1
|
Covarrubias M, Liang Q, Nguyen-Phuong L, Kennedy KJ, Alexander TD, Sam A. Structural insights into the function, dysfunction and modulation of Kv3 channels. Neuropharmacology 2025; 275:110483. [PMID: 40288604 DOI: 10.1016/j.neuropharm.2025.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The third subfamily of voltage-gated K+ (Kv) channels includes four members, Kv3.1, Kv3.2, Kv3.3 and Kv3.4. Fast gating and activation at relatively depolarized membrane potentials allows Kv3 channels to be major drivers of fast action potential repolarization in the nervous system. Consequently, they help determine the fast-spiking phenotype of inhibitory interneurons and regulate fast synaptic transmission at glutamatergic synapses and the neuromuscular junction. Recent studies from our group and a team of collaborators have used cryo-EM to demonstrate the surprising gating role of the Kv3.1 cytoplasmic T1 domain, the structural basis of a developmental epileptic encephalopathy caused by the Kv3.2-C125Y variant and the mechanism of action of positive allosteric modulators involving unexpected interactions and conformational changes in Kv3.1 and Kv3.2. Furthermore, our recent work has shown that Kv3.4 regulates use-dependent spike broadening in a manner that depends on gating modulation by phosphorylation of the channel's N-terminal inactivation domain, which can impact activity-dependent synaptic facilitation. Here, we review and integrate these studies to provide a perspective on our current understanding of Kv3 channel function, dysfunction and pain modulation in the nervous system.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
| | - Qiansheng Liang
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Linh Nguyen-Phuong
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Kyle J Kennedy
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Tyler D Alexander
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Andrew Sam
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| |
Collapse
|
2
|
Wu XS, Zhang Z, Jin Y, Mushtaheed A, Wu LG. Actin maintains synaptic transmission by restraining vesicle release probability. iScience 2025; 28:112000. [PMID: 40109375 PMCID: PMC11919605 DOI: 10.1016/j.isci.2025.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/22/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Despite decades of pharmacological studies, how the ubiquitous cytoskeletal actin regulates synaptic transmission remains poorly understood. We addressed this issue with a tissue-specific knockout of actin β-isoform or γ-isoform, combined with recordings of postsynaptic EPSCs, presynaptic capacitance jumps or fluorescent synaptophysin-pHluorin changes, and electron microscopy in large calyx-type and small conventional hippocampal synapses. We found that actin restrains basal synaptic transmission during single action potential firings by lowering the readily releasable vesicle's release probability. Such an inhibition of basal synaptic transmission is turned into facilitation during repetitive firings by slowing down depletion of the readily releasable vesicle pool and, thus, short-term synaptic depression, leading to more effective synaptic transmission for a longer time. These mechanisms, together with the previous finding that actin promotes vesicle replenishment to the readily releasable pool, may control synaptic transmission and short-term synaptic plasticity at many synapses, contributing to neurological disorders caused by actin cytoskeleton impairment.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Zhen Zhang
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
- Office of Genetic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Yinghui Jin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Afreen Mushtaheed
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wu P, Tu Y, Cho H, Yu M, Wu Y, Wu S. An unidentified yet notable modification on I Na and I K (DR) caused by ramelteon. FASEB Bioadv 2024; 6:442-453. [PMID: 39372128 PMCID: PMC11452446 DOI: 10.1096/fba.2024-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 10/08/2024] Open
Abstract
Despite advancement in anti-seizure medications, 30% of patients continue to experience recurrent seizures. Previous data indicated the antiepileptic properties of melatonin and its agonists in several animal models. However, the underlying mechanisms of melatonin and its agonists on cellular excitability remain poorly understood. In this study, we demonstrated the electrophysiological changes of two main kinds of ion channels that are responsible for hyperexcitability of neurons after introduction of melatonin agonists- ramelteon (RAM). In Neuro-2a cells, the amplitude of voltage-gated Na+ (I Na) and delayed-rectifier K+ currents (I K (DR)) could be suppressed under RAM. The IC50 values of 8.7 and 2.9 μM, respectively. RAM also diminished the magnitude of window Na+ current (I Na (W)) elicited by short ascending ramp voltage, with unchanged the overall steady-state current-voltage relationship. The decaying time course of I Na during a train of depolarizing pulses arose upon the exposure to RAM. The conditioning train protocol which blocked I Na fitted the recovery time course into two exponential processes and increased the fast and slow time constant of recovery the presence of RAM. In pituitary tumor (GH3) cells, I Na amplitude was also effectively suppressed by the RAM. In addition, GH3-cells exposure to RAM decreased the firing frequency of spontaneous action potentials observed under current-clamp conditions. As a result, the RAM-mediated effect on INa was closely associated with its ability to decrease spontaneous action potentials. Collectively, we found the direct attenuation of I Na and I K (DR) caused by RAM besides the agonistic action on melatonin receptors, which could partially explain its anti-seizure activity.
