1
|
Rodriguez M, Chen J, Jain PP, Babicheva A, Xiong M, Li J, Lai N, Zhao T, Hernandez M, Balistrieri A, Parmisano S, Simonson T, Breen E, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Garcia JGN, Makino A, Yuan JXJ. Upregulation of Calcium Homeostasis Modulators in Contractile-To-Proliferative Phenotypical Transition of Pulmonary Arterial Smooth Muscle Cells. Front Physiol 2021; 12:714785. [PMID: 34408668 PMCID: PMC8364962 DOI: 10.3389/fphys.2021.714785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and migration are implicated in the development of pathogenic pulmonary vascular remodeling characterized by concentric arterial wall thickening and arteriole muscularization in patients with pulmonary arterial hypertension (PAH). Pulmonary artery smooth muscle cell contractile-to-proliferative phenotypical transition is a process that promotes pulmonary vascular remodeling. A rise in cytosolic Ca2+ concentration [(Ca2+) cyt ] in PASMCs is a trigger for pulmonary vasoconstriction and a stimulus for pulmonary vascular remodeling. Here, we report that the calcium homeostasis modulator (CALHM), a Ca2+ (and ATP) channel that is allosterically regulated by voltage and extracellular Ca2+, is upregulated during the PASMC contractile-to-proliferative phenotypical transition. Protein expression of CALHM1/2 in primary cultured PASMCs in media containing serum and growth factors (proliferative PASMC) was significantly greater than in freshly isolated PA (contractile PASMC) from the same rat. Upregulated CALHM1/2 in proliferative PASMCs were associated with an increased ratio of pAKT/AKT and pmTOR/mTOR and an increased expression of the cell proliferation marker PCNA, whereas serum starvation and rapamycin significantly downregulated CALHM1/2. Furthermore, CALHM1/2 were upregulated in freshly isolated PA from rats with monocrotaline (MCT)-induced PH and in primary cultured PASMC from patients with PAH in comparison to normal controls. Intraperitoneal injection of CGP 37157 (0.6 mg/kg, q8H), a non-selective blocker of CALHM channels, partially reversed established experimental PH. These data suggest that CALHM upregulation is involved in PASMC contractile-to-proliferative phenotypical transition. Ca2+ influx through upregulated CALHM1/2 may play an important role in the transition of sustained vasoconstriction to excessive vascular remodeling in PAH or precapillary PH. Calcium homeostasis modulator could potentially be a target to develop novel therapies for PAH.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- Department of Pediatrics, Tucson, AZ, United States
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jifeng Li
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, Department of Surgery, La Jolla, CA, United States
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Ellen Breen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | | | - John Y. -J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, La Jolla, CA, United States
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ayako Makino
- Division of Endocrinology and Metabolism, La Jolla, CA, United States
| | - Jason X. -J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| |
Collapse
|
2
|
Zhang S, Guo K, Sun L, Ni Y, Liu L, Xu W, Yang L, Xu W. Selective Release of Different Neurotransmitters Emulated by a p-i-n Junction Synaptic Transistor for Environment-Responsive Action Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007350. [PMID: 33543514 DOI: 10.1002/adma.202007350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The design of the first p-i-n junction synaptic transistor (JST) based on n-type TiO2 film covered with poly(methyl methacrylate) (PMMA) and with a p-type P3HT/PEO nanowire (NW) on top. Except for basic synaptic functions that can be realized by a single neurotransmitter, the electronic device emulates the multiplexed neurotransmission of different neurotransmissions, i.e., glutamate and acetylcholine, for fast switching between short- and long-term plasticity (STP and LTP). This is realized by the special p-i-n junction with hole transport in the p-type P3HT NW to form STP, and electron transport in the n-type TiO2 layer and trapped under the PMMA inversion layer to form LTP. Altering the external input induces changes of the polarity of the charge carriers in the conductive channel, promoting fast switching between STP and LTP modes. When stimulated using two parallel inputs, the response of PMMA/TiO2 emulates the synergistic effect of taste and aroma on the control of food-intake in the brain. Because of the bipolarity, the p-i-n JST has excellent reconfigurability, which importantly is attributed to simulate the plasticity of synapses and to mimic how distinct types of gustatory receptor neurons respond to different concentrations of salt. The electronic device lays the technical foundation for the realization of the future complex artificial neural networks.
Collapse
Affiliation(s)
- Shuo Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Kexin Guo
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lu Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wenlong Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, National Institute of Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
3
|
Abstract
Recent experiments using optogenetic tools facilitate the identification and functional analysis of thirst neurons and vasopressin-producing neurons. Four major advances provide a detailed anatomy and physiology of thirst, taste for water, and arginine-vasopressin (AVP) release: ( a) Thirst and AVP release are regulated by the classical homeostatic, interosensory plasma osmolality negative feedback as well as by novel, exterosensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release concentrate on the same homeostatic neurons and circumventricular organs that monitor the composition of blood. ( b) Acid-sensing taste receptor cells (TRCs) expressing otopetrin 1 on type III presynaptic TRCs on the tongue, which were previously suggested as the sour taste sensors, also mediate taste responses to water. ( c) Dehydration is aversive, and median preoptic nucleus (MnPO) neuron activity is proportional to the intensity of this aversive state. ( d) MnPOGLP1R neurons serve as a central detector that discriminates fluid ingestion from solid ingestion, which promotes acute satiation of thirst through the subfornical organ and other downstream targets.
Collapse
Affiliation(s)
- Daniel G Bichet
- University of Montreal and Nephrology Service, Research Center, Hôpital du Sacré-Coeur de Montreal, Montreal, Quebec H4J 1C5, Canada;
| |
Collapse
|