1
|
Chu YW, Chinta S, Keri HVS, Beri S, Pluta SR. Stimulus selection enhances value-modulated somatosensory processing in the superior colliculus. PLoS Biol 2025; 23:e3003057. [PMID: 40163544 DOI: 10.1371/journal.pbio.3003057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/08/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
A fundamental trait of intelligent behavior is the ability to respond selectively to stimuli with higher value. Where along the neural hierarchy does somatosensory processing transition from a map of stimulus location to a map of stimulus value? To address this question, we recorded single-unit activity from populations of neurons in somatosensory cortex (S1) and midbrain superior colliculus (SC) in mice conditioned to respond to a positive-valued stimulus and withhold responses to an adjacent, negative-valued stimulus. The stimulus preference of the S1 population was equally weighted towards either stimulus, in line with a somatotopic map. Surprisingly, we discovered a large population of SC neurons that were disproportionately biased towards the positive stimulus. This disproportionate bias was largely driven by enhanced spike suppression for the negative stimulus. Removing the opportunity for mice to behaviorally select the positive stimulus reduced positive stimulus bias and spontaneous firing rates in SC but not S1, suggesting that neural selectivity was augmented by task readiness. Similarly, the spontaneous firing rates of SC but not S1 neurons predicted reaction times, suggesting that SC neurons played a persistent role in perceptual decision-making. Taken together, these data indicate that the somatotopic map in S1 is transformed into a value-based map in SC that encodes stimulus priority.
Collapse
Affiliation(s)
- Yun Wen Chu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Hayagreev V S Keri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shreya Beri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Stringer C, Pachitariu M. Analysis methods for large-scale neuronal recordings. Science 2024; 386:eadp7429. [PMID: 39509504 DOI: 10.1126/science.adp7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
3
|
Bailey CS, Craig AJ, Jagielo-Miller JE, Leibold CT, Keller PS, Beckmann JS, Prendergast MA. Late-term moderate prenatal alcohol exposure impairs tactile, but not spatial, discrimination in a T-maze continuous performance task in juvenile rats. Behav Brain Res 2024; 474:115208. [PMID: 39154755 PMCID: PMC11418090 DOI: 10.1016/j.bbr.2024.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Existing maze apparatuses used in rodents often exclusively assess spatial discriminability as a means to evaluate learning impairments. Spatial learning in such paradigms is reportedly spared by moderate prenatal alcohol exposure in rats, suggesting that spatial reinforcement alone is insufficient to delineate executive dysfunction, which consistently manifests in humans prenatally-exposed to alcohol. To address this, we designed a single-session continuous performance task in the T-maze apparatus that requires rats to discriminate within and between simultaneously-presented spatial (left or right) and tactile (sandpaper or smooth) stimuli for food reinforcement across four sequential discrimination stages: simple discrimination, intradimensional reversal 1, extradimensional shift, and intradimensional reversal 2. This design incorporates elements of working memory, attention, and goal-seeking behavior which collectively contribute to the executive function construct. Here, we found that rats prenatally-exposed to alcohol performed worse in both the tactile intradimensional reversal and extradimensional shift; alternatively, rats prenatally-exposed to alcohol acquired the extradimensional shift faster when shifting from the tactile to spatial dimension. In line with previous work, moderate prenatal alcohol exposure spared specifically spatial discrimination in this paradigm. However, when tactile stimuli were mapped into the spatial dimension, rats prenatally-exposed to alcohol required more trials to discriminate between the dimensions. We demonstrate that tactile stimuli can be operantly employed in a continuous performance T-maze task to detect discriminatory learning impairments in rats exposed to moderate prenatal alcohol. The current paradigm may be useful for assessing features of executive dysfunction in rodent models of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Caleb S Bailey
- Department of Psychology, University of Kentucky, United States; Department of Neuroscience, University of Kentucky, United States.
| | - Ashley J Craig
- Department of Neuroscience, University of Kentucky, United States
| | | | | | - Peggy S Keller
- Department of Psychology, University of Kentucky, United States
| | | | | |
Collapse
|
4
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Montanari R, Alegre-Cortés J, Alonso-Andrés A, Cabrera-Moreno J, Navarro I, García-Frigola C, Sáez M, Reig R. Callosal inputs generate side-invariant receptive fields in the barrel cortex. SCIENCE ADVANCES 2023; 9:eadi3728. [PMID: 38019920 PMCID: PMC10686559 DOI: 10.1126/sciadv.adi3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Barrel cortex integrates contra- and ipsilateral whiskers' inputs. While contralateral inputs depend on the thalamocortical innervation, ipsilateral ones are thought to rely on callosal axons. These are more abundant in the barrel cortex region bordering with S2 and containing the row A-whiskers representation, the row lying nearest to the facial midline. Here, we ask what role this callosal axonal arrangement plays in ipsilateral tactile signaling. We found that novel object exploration with ipsilateral whiskers confines c-Fos expression within the highly callosal subregion. Targeting this area with in vivo patch-clamp recordings revealed neurons with uniquely strong ipsilateral responses dependent on the corpus callosum, as assessed by tetrodotoxin silencing and by optogenetic activation of the contralateral hemisphere. Still, in this area, stimulation of contra- or ipsilateral row A-whiskers evoked an indistinguishable response in some neurons, mostly located in layers 5/6, indicating their involvement in the midline representation of the whiskers' sensory space.
