1
|
Yang S, Song C. Multiple-Basin Go̅-Martini for Investigating Conformational Transitions and Environmental Interactions of Proteins. J Chem Theory Comput 2025. [PMID: 40359486 DOI: 10.1021/acs.jctc.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Proteins are inherently dynamic molecules, and their conformational transitions among various states are essential for numerous biological processes, which are often modulated by their interactions with surrounding environments. Although molecular dynamics (MD) simulations are widely used to investigate these transitions, all-atom (AA) methods are often limited by short time scales and high computational costs, and coarse-grained (CG) implicit-solvent Go̅-like models are usually incapable of studying the interactions between proteins and their environments. Here, we present an approach called Multiple-basin Go̅-Martini, which combines the recent Go̅-Martini model with an exponential mixing scheme to facilitate the simulation of spontaneous protein conformational transitions in explicit environments. We demonstrate the versatility of our method through five diverse case studies: GlnBP, Arc, Hinge, SemiSWEET, and TRAAK, representing ligand-binding proteins, fold-switching proteins, de novo designed proteins, transporters, and mechanosensitive ion channels, respectively. Multiple-basin Go̅-Martini offers a new computational tool for investigating protein conformational transitions, identifying key intermediate states, and elucidating essential interactions between proteins and their environments, particularly protein-membrane interactions. In addition, this approach can efficiently generate thermodynamically meaningful data sets of protein conformational space, which may enhance deep learning-based models for predicting protein conformation distributions.
Collapse
Affiliation(s)
- Song Yang
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Medicine, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen Song
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Fang X, Jin H, Wang J, Zhang R, Li B. Gating mechanism of the two-pore-domain potassium channel THIK1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01542-4. [PMID: 40307591 DOI: 10.1038/s41594-025-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025]
Abstract
TWIK-related halothane-inhibited potassium channel (THIK1) maintains the resting membrane potential and regulates potassium efflux in microglia. It is a potential therapeutic target for neurodegenerative disorders, neuropathic pain and inflammation. However, the mechanism underlying its function remains unclear. Here we used cryo-electron microscopy to solve the structures of full-length human THIK1, revealing two inner gates and a C-type selectivity filter gate, distinct from other two-pore-domain potassium channels. One inner gate, formed by a short helix in the distal C terminus, introduces a unique gating mechanism involving the distal cytoplasmic domain. The other, beneath the selectivity filter, is constricted by Y273 in the M4 helix, dividing the cavity. In addition, the selectivity filter gate is modulated by polyunsaturated fatty acids. These structural insights into THIK1 gating, through the distal C-terminal helices, hydrophilic residues and selectivity filter, advance our understanding of THIK1's role in microglial homeostasis and neuropathologies.
Collapse
Affiliation(s)
- Xiangyun Fang
- Department of Anesthesiology, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haichao Jin
- School of Science, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin Wang
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ran Zhang
- Department of Anesthesiology, Fudan University, Shanghai, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Baobin Li
- Department of Anesthesiology, Fudan University, Shanghai, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Yan HJ, Liu WH, Xu MX, Wang PY, Gu YJ, Li H, Guo J, Luo S. De novo KCNK4 variant caused epilepsy with febrile seizures plus, neurodevelopmental abnormalities, and hypertrichosis. Front Genet 2025; 16:1499716. [PMID: 40230348 PMCID: PMC11994672 DOI: 10.3389/fgene.2025.1499716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/20/2025] [Indexed: 04/16/2025] Open
Abstract
