839 DOI: 10.3389/fncel.2020.592213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
The auditory system relies on temporal precise information transfer, requiring an interplay of synchronously activated inputs and rapid postsynaptic integration. During late postnatal development synaptic, biophysical, and morphological features change to enable mature auditory neurons to perform their appropriate function. How the number of minimal required input fibers and the relevant EPSC time course integrated for action potential generation changes during late postnatal development is unclear. To answer these questions, we used in vitro electrophysiology in auditory brainstem structures from pre-hearing onset and mature Mongolian gerbils of either sex. Synaptic and biophysical parameters changed distinctively during development in the medial nucleus of the trapezoid body (MNTB), the medial superior olive (MSO), and the ventral and dorsal nucleus of the lateral lemniscus (VNLL and DNLL). Despite a reduction in input resistance in most cell types, all required fewer inputs in the mature stage to drive action potentials. Moreover, the EPSC decay time constant is a good predictor of the EPSC time used for action potential generation in all nuclei but the VNLL. Only in MSO neurons, the full EPSC time course is integrated by the neuron’s resistive element, while otherwise, the relevant EPSC time matches only 5–10% of the membrane time constant, indicating membrane charging as a dominant role for output generation. We conclude, that distinct developmental programs lead to a general increase in temporal precision and integration accuracy matched to the information relaying properties of the investigated nuclei.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Linda Fischer
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
11
|
Abstract
During development and adulthood, the normal activity of the auditory nerve plays a critical role in the maintenance of both fundamental structural, molecular, and functional parameters of auditory nerve synapses, and the postsynaptic excitatory or inhibitory neurons within the cochlear nucleus (CN). In addition, normal activity within the synaptic circuits of the CN is key to developing and maintaining appropriate synapse connectivity as well as the initiation of binaural sound processing in the superior olivary complex (SOC). Development plays a critical role in the proper neuronal connectivity and establishes a topographic map along the entire auditory pathway. Furthermore, evidence shows that neurons and synaptic circuits in the auditory brainstem are not hard-wired, but instead are plastic in response to hearing deficits. Whether this plasticity in response to hearing loss is compensatory or pathological is still unknown.
Collapse
Affiliation(s)
- María Eulalia Rubio
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh, School of Medicine, BST3 Building, room #10016, 3501 Fifth Venue, Pittsburgh, PA, 15261
| |
Collapse
|
12
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
13
|
Rajaram E, Pagella S, Grothe B, Kopp-Scheinpflug C. Physiological and anatomical development of glycinergic inhibition in the mouse superior paraolivary nucleus following hearing onset. J Neurophysiol 2020; 124:471-483. [PMID: 32667247 DOI: 10.1152/jn.00053.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural circuits require balanced synaptic excitation and inhibition to ensure accurate neural computation. Our knowledge about the development and maturation of inhibitory synaptic inputs is less well developed than that concerning excitation. Here we describe the maturation of an inhibitory circuit within the mammalian auditory brainstem where counterintuitively, inhibition drives action potential firing of principal neurons. With the use of combined anatomical tracing and electrophysiological recordings from mice, neurons of the superior paraolivary nucleus (SPN) are shown to receive converging glycinergic input from at least four neurons of the medial nucleus of the trapezoid body (MNTB). These four axons formed 30.71 ± 2.72 (means ± SE) synaptic boutons onto each SPN neuronal soma, generating a total inhibitory conductance of 80 nS. Such strong inhibition drives the underlying postinhibitory rebound firing mechanism, which is a hallmark of SPN physiology. In contrast to inhibitory projections to the medial and lateral superior olives, the inhibitory projection to the SPN does not exhibit experience-dependent synaptic refinement following the onset of hearing. These findings emphasize that the development and function of neural circuits cannot be inferred from one synaptic target to another, even if both originate from the same neuron.NEW & NOTEWORTHY Neuronal activity regulates development and maturation of neural circuits. This activity can include spontaneous burst firing or firing elicited by sensory input during early development. For example, auditory brainstem circuits involved in sound localization require acoustically evoked activity to form properly. Here we show, that an inhibitory circuit, involved in processing sound offsets, gaps, and rhythmically modulated vocal communication signals, matures before the onset of acoustically evoked activity.
Collapse
Affiliation(s)
- Ezhilarasan Rajaram
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Grothe
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development. J Neurosci 2020; 40:1689-1700. [PMID: 31949105 DOI: 10.1523/jneurosci.1545-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/01/2023] Open
Abstract
The development of sensory circuits is partially guided by sensory experience. In the medial superior olive (MSO), these refinements generate precise coincidence detection to localize sounds in the azimuthal plane. Glycinergic inhibitory inputs to the MSO, which tune the sensitivity to interaural time differences, undergo substantial structural and functional refinements after hearing onset. Whether excitation and calcium signaling in the MSO are similarly affected by the onset of acoustic experience is unresolved. To assess the time window and mechanism of excitatory and calcium-dependent refinements during late postnatal development, we quantified EPSCs and calcium entry in MSO neurons of Mongolian gerbils of either sex raised in a normal and in an activity altered, omnidirectional white noise environment. Global dendritic calcium transients elicited by action potentials disappeared rapidly after hearing onset. Local synaptic calcium transients decreased, leaving a GluR2 lacking AMPAR-mediated influx as the only activity-dependent source in adulthood. Exposure to omnidirectional white noise accelerated the decrease in calcium entry, leaving membrane properties unaffected. Thus, sound-driven activity accelerates the excitatory refinement and shortens the period of activity-dependent calcium signaling around hearing onset. Together with earlier reports, our findings highlight that excitation, inhibition, and biophysical properties are differentially sensitive to distinct features of sensory experience.SIGNIFICANCE STATEMENT Neurons in the medial superior olive, an ultra-fast coincidence detector for sound source localization, acquire their specialized function through refinements during late postnatal development. The refinement of inhibitory inputs that convey sensitivity to relevant interaural time differences is instructed by the experience of sound localization cues. Which cues instruct the refinement of excitatory inputs, calcium signaling, and biophysical properties is unknown. Here we demonstrate a time window for activity- and calcium-dependent refinements limited to shortly after hearing onset. Exposure to omnidirectional white noise, which suppresses sound localization cues but increases overall activity, accelerates the refinement of calcium signaling and excitatory inputs without affecting biophysical membrane properties. Thus, the refinement of excitation, inhibition, and intrinsic properties is instructed by distinct cues.
Collapse
|
15
|
The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Hear Res 2018; 376:33-46. [PMID: 30606624 DOI: 10.1016/j.heares.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.
Collapse
|