Collapse
Affiliation(s)
| | | | | | - Jorge Cabrera-Moreno
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | | - Cristina García-Frigola
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | - María Sáez
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | |
Collapse
|
6
|
Meng L, Kong L, Kong L, Zhang Q, Shen J, Hao Y. Effects of visual deprivation on the injury of lower extremities among functional ankle instability patients during drop landing: A kinetics perspective. Front Physiol 2022; 13:1074554. [PMID: 36579024 PMCID: PMC9790914 DOI: 10.3389/fphys.2022.1074554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The ankle is prone to injury during drop landing with usual residual symptoms, and functional ankle instability (FAI) is the most common. Vision guarantees the postural stability of patients with FAI, and visual deprivation (VD) increases their risk of injury when completing various movements. This study explored injury risk during drop landing in patients with FAI under VD through the kinetics of lower extremities. Methods: A total of 12 males with FAI participated in the study (age, 23.0 ± 0.8 years; height, 1.68 ± 0.06 m; weight, and 62.2 ± 10.4 kg) completed single-leg drop landings under visual presence (VP) and VD conditions. Ground reaction force (GRF), time to peak GRF, joint torque, and vertical length variation (ΔL) were measured. Results: Significant effects were detected in the group for time to peak lateral GRF (p = 0.004), hip extensor torque (p = 0.022), ankle plantarflexion torque (p < 0.001), ankle varus torque (p = 0.021), lower extremity stiffness (p = 0.035), and ankle stiffness (p < 0.001). Significant effects of conditions were detected for vertical GRF, time to peak vertical and lateral GRF, loading rate, hip extensor torque, knee extensor torque, hip varus torque, knee varus torque, lower extremity stiffness, and ankle stiffness (p < 0.05). ΔL was affected by VD with a significant difference (p < 0.001). Conclusion: In patients with FAI, an unstable extremity has a higher injury risk than a stable extremity, and VD increases such risk. However, because the influence of the central nervous system on hip strategy is also affected, the effect on the unstable extremity is more significant and more likely to result in injury. Deepening the squat range may be an effective preventive measure for reducing injury risk of unstable extremities during drop landing.
Collapse
Affiliation(s)
- Lingyue Meng
- Physical Education and Sports School, Soochow University, Suzhou, China
| | - Lintao Kong
- Experimental Primary School, High Tech Zone Science and Technology City, Suzhou, China
| | - Lingyu Kong
- Physical Education and Sports School, Soochow University, Suzhou, China
| | - Qiuxia Zhang
- Physical Education and Sports School, Soochow University, Suzhou, China,*Correspondence: Qiuxia Zhang, ; Jianzhong Shen, ; Yuefeng Hao,
| | - Jianzhong Shen
- Rehabilitation Center, Shanghai Yongci Rehabilitation Hospital, Shanghai, China,*Correspondence: Qiuxia Zhang, ; Jianzhong Shen, ; Yuefeng Hao,
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China,*Correspondence: Qiuxia Zhang, ; Jianzhong Shen, ; Yuefeng Hao,
| |
Collapse
|
7
|
Liu Y, Foustoukos G, Crochet S, Petersen CC. Axonal and Dendritic Morphology of Excitatory Neurons in Layer 2/3 Mouse Barrel Cortex Imaged Through Whole-Brain Two-Photon Tomography and Registered to a Digital Brain Atlas. Front Neuroanat 2022; 15:791015. [PMID: 35145380 PMCID: PMC8821665 DOI: 10.3389/fnana.2021.791015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Communication between cortical areas contributes importantly to sensory perception and cognition. On the millisecond time scale, information is signaled from one brain area to another by action potentials propagating across long-range axonal arborizations. Here, we develop and test methodology for imaging and annotating the brain-wide axonal arborizations of individual excitatory layer 2/3 neurons in mouse barrel cortex through single-cell electroporation and two-photon serial section tomography followed by registration to a digital brain atlas. Each neuron had an extensive local axon within the barrel cortex. In addition, individual neurons innervated subsets of secondary somatosensory cortex; primary somatosensory cortex for upper limb, trunk, and lower limb; primary and secondary motor cortex; visual and auditory cortical regions; dorsolateral striatum; and various fiber bundles. In the future, it will be important to assess if the diversity of axonal projections across individual layer 2/3 mouse barrel cortex neurons is accompanied by functional differences in their activity patterns.
Collapse
Affiliation(s)
| | | | | | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Rodgers CC, Nogueira R, Pil BC, Greeman EA, Park JM, Hong YK, Fusi S, Bruno RM. Sensorimotor strategies and neuronal representations for shape discrimination. Neuron 2021; 109:2308-2325.e10. [PMID: 34133944 PMCID: PMC8298290 DOI: 10.1016/j.neuron.2021.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/28/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Humans and other animals can identify objects by active touch, requiring the coordination of exploratory motion and tactile sensation. Both the motor strategies and neural representations employed could depend on the subject's goals. We developed a shape discrimination task that challenged head-fixed mice to discriminate concave from convex shapes. Behavioral decoding revealed that mice did this by comparing contacts across whiskers. In contrast, a separate group of mice performing a shape detection task simply summed up contacts over whiskers. We recorded populations of neurons in the barrel cortex, which processes whisker input, and found that individual neurons across the cortical layers encoded touch, whisker motion, and task-related signals. Sensory representations were task-specific: during shape discrimination, but not detection, neurons responded most to behaviorally relevant whiskers, overriding somatotopy. Thus, sensory cortex employs task-specific representations compatible with behaviorally relevant computations.
Collapse
Affiliation(s)
- Chris C Rodgers
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Ramon Nogueira
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - B Christina Pil
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Esther A Greeman
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jung M Park
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Y Kate Hong
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Stefano Fusi
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|