Background Epilepsy with febrile seizures plus (EFS+) is a syndrome with a strong genetic component. Previously, variants in several genes encoding ion channels have been associated with EFS+. However, the etiology in the majority of patients remains undetermined. Methods Trio-based whole-exome sequencing was performed on a patient with EFS+. Previously reported KCNK4 variants were systemically reviewed to analyze the phenotypic spectrum and core phenotypes. Results A novel de novo KCNK4 variant (c.415G>A/p.Gly139Arg) was identified in a patient with EFS+, neurodevelopmental abnormalities, and hypertrichosis. The identified variant was absent in normal populations, indicated to alter hydrogen bonds with surrounding residues by various protein modeling, predicted to be damaging for protein function by twenty algorithms, located in residues of high conservation across species, and classified as pathogenic by the ACMG guidelines. Protein modeling analyses of the variant suggested a possible gain-of-function effect. Analysis of other eight cases with KCNK4 variants outlined the phenotypic spectrums of KCNK4, ranging from mild benign epilepsy, EFS+ with neurodevelopmental abnormalities, to syndromic neurodevelopmental disorders and revealed neurodevelopmental abnormalities and epilepsy as its core phenotypes. Integrated analysis suggested that minor allele frequency and in silico meta-predictors effectively distinguish pathogenic variants. Conclusion This study suggested the KCNK4 gene as a novel candidate causative gene of EFS+, which would be helpful for the genetic diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Wen-Hui Liu
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Xing Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu-Jie Gu
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Li
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Jing Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Sheng Luo
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1 channel reveals a hydrophilic pore restriction and lipid cofactor site. Nat Struct Mol Biol 2025:10.1038/s41594-024-01476-3. [PMID: 40011746 DOI: 10.1038/s41594-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025]
Abstract
Polyunsaturated fatty acid (PUFA) lipids modulate the neuronal and microglial leak potassium channel K2P13.1 (THIK1) and other voltage-gated ion channel (VGIC) superfamily members through poorly understood mechanisms. Here we present cryo-electron microscopy structures of human THIK1 and mutants, revealing a unique two-chamber aqueous inner cavity obstructed by a hydrophilic barrier important for gating, the flow restrictor, and a P1-M4 intersubunit interface lipid at a site, the PUFA site, corresponding to the K2P small-molecule modulator pocket. This overlap, together with functional studies, indicates that PUFA site lipids are THIK1 cofactors. Comparison with a PUFA-responsive VGIC, Kv7.1, reveals a shared modulatory role for the pore domain intersubunit interface, providing a framework for understanding PUFA action on the VGIC superfamily. Our findings reveal the distinct THIK1 architecture, highlight the importance of the P1-M4 interface for K2P control by natural and synthetic ligands and should aid in the development of THIK subfamily modulators for neuroinflammation and autism.
Collapse
Affiliation(s)
| | - Seil Jang
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fiona Naughton
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Michael Grabe
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA.
- Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Ma Q, Hernandez CC, Navratna V, Kumar A, Lee A, Mosalaganti S. Insights into the structure and modulation of human TWIK-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639014. [PMID: 40161613 PMCID: PMC11952367 DOI: 10.1101/2025.02.19.639014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The T andem of pore domain in a W eak I nward R ectifying K + channel 2 (TWIK-2; KCNK6) is a member of the Two-Pore Domain K + (K2P) channel family, which is associated with pulmonary hypertension, lung injury, and inflammation. The structure and regulatory mechanisms of TWIK-2 remain largely unknown. Here, we present the cryo-electron microscopy (cryo-EM) structure of human TWIK-2 at ~3.7 Å and highlight its conserved and unique features. Using automated whole-cell patch clamp recordings, we demonstrate that gating in TWIK-2 is voltage-dependent and insensitive to changes in the extracellular pH. We identify key residues that influence TWIK-2 activity by employing structure and sequence-guided site-directed mutagenesis and provide insights into the possible mechanism of TWIK-2 regulation. Additionally, we demonstrate the application of high-throughput automated whole-cell patch clamp platforms to screen small molecule modulators of TWIK-2. Our work serves as a foundation for designing high-throughput small molecule screening campaigns to identify specific high-affinity TWIK-2 modulators, including promising new anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Qianqian Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Abraham Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
