1
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. J Neurosci 2025; 45:e0002252025. [PMID: 40139804 PMCID: PMC12044039 DOI: 10.1523/jneurosci.0002-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice of both sexes performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.Significance statement Appreciation of pathways for transthalamic communication between cortical areas, organized in parallel with direct connections, has transformed our thinking about cortical functioning writ large. Studies of transthalamic pathways initially concentrated on their anatomy and physiology, but there has been a shift towards understanding their importance to cognitive behavior. Here, we have used an optogenetic approach in mice to selectively inhibit the transthalamic pathway from primary visual cortex to other cortical areas and back to itself. We find that such inhibition degrades the animals' ability to discriminate, showing for the first time that specific inhibition of visual transthalamic circuitry reduces visual discrimination. This causal data adds to the growing evidence for the importance of transthalamic signaling in perceptual processing.
Collapse
Affiliation(s)
- Claire McKinnon
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60637
| | - Christina Mo
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - S. Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
2
|
Klatzmann U, Froudist-Walsh S, Bliss DP, Theodoni P, Mejías J, Niu M, Rapan L, Palomero-Gallagher N, Sergent C, Dehaene S, Wang XJ. A dynamic bifurcation mechanism explains cortex-wide neural correlates of conscious access. Cell Rep 2025; 44:115372. [PMID: 40088446 DOI: 10.1016/j.celrep.2025.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/06/2024] [Accepted: 02/07/2025] [Indexed: 03/17/2025] Open
Abstract
Conscious access is suggested to involve "ignition," an all-or-none activation across cortical areas. To elucidate this phenomenon, we carry out computer simulations of a detection task using a mesoscale connectome-based model for the multiregional macaque cortex. The model uncovers a dynamic bifurcation mechanism that gives rise to ignition in a network of associative regions. A hierarchical N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor gradient plays a critical role: fast AMPA receptors drive feedforward signal propagation, while slow NMDA receptors in feedback pathways shape and sustain the ignited network. Intriguingly, the model suggests higher NMDA-to-AMPA receptor ratios in sensory areas compared to association areas, a prediction supported by in vitro autoradiography data. Furthermore, the model accounts for diverse behavioral and physiological phenomena linked to consciousness. This work sheds light on how receptor gradients along the cortical hierarchy enable distributed cognitive functions and provides a biologically constrained computational framework for investigating the neurophysiological basis of conscious access.
Collapse
Affiliation(s)
- Ulysse Klatzmann
- Center for Neural Science, New York University, New York, NY 10003, USA; Université de Paris Cité, INCC UMR 8002, 75006 Paris, France; Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, UK
| | - Sean Froudist-Walsh
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, UK
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Panagiota Theodoni
- Center for Neural Science, New York University, New York, NY 10003, USA; Center for Mind, Brain, and Consciousness, Department of Philosophy, New York University, New York City NY 10003, USA
| | - Jorge Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Claire Sergent
- Université de Paris Cité, INCC UMR 8002, 75006 Paris, France; CNRS, INCC UMR 8002, Paris, France
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637190. [PMID: 39975026 PMCID: PMC11839038 DOI: 10.1101/2025.02.07.637190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.