Collapse
Affiliation(s)
- Po‐Ming Wu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Fang Tu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsin‐Yen Cho
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Meng‐Cheng Yu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Yen‐Hsien Wu
- Department of PediatricsKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Sheng‐Nan Wu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
- Institute of Basic Medical SciencesNational Cheng Kung University Medical CollegeTainanTaiwan
- Department of Research and Education, An Nan HospitalChina Medical UniversityTainanTaiwan
| |
Collapse
|
4
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
5
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
6
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
7
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
8
|
Shi B, Wu XS, Cordero NP, Moreira SL, Wu LG. Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures. STAR Protoc 2022; 3:101495. [PMID: 35776639 PMCID: PMC9249854 DOI: 10.1016/j.xpro.2022.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022] Open
Abstract
Following the release of neurotransmitters at synaptic vesicles via exocytosis, endocytosis is initiated to retrieve vesicles that have fused with the plasma membrane of nerve terminals and recycle them, thus sustaining synaptic transmission. Here, we describe imaging-based protocols for quantitative measurements of endocytosis at cultured synapses. These protocols include (1) primary culture of mouse hippocampal neurons, (2) studying endocytosis at neurons transfected with a pH-sensitive synaptophysin-pHluorin2× using fluorescent microscopy, and (3) imaging endocytosis at fixed neurons with electron microscopy. For complete details on the use and execution of this protocol, please refer to Wu et al. (2016) and Wu et al. (2021). Detailed protocol for primary culture and transfection of mouse hippocampal neurons Light microscopy and analysis of endocytosis in cultured neurons Electron microscopy and analysis of vesicle and endosome formation
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
9
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
A missense mutation in Kcnc3 causes hippocampal learning deficits in mice. Proc Natl Acad Sci U S A 2022; 119:e2204901119. [PMID: 35881790 PMCID: PMC9351536 DOI: 10.1073/pnas.2204901119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.
Collapse
|
11
|
Richardson A, Ciampani V, Stancu M, Bondarenko K, Newton S, Steinert JR, Pilati N, Graham BP, Kopp-Scheinpflug C, Forsythe ID. Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse. eLife 2022; 11:75219. [PMID: 35510987 PMCID: PMC9110028 DOI: 10.7554/elife.75219] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.
Collapse
Affiliation(s)
- Amy Richardson
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Victoria Ciampani
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Mihai Stancu
- Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Kseniia Bondarenko
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Sherylanne Newton
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Joern R Steinert
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Nadia Pilati
- Istituto di Ricerca Pediatrica Citta'della Speranza, Padova, Italy
| | - Bruce P Graham
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | | | - Ian D Forsythe
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Shi B, Jin YH, Wu LG. Dynamin 1 controls vesicle size and endocytosis at hippocampal synapses. Cell Calcium 2022; 103:102564. [PMID: 35220002 PMCID: PMC9009158 DOI: 10.1016/j.ceca.2022.102564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Following calcium-triggered vesicle exocytosis, endocytosis regenerates vesicles to maintain exocytosis and thus synaptic transmission, which underlies neuronal circuit activities. Although most molecules involved in endocytosis have been identified, it remains rather poorly understood how endocytic machinery regulates vesicle size. Vesicle size, together with the transmitter concentration inside the vesicle, determines the amount of transmitter the vesicle can release, the quantal size, that may control the strength of synaptic transmission. Here, we report that, surprisingly, knockout of the GTPase dynamin 1, the most abundant brain dynamin isoform known to catalyze fission of the membrane pit's neck (the last step of endocytosis), not only significantly slowed endocytosis but also increased the synaptic vesicle diameter by as much as ∼40-64% at cultured hippocampal synapses. Furthermore, dynamin 1 knockout increased the size of membrane pits, the precursor for endocytic vesicle formation. These results suggest an important function of dynamin other than its well-known fission function - control of vesicle size at the pit formation stage.
Collapse
Affiliation(s)
- Bo Shi
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892 United States; Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20740 United States
| | - Ying-Hui Jin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892 United States; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou 510515, China
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892 United States.