6
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
7
|
Mendez-Otalvaro E, Kopec W, de Groot BL. Effect of two activators on the gating of a K 2P channel. Biophys J 2024; 123:3408-3420. [PMID: 39161093 PMCID: PMC11480771 DOI: 10.1016/j.bpj.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
TWIK-related potassium channel 1 (TREK1), a two-pore-domain mammalian potassium (K+) channel, regulates the resting potential across cell membranes, presenting a promising therapeutic target for neuropathy treatment. The gating of this channel converges in the conformation of the narrowest part of the pore: the selectivity filter (SF). Various hypotheses explain TREK1 gating modulation, including the dynamics of loops connecting the SF with transmembrane helices and the stability of hydrogen bond (HB) networks adjacent to the SF. Recently, two small molecules (Q6F and Q5F) were reported as activators that affect TREK1 by increasing its open probability in single-channel current measurements. Here, using molecular dynamics simulations, we investigate the effect of these ligands on the previously proposed modulation mechanisms of TREK1 gating compared to the apo channel. Our findings reveal that loop dynamics at the upper region of the SF exhibit only a weak correlation with permeation events/nonpermeation periods, whereas the HB network behind the SF appears more correlated. These nonpermeation periods arise from both distinct mechanisms: a C-type inactivation (resulting from dilation at the top of the SF), which has been described previously, and a carbonyl flipping in an SF binding site. We find that, besides the prevention of C-type inactivation in the channel, the ligands increase the probability of permeation by modulating the dynamics of the carbonyl flipping, influenced by a threonine residue at the bottom of the SF. These results offer insights for rational ligand design to optimize the gating modulation of TREK1 and related K+ channels.
Collapse
Affiliation(s)
- Edward Mendez-Otalvaro
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Chemistry, Queen Mary University of London, London, United Kingdom.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Krygier M, Ziętkiewicz S, Talaśka-Liczbik W, Chylińska M, Walczak A, Kostrzewa G, Płoski R, Mazurkiewicz-Bełdzińska M. The epilepsy phenotype of KCNK4-related neurodevelopmental disease. Seizure 2024; 121:114-122. [PMID: 39146707 DOI: 10.1016/j.seizure.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
INTRODUCTION Potassium ion channels play a crucial role in maintaining cellular electrical stability and are implicated in various epilepsies. Heterozygous pathogenic variants in KCNK4 cause a recognizable neurodevelopmental syndrome with facial dysmorphism, hypertrichosis, epilepsy, intellectual disability (ID), and gingival overgrowth (FHEIG). To date, no more than nine patients with FHEIG have been described worldwide and still little is known about epileptic phenotype in KCNK4-related disease. METHODS We identified a novel de novo p.(Gly139Arg) variant in KCNK4 in a patient with drug-resistant nocturnal seizures, mild ID, and dysmorphic features. In silico analyses of the variant strongly suggest a gain-of-function effect. We conducted a retrospective review of previously published cases, focusing on the epileptic features and response to various treatments. RESULTS To date, epilepsy has been reported in 8/10 patients with KCNK4-related disease. The mean age of seizure onset was 1.8 years, and the most common seizure type was focal to bilateral tonic-clonic (5/8). Sodium channel blockers and valproate were effective in the majority of patients, but in 3/8 the epilepsy was drug-resistant. Our patient showed improved seizure control after treatment with the carbonic anhydrase inhibitor sulthiame. Interestingly, the patient showed features of peripheral nerve hyperexcitability syndrome, a phenomenon not previously described in potassium channelopathies caused by increased K+ conductance. CONCLUSION Gain-of-function variants in KCNK4 cause a spectrum of epilepsies, ranging from benign isolated epilepsy to epileptic encephalopathy, with focal to bilateral tonic-clonic seizures being the most commonly observed. Importantly, a subgroup of patients present with a mild extra-neurological phenotype without characteristic facial dysmorphism or generalized hypertrichosis. This report expands the phenotypic spectrum of KNCK4-associated disease and provides new insights into the clinical heterogeneity of this rare neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Magdalena Krygier
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland.