Collapse
Affiliation(s)
- C. McKinnon
- Committee on Computational Neuroscience, University of Chicago, Illinois, USA
| | - C. Mo
- Department of Neurobiology, University of Chicago, Illinois, USA
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - S. M. Sherman
- Department of Neurobiology, University of Chicago, Illinois, USA
| |
Collapse
|
4
|
Weiss O, Coen-Cagli R. Measuring Stimulus Information Transfer Between Neural Populations through the Communication Subspace. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622283. [PMID: 39574567 PMCID: PMC11580955 DOI: 10.1101/2024.11.06.622283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sensory processing arises from the communication between neural populations across multiple brain areas. While the widespread presence of neural response variability shared throughout a neural population limits the amount of stimulus-related information those populations can accurately represent, how this variability affects the interareal communication of sensory information is unknown. We propose a mathematical framework to understand the impact of neural population response variability on sensory information transmission. We combine linear Fisher information, a metric connecting stimulus representation and variability, with the framework of communication subspaces, which suggests that functional mappings between cortical populations are low-dimensional relative to the space of population activity patterns. From this, we partition Fisher information depending on the alignment between the population covariance and the mean tuning direction projected onto the communication subspace or its orthogonal complement. We provide mathematical and numerical analyses of our proposed decomposition of Fisher information and examine theoretical scenarios that demonstrate how to leverage communication subspaces for flexible routing and gating of stimulus information. This work will provide researchers investigating interareal communication with a theoretical lens through which to understand sensory information transmission and guide experimental design.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
6
|
Mo C, McKinnon C, Murray Sherman S. A transthalamic pathway crucial for perception. Nat Commun 2024; 15:6300. [PMID: 39060240 PMCID: PMC11282105 DOI: 10.1038/s41467-024-50163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Perception is largely supported by cortical processing that involves communication among multiple areas, typically starting with primary sensory cortex and then involving higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we suggest that transthalamic processing propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways may therefore act to deliver performance-relevant information to higher order cortex and are underappreciated hierarchical pathways in perceptual decision-making.
Collapse
Affiliation(s)
- Christina Mo
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| | - Claire McKinnon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Liu Y, Zhang J, Jiang Z, Qin M, Xu M, Zhang S, Ma G. Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex. Nat Commun 2024; 15:4495. [PMID: 38802410 PMCID: PMC11130321 DOI: 10.1038/s41467-024-48924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Unified visual perception requires integration of bottom-up and top-down inputs in the primary visual cortex (V1), yet the organization of top-down inputs in V1 remains unclear. Here, we used optogenetics-assisted circuit mapping to identify how multiple top-down inputs from higher-order cortical and thalamic areas engage V1 excitatory and inhibitory neurons. Top-down inputs overlap in superficial layers yet segregate in deep layers. Inputs from the medial secondary visual cortex (V2M) and anterior cingulate cortex (ACA) converge on L6 Pyrs, whereas ventrolateral orbitofrontal cortex (ORBvl) and lateral posterior thalamic nucleus (LP) inputs are processed in parallel in Pyr-type-specific subnetworks (Pyr←ORBvl and Pyr←LP) and drive mutual inhibition between them via local interneurons. Our study deepens understanding of the top-down modulation mechanisms of visual processing and establishes that V2M and ACA inputs in L6 employ integrated processing distinct from the parallel processing of LP and ORBvl inputs in L5.
Collapse
Affiliation(s)
- Yanmei Liu
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahe Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhishan Jiang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guofen Ma
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
10
|
Han S, Helmchen F. Behavior-relevant top-down cross-modal predictions in mouse neocortex. Nat Neurosci 2024; 27:298-308. [PMID: 38177341 DOI: 10.1038/s41593-023-01534-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Animals adapt to a constantly changing world by predicting their environment and the consequences of their actions. The predictive coding hypothesis proposes that the brain generates predictions and continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles conflicting top-down predictions and bottom-up sensory information remains unclear. To address this question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had learned the task with fixed tone-texture matching, the presentation of mismatched pairing induced conflicts between tone-based texture predictions and actual texture inputs. When decisions were based on the predicted rather than the actual texture, top-down information flow was dominant and texture representations in both areas were modified, whereas dominant bottom-up information flow led to correct representations and behavioral choice. Our findings provide evidence for hierarchical predictive coding in the mouse neocortex.
Collapse
Affiliation(s)
- Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Ding X, Froudist-Walsh S, Jaramillo J, Jiang J, Wang XJ. Cell type-specific connectome predicts distributed working memory activity in the mouse brain. eLife 2024; 13:e85442. [PMID: 38174734 PMCID: PMC10807864 DOI: 10.7554/elife.85442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.
