1
|
Paveliev M, Egorchev AA, Musin F, Lipachev N, Melnikova A, Gimadutdinov RM, Kashipov AR, Molotkov D, Chickrin DE, Aganov AV. Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence. Int J Mol Sci 2024; 25:4227. [PMID: 38673819 PMCID: PMC11049984 DOI: 10.3390/ijms25084227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anton A. Egorchev
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Foat Musin
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Nikita Lipachev
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| | - Anastasiia Melnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 74, Kazan 420015, Tatarstan, Russia;
| | - Rustem M. Gimadutdinov
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Aidar R. Kashipov
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Dmitry Molotkov
- Biomedicum Imaging Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland;
| | - Dmitry E. Chickrin
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Albert V. Aganov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| |
Collapse
|
2
|
White BR, Adepoju TE, Fisher HB, Shinohara RT, Vandekar S. Spatial nonstationarity of image noise in widefield optical imaging and its effects on cluster-based inference for resting-state functional connectivity. J Neurosci Methods 2024; 404:110076. [PMID: 38331258 PMCID: PMC10940215 DOI: 10.1016/j.jneumeth.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Resting-state functional connectivity (RSFC) analysis with widefield optical imaging (WOI) is a potentially powerful tool to develop imaging biomarkers in mouse models of disease before translating them to human neuroimaging with functional magnetic resonance imaging (fMRI). The delineation of such biomarkers depends on rigorous statistical analysis. However, statistical understanding of WOI data is limited. In particular, cluster-based analysis of neuroimaging data depends on assumptions of spatial stationarity (i.e., that the distribution of cluster sizes under the null is equal at all brain locations). Whether actual data deviate from this assumption has not previously been examined in WOI. NEW METHOD In this manuscript, we characterize the effects of spatial nonstationarity in WOI RSFC data and adapt a "two-pass" technique from fMRI to correct cluster sizes and mitigate spatial bias, both parametrically and nonparametrically. These methods are tested on multi-institutional data. RESULTS AND COMPARISON WITH EXISTING METHODS We find that spatial nonstationarity has a substantial effect on inference in WOI RSFC data with false positives much more likely at some brain regions than others. This pattern of bias varies between imaging systems, contrasts, and mouse ages, all of which could affect experimental reproducibility if not accounted for. CONCLUSIONS Both parametric and nonparametric corrections for nonstationarity result in significant improvements in spatial bias. The proposed methods are simple to implement and will improve the robustness of inference in optical neuroimaging data.
Collapse
Affiliation(s)
- Brian R White
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiology, Department of Pediatrics, USA.
| | - Temilola E Adepoju
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiology, Department of Pediatrics, USA
| | - Hayden B Fisher
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiology, Department of Pediatrics, USA
| | - Russell T Shinohara
- University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, USA; University of Pennsylvania, Center for Biomedical Image Computing and Analysis, Department of Radiology, USA; University of Pennsylvania, Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, USA
| | | |
Collapse
|
3
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Chen R, Liu M, Chen W, Wang Y, Meijering E. Deep learning in mesoscale brain image analysis: A review. Comput Biol Med 2023; 167:107617. [PMID: 37918261 DOI: 10.1016/j.compbiomed.2023.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Mesoscale microscopy images of the brain contain a wealth of information which can help us understand the working mechanisms of the brain. However, it is a challenging task to process and analyze these data because of the large size of the images, their high noise levels, the complex morphology of the brain from the cellular to the regional and anatomical levels, the inhomogeneous distribution of fluorescent labels in the cells and tissues, and imaging artifacts. Due to their impressive ability to extract relevant information from images, deep learning algorithms are widely applied to microscopy images of the brain to address these challenges and they perform superiorly in a wide range of microscopy image processing and analysis tasks. This article reviews the applications of deep learning algorithms in brain mesoscale microscopy image processing and analysis, including image synthesis, image segmentation, object detection, and neuron reconstruction and analysis. We also discuss the difficulties of each task and possible directions for further research.
Collapse
Affiliation(s)
- Runze Chen
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Min Liu
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China; Research Institute of Hunan University in Chongqing, Chongqing, 401135, China.
| | - Weixun Chen
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Yaonan Wang
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|