| | - Szymon Ziętkiewicz
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
9
|
Matsuki Y, Takashima M, Ueki M, Iwamoto M, Oiki S. Probing membrane deformation energy by KcsA potassium channel gating under varied membrane thickness and tension. FEBS Lett 2024; 598:1955-1966. [PMID: 38880762 DOI: 10.1002/1873-3468.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
This study investigated how membrane thickness and tension modify the gating of KcsA potassium channels when simultaneously varied. The KcsA channel undergoes global conformational changes upon gating: expansion of the cross-sectional area and longitudinal shortening upon opening. Thus, membranes impose differential effects on the open and closed conformations, such as hydrophobic mismatches. Here, the single-channel open probability was recorded in the contact bubble bilayer, by which variable thickness membranes under a defined tension were applied. A fully open channel in thin membranes turned to sporadic openings in thick membranes, where the channel responded moderately to tension increase. Quantitative gating analysis prompted the hypothesis that tension augmented the membrane deformation energy when hydrophobic mismatch was enhanced in thick membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
| | - Masako Takashima
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Misuzu Ueki
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Masayuki Iwamoto
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
10
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1(THIK-1) channel reveals a novel hydrophilic pore restriction and lipid cofactor site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600491. [PMID: 38979306 PMCID: PMC11230452 DOI: 10.1101/2024.06.26.600491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The halothane-inhibited K2P leak potassium channel K2P13.1 (THIK-1)1-3 is found in diverse cells1,4 including neurons1,5 and microglia6-8 where it affects surveillance6, synaptic pruning7, phagocytosis7, and inflammasome-mediated interleukin-1β release6,8,9. As with many K2Ps1,5,10-14 and other voltage-gated ion channel (VGIC) superfamily members3,15,16, polyunsaturated fatty acid (PUFA) lipids modulate K2P13.1 (THIK-1)1,5,14,17 via a poorly understood mechanism. Here, we present cryo-electronmicroscopy (cryo-EM) structures of human K2P13.1 (THIK-1) and mutants in lipid nanodiscs and detergent. These reveal that, unlike other K2Ps13,18-24, K2P13.1 (THIK-1) has a two-chamber aqueous inner cavity obstructed by a M4 transmembrane helix tyrosine (Tyr273, the flow restrictor). This hydrophilic barrier can be opened by an activatory mutation, S136P25, at natural break in the M2 transmembrane helix and by intrinsic channel dynamics. The structures also reveal a buried lipid in the P1/M4 intersubunit interface at a location, the PUFA site, that coincides with the TREK subfamily K2P modulator pocket for small molecule agonists18,26,27. This overlap, together with the effects of mutation on K2P13.1 (THIK-1) PUFA responses, indicates that the PUFA site lipids are K2P13.1 (THIK-1) cofactors. Comparison with the PUFA-responsive VGIC Kv7.1 (KCNQ1)28-31 reveals a shared role for the equivalent pore domain intersubunit interface in lipid modulation, providing a framework for dissecting the effects of PUFAs on the VGIC superfamily. Our findings reveal the unique architecture underlying K2P13.1 (THIK-1) function, highlight the importance of the P1/M4 interface in control of K2Ps by both natural and synthetic agents, and should aid development of THIK subfamily modulators for diseases such as neuroinflammation6,32 and autism6.
Collapse
Affiliation(s)
- Shatabdi Roy-Chowdhury
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fiona Naughton
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 93858-2330 USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
11
|
Lin H, Li J, Zhang Q, Yang H, Chen S. C-type inactivation and proton modulation mechanisms of the TASK3 channel. Proc Natl Acad Sci U S A 2024; 121:e2320345121. [PMID: 38630723 PMCID: PMC11046659 DOI: 10.1073/pnas.2320345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.