Collapse
Affiliation(s)
- Xingyu Ding
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of BristolBristolUnited Kingdom
| | - Jorge Jaramillo
- Center for Neural Science, New York UniversityNew YorkUnited States
- Campus Institute for Dynamics of Biological Networks, University of GöttingenGöttingenGermany
| | - Junjie Jiang
- Center for Neural Science, New York UniversityNew YorkUnited States
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,Institute of Health and Rehabilitation Science,School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi’an Jiaotong UniversityXi'anChina
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
12
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating interareal touch signal amplification. Cell Rep 2023; 42:113532. [PMID: 38064338 PMCID: PMC10842872 DOI: 10.1016/j.celrep.2023.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during active touch. Volumetric calcium imaging in mice palpating an object with two whiskers revealed a sparse population of highly responsive, broadly tuned touch neurons especially pronounced in layer 2 of both areas. These rare neurons exhibited elevated synchrony and carried most touch-evoked activity in both directions. Lesioning the subregion of either area responding to the spared whiskers degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse population of broadly tuned touch neurons dominates vS1-vS2 communication in both directions, and topographically matched vS1 and vS2 subregions recurrently amplify whisker touch activity.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
13
|
Rockland KS. Cellular and laminar architecture: A short history and commentary. J Comp Neurol 2023; 531:1926-1933. [PMID: 37941081 PMCID: PMC11406557 DOI: 10.1002/cne.25553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
The feedforward/feedback classification, as originally stated in relation to early visual areas in the macaque monkey, has had a significant influence on ideas of laminar interactions, area reciprocity, and cortical hierarchical organization. In some contrast with this macroscale "laminar connectomics," a more cellular approach to cortical connections, as briefly surveyed here, points to a still underappreciated heterogeneity of neuronal subtypes and complex microcircuitries. From the perspective of heterogeneities, the question of how brain regions interact and influence each other quickly leads to discussions about concurrent hierarchical and nonhierarchical cortical features, brain organization as a multiscale system forming nested groups and hierarchies, connectomes annotated by multiple biological attributes, and interleaved and overlapping scales of organization.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Barbosa J, Proville R, Rodgers CC, DeWeese MR, Ostojic S, Boubenec Y. Early selection of task-relevant features through population gating. Nat Commun 2023; 14:6837. [PMID: 37884507 PMCID: PMC10603060 DOI: 10.1038/s41467-023-42519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.
Collapse
Affiliation(s)
- Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France.
| | - Rémi Proville
- Tailored Data Solutions, 192 Cours Gambetta, 84300, Cavaillon, France
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University, Atlanta, GA, 30033, USA
| | - Michael R DeWeese
- Department of Physics, Helen Wills Neuroscience Institute, and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure PSL Research University, CNRS, Paris, France
| |
Collapse
|
15
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Rowland JM, van der Plas TL, Loidolt M, Lees RM, Keeling J, Dehning J, Akam T, Priesemann V, Packer AM. Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nat Neurosci 2023; 26:1584-1594. [PMID: 37640911 PMCID: PMC10471496 DOI: 10.1038/s41593-023-01413-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.
Collapse
Affiliation(s)
- James M Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Thijs L van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Matthias Loidolt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert M Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Science and Technology Facilities Council, Octopus Imaging Facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonas Dehning
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Mo C, McKinnon C, Sherman SM. A transthalamic pathway crucial for perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.533323. [PMID: 37034798 PMCID: PMC10081228 DOI: 10.1101/2023.03.30.533323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perception arises from activity between cortical areas, first primary cortex and then higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we show that the transthalamic pathway linking somatosensory cortices propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways thus appear critical in delivering performance-relevant information to higher order cortex and are critical hierarchical pathways in perceptual decision-making.