| |
Collapse
|
13
|
Wu LG, Chan CY. Multiple Roles of Actin in Exo- and Endocytosis. Front Synaptic Neurosci 2022; 14:841704. [PMID: 35308832 PMCID: PMC8931529 DOI: 10.3389/fnsyn.2022.841704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cytoskeletal filamentous actin (F-actin) has long been considered a molecule that may regulate exo- and endocytosis. However, its exact roles remained elusive. Recent studies shed new light on many crucial roles of F-actin in regulating exo- and endocytosis. Here, this progress is reviewed from studies of secretory cells, particularly neurons and endocrine cells. These studies reveal that F-actin is involved in mediating all kinetically distinguishable forms of endocytosis, including ultrafast, fast, slow, bulk, and overshoot endocytosis, likely via membrane pit formation. F-actin promotes vesicle replenishment to the readily releasable pool most likely via active zone clearance, which may sustain synaptic transmission and overcome short-term depression of synaptic transmission during repetitive firing. By enhancing plasma membrane tension, F-actin promotes fusion pore expansion, vesicular content release, and a fusion mode called shrink fusion involving fusing vesicle shrinking. Not only F-actin, but also the F-actin assembly pathway, including ATP hydrolysis, N-WASH, and formin, are involved in mediating these roles of exo- and endocytosis. Neurological disorders, including spinocerebellar ataxia 13 caused by Kv3.3 channel mutation, may involve impairment of F-actin and its assembly pathway, leading in turn to impairment of exo- and endocytosis at synapses that may contribute to neurological disorders.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | | |
Collapse
|
14
|
FMRP Sustains Presynaptic Function via Control of Activity-Dependent Bulk Endocytosis. J Neurosci 2022; 42:1618-1628. [PMID: 34996816 PMCID: PMC8883869 DOI: 10.1523/jneurosci.0852-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicle (SV) recycling is essential for the maintenance of neurotransmission, with a number of neurodevelopmental disorders linked to defects in this process. Fragile X syndrome (FXS) results from a loss of fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. Hyperexcitability of neuronal circuits is a key feature of FXS, therefore we investigated whether SV recycling was affected by the absence of FMRP during increased neuronal activity. We revealed that primary neuronal cultures from male Fmr1 knock-out (KO) rats display a specific defect in activity-dependent bulk endocytosis (ADBE). ADBE is dominant during intense neuronal activity, and this defect resulted in an inability of Fmr1 KO neurons to sustain SV recycling during trains of high-frequency stimulation. Using a molecular replacement strategy, we also revealed that a human FMRP mutant that cannot bind BK channels failed to correct ADBE dysfunction in KO neurons, however this dysfunction was corrected by BK channel agonists. Therefore, FMRP performs a key role in sustaining neurotransmitter release via selective control of ADBE, suggesting intervention via this endocytosis mode may correct the hyperexcitability observed in FXS.SIGNIFICANCE STATEMENT Loss of fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), however whether its loss has a direct role in neurotransmitter release remains a matter of debate. We demonstrate that neurons lacking FMRP display a specific defect in a mechanism that sustains neurotransmitter release during intense neuronal firing, called activity-dependent bulk endocytosis (ADBE). This discovery provides key insights into mechanisms of brain communication that occur because of loss of FMRP function. Importantly it also reveals ADBE as a potential therapeutic target to correct the circuit hyperexcitability observed in FXS.
Collapse
|
15
|
Azarnia Tehran D, Maritzen T. Endocytic proteins: An expanding repertoire of presynaptic functions. Curr Opin Neurobiol 2022; 73:102519. [PMID: 35217312 DOI: 10.1016/j.conb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
From a presynaptic perspective, neuronal communication mainly relies on two interdependent events: The fast Ca2+-triggered fusion of neurotransmitter-containing synaptic vesicles (SVs) and their subsequent high-fidelity reformation. To allow rapid neurotransmission, SVs have evolved into fascinating molecular nanomachines equipped with a well-defined set of proteins. However, upon exocytosis, SVs fully collapse into the presynaptic plasma membrane leading to the dispersal of their molecular components. While the canonical function of endocytic proteins at the presynapse was believed to be the retrieval of SV proteins via clathrin-mediated endocytosis, it is now evident that clathrin-independent endocytic mechanisms predominate. We will highlight in how far these mechanisms still rely on the classical endocytic machinery and discuss the emerging functions of endocytic proteins in release site clearance and SV reformation from endosomal-like vacuoles.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany. https://twitter.com/@DomenicoAzTe
| | - Tanja Maritzen
- Department of Nanophysiology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
| |
Collapse
|
16
|
Zhang Y, Quraishi IH, McClure H, Williams LA, Cheng Y, Kale S, Dempsey GT, Agrawal S, Gerber DJ, McManus OB, Kaczmarek LK. Suppression of Kv3.3 channels by antisense oligonucleotides reverses biochemical effects and motor impairment in spinocerebellar ataxia type 13 mice. FASEB J 2021; 35:e22053. [PMID: 34820911 DOI: 10.1096/fj.202101356r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather McClure
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Dissanayake KN, Margetiny F, Whitmore CL, Chou RCC, Roesl C, Patel V, McArdle JJ, Webster R, Beeson D, Tattersall JEH, Wyllie DJA, Eddleston M, Ribchester RR. Antagonistic postsynaptic and presynaptic actions of cyclohexanol on neuromuscular synaptic transmission and function. J Physiol 2021; 599:5417-5449. [PMID: 34748643 DOI: 10.1113/jp281921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.
Collapse
Affiliation(s)
- Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Filip Margetiny
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robert C-C Chou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Cornelia Roesl
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, State University of New Jersey, Newark, NJ, USA
| | - Joseph J McArdle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, State University of New Jersey, Newark, NJ, USA
| | - Richard Webster
- Weatherall Institute for Molecular Medicine, Radcliffe Infirmary, Oxford, UK
| | - David Beeson
- Weatherall Institute for Molecular Medicine, Radcliffe Infirmary, Oxford, UK
| | | | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron 2021; 109:3119-3134.e5. [PMID: 34411513 DOI: 10.1016/j.neuron.2021.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023]
Abstract
Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.
Collapse
|