Collapse
Affiliation(s)
- Huajian Lin
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai200125, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Shanshuang Chen
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai200125, China
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
| |
Collapse
|
12
|
Sorum B, Docter T, Panico V, Rietmeijer RA, Brohawn SG. Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2. Nat Commun 2024; 15:3142. [PMID: 38605031 PMCID: PMC11009253 DOI: 10.1038/s41467-024-47208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
TRAAK, TREK-1, and TREK-2 are mechanosensitive two-pore domain K+ (K2P) channels that contribute to action potential propagation, sensory transduction, and muscle contraction. While structural and functional studies have led to models that explain their mechanosensitivity, we lack a quantitative understanding of channel activation by membrane tension. Here, we define the tension response of mechanosensitive K2Ps using patch-clamp recording and imaging. All are low-threshold mechanosensitive channels (T10%/50% 0.6-2.7 / 4.4-6.4 mN/m) with distinct response profiles. TRAAK is most sensitive, TREK-1 intermediate, and TREK-2 least sensitive. TRAAK and TREK-1 are activated broadly over a range encompassing nearly all physiologically relevant tensions. TREK-2, in contrast, activates over a narrower range like mechanosensitive channels Piezo1, MscS, and MscL. We further show that low-frequency, low-intensity focused ultrasound increases membrane tension to activate TRAAK and MscS. This work provides insight into tension gating of mechanosensitive K2Ps relevant to understanding their physiological roles and potential applications for ultrasonic neuromodulation.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Trevor Docter
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Vincent Panico
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Robert A Rietmeijer
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Fok A, Brissette B, Hallacy T, Ahamed H, Ho E, Ramanathan S, Ringstad N. High-fidelity encoding of mechanostimuli by tactile food-sensing neurons requires an ensemble of ion channels. Cell Rep 2023; 42:112452. [PMID: 37119137 PMCID: PMC10320741 DOI: 10.1016/j.celrep.2023.112452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel-TWK-2-that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality-tactile food sensing-emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron.
Collapse
Affiliation(s)
- Alice Fok
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Benjamin Brissette
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Tim Hallacy
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Hassan Ahamed
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Elver Ho
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Schmidpeter PAM, Petroff JT, Khajoueinejad L, Wague A, Frankfater C, Cheng WWL, Nimigean CM, Riegelhaupt PM. Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Nat Commun 2023; 14:1077. [PMID: 36841877 PMCID: PMC9968290 DOI: 10.1038/s41467-023-36765-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.
Collapse
Affiliation(s)
| | - John T Petroff
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Leila Khajoueinejad
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Aboubacar Wague
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Cheryl Frankfater
- Department of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Paul M Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
15
|
Young MN, Sindoni MJ, Lewis AH, Zauscher S, Grandl J. The energetics of rapid cellular mechanotransduction. Proc Natl Acad Sci U S A 2023; 120:e2215747120. [PMID: 36795747 PMCID: PMC9974467 DOI: 10.1073/pnas.2215747120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Cells throughout the human body detect mechanical forces. While it is known that the rapid (millisecond) detection of mechanical forces is mediated by force-gated ion channels, a detailed quantitative understanding of cells as sensors of mechanical energy is still lacking. Here, we combine atomic force microscopy with patch-clamp electrophysiology to determine the physical limits of cells expressing the force-gated ion channels (FGICs) Piezo1, Piezo2, TREK1, and TRAAK. We find that, depending on the ion channel expressed, cells can function either as proportional or nonlinear transducers of mechanical energy and detect mechanical energies as little as ~100 fJ, with a resolution of up to ~1 fJ. These specific energetic values depend on cell size, channel density, and cytoskeletal architecture. We also make the surprising discovery that cells can transduce forces either nearly instantaneously (<1 ms) or with a substantial time delay (~10 ms). Using a chimeric experimental approach and simulations, we show how such delays can emerge from channel-intrinsic properties and the slow diffusion of tension in the membrane. Overall, our experiments reveal the capabilities and limits of cellular mechanosensing and provide insights into molecular mechanisms that different cell types may employ to specialize for their distinct physiological roles.