Collapse
|
18
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating inter-areal touch signal amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543886. [PMID: 37333308 PMCID: PMC10274616 DOI: 10.1101/2023.06.06.543886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensory cortical areas are often organized into topographic maps which represent the sensory epithelium1,2. Individual areas are richly interconnected3, in many cases via reciprocal projections that respect the topography of the underlying map4,5. Because topographically matched cortical patches process the same stimulus, their interaction is likely central to many neural computations6-10. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during whisker touch. In the mouse, whisker touch-responsive neurons are topographically organized in both vS1 and vS2. Both areas receive thalamic touch input and are topographically interconnected4. Volumetric calcium imaging in mice actively palpating an object with two whiskers revealed a sparse population of highly active, broadly tuned touch neurons responsive to both whiskers. These neurons were especially pronounced in superficial layer 2 in both areas. Despite their rarity, these neurons served as the main conduits of touch-evoked activity between vS1 and vS2 and exhibited elevated synchrony. Focal lesions of the whisker touch-responsive region in vS1 or vS2 degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse and superficial population of broadly tuned touch neurons recurrently amplifies touch responses across vS1 and vS2.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
19
|
Fişek M, Herrmann D, Egea-Weiss A, Cloves M, Bauer L, Lee TY, Russell LE, Häusser M. Cortico-cortical feedback engages active dendrites in visual cortex. Nature 2023; 617:769-776. [PMID: 37138089 DOI: 10.1038/s41586-023-06007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alexander Egea-Weiss
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matilda Cloves
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lisa Bauer
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tai-Ying Lee
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
20
|
Galgali AR, Sahani M, Mante V. Residual dynamics resolves recurrent contributions to neural computation. Nat Neurosci 2023; 26:326-338. [PMID: 36635498 DOI: 10.1038/s41593-022-01230-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/08/2022] [Indexed: 01/14/2023]
Abstract
Relating neural activity to behavior requires an understanding of how neural computations arise from the coordinated dynamics of distributed, recurrently connected neural populations. However, inferring the nature of recurrent dynamics from partial recordings of a neural circuit presents considerable challenges. Here we show that some of these challenges can be overcome by a fine-grained analysis of the dynamics of neural residuals-that is, trial-by-trial variability around the mean neural population trajectory for a given task condition. Residual dynamics in macaque prefrontal cortex (PFC) in a saccade-based perceptual decision-making task reveals recurrent dynamics that is time dependent, but consistently stable, and suggests that pronounced rotational structure in PFC trajectories during saccades is driven by inputs from upstream areas. The properties of residual dynamics restrict the possible contributions of PFC to decision-making and saccade generation and suggest a path toward fully characterizing distributed neural computations with large-scale neural recordings and targeted causal perturbations.
Collapse
Affiliation(s)
- Aniruddh R Galgali
- Institute of Neuroinformatics, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Valerio Mante
- Institute of Neuroinformatics, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Chadwick A, Khan AG, Poort J, Blot A, Hofer SB, Mrsic-Flogel TD, Sahani M. Learning shapes cortical dynamics to enhance integration of relevant sensory input. Neuron 2023; 111:106-120.e10. [PMID: 36283408 PMCID: PMC7614688 DOI: 10.1016/j.neuron.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Adaptive sensory behavior is thought to depend on processing in recurrent cortical circuits, but how dynamics in these circuits shapes the integration and transmission of sensory information is not well understood. Here, we study neural coding in recurrently connected networks of neurons driven by sensory input. We show analytically how information available in the network output varies with the alignment between feedforward input and the integrating modes of the circuit dynamics. In light of this theory, we analyzed neural population activity in the visual cortex of mice that learned to discriminate visual features. We found that over learning, slow patterns of network dynamics realigned to better integrate input relevant to the discrimination task. This realignment of network dynamics could be explained by changes in excitatory-inhibitory connectivity among neurons tuned to relevant features. These results suggest that learning tunes the temporal dynamics of cortical circuits to optimally integrate relevant sensory input.
Collapse
Affiliation(s)
- Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK.
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Antonin Blot
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK.
| |
Collapse
|