Collapse
Affiliation(s)
- Michael N. Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Michael J. Sindoni
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27710
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
16
|
Sorum B, Docter T, Panico V, Rietmeijer RA, Brohawn SG. Pressure and ultrasound activate mechanosensitive TRAAK K + channels through increased membrane tension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523644. [PMID: 36712118 PMCID: PMC9882092 DOI: 10.1101/2023.01.11.523644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRAAK is a mechanosensitive two-pore domain K + (K2P) channel found in nodes of Ranvier within myelinated axons. It displays low leak activity at rest and is activated up to one hundred-fold by increased membrane tension. Structural and functional studies have led to physical models for channel gating and mechanosensitivity, but no quantitative analysis of channel activation by tension has been reported. Here, we use simultaneous patch-clamp recording and fluorescent imaging to determine the tension response characteristics of TRAAK. TRAAK shows high sensitivity and a broad response to tension spanning nearly the entire physiologically relevant tension range. This graded response profile distinguishes TRAAK from similarly low-threshold mechanosensitive channels Piezo1 and MscS, which activate in a step-like fashion over a narrow tension range. We further use patch imaging to show that ultrasonic activation of TRAAK and MscS is due to increased membrane tension. Together, these results provide mechanistic insight into TRAAK tension gating, a framework for exploring the role of mechanosensitive K + channels at nodes of Ranvier, and biophysical context for developing ultrasound as a mechanical stimulation technique for neuromodulation.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Trevor Docter
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Vincent Panico
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Robert A. Rietmeijer
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Stephen G. Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA.,Correspondence:
| |
Collapse
|
17
|
Turney TS, Li V, Brohawn SG. Structural Basis for pH-gating of the K + channel TWIK1 at the selectivity filter. Nat Commun 2022; 13:3232. [PMID: 35680900 PMCID: PMC9184524 DOI: 10.1038/s41467-022-30853-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/20/2022] [Indexed: 11/11/2022] Open
Abstract
TWIK1 (K2P1.1, KCNK1) is a widely expressed pH-gated two-pore domain K+ channel (K2P) that contributes to cardiac rhythm generation and insulin release from pancreatic beta cells. TWIK1 displays unique properties among K2Ps including low basal activity and inhibition by extracellular protons through incompletely understood mechanisms. Here, we present cryo-EM structures of TWIK1 in lipid nanodiscs at high and low pH that reveal a previously undescribed gating mechanism at the K+ selectivity filter. At high pH, TWIK1 adopts an open conformation. At low pH, protonation of an extracellular histidine results in a cascade of conformational changes that close the channel by sealing the top of the selectivity filter, displacing the helical cap to block extracellular ion access pathways, and opening gaps for lipid block of the intracellular cavity. These data provide a mechanistic understanding for extracellular pH-gating of TWIK1 and illustrate how diverse mechanisms have evolved to gate the selectivity filter of K+ channels.
Collapse
Affiliation(s)
- Toby S Turney
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, 94720, USA
| | - Vivian Li
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, 94720, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Panasawatwong A, Pipatpolkai T, Tucker SJ. Transition between conformational states of the TREK-1 K2P channel promoted by interaction with PIP 2. Biophys J 2022; 121:2380-2388. [PMID: 35596528 DOI: 10.1016/j.bpj.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Members of the TREK family of two-pore domain (K2P) potassium channels are highly sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate (PIP2). Previous studies have demonstrated that PIP2 increases TREK1 channel activity, however, the mechanistic understanding of the conformational transitions induced by PIP2 remain unclear. Here, we used coarse-grained molecular dynamics (CG-MD) and atomistic MD simulations to model the PIP2 binding site on both the up and down state conformations of TREK-1. We also calculated the free energy of PIP2 binding relative to other anionic phospholipids in both conformational states using potential of mean force (PMF) and free energy perturbation (FEP) calculations. Our results identify state-dependent binding of PIP2 to sites involving the proximal C-terminus and we show that PIP2 promotes a conformational transition from a down state towards an intermediate that resembles the up state. These results are consistent with functional data for PIP2 regulation and together provide evidence for a structural mechanism of TREK-1 channel activation by phosphoinositides.
Collapse
Affiliation(s)
| | - Tanadet Pipatpolkai
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, U.K.; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K..
| | - Stephen J Tucker
- Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K..
| |
Collapse
|