1
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. Mol Psychiatry 2025:10.1038/s41380-025-03026-9. [PMID: 40316677 DOI: 10.1038/s41380-025-03026-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs. This is observed only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, we observe CP-AMPAR upregulation in D1 MSN (but not D2 MSN) and the effect of exogenous RA application is occluded in these D1 MSN. Instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes elevated cue-induced cocaine seeking back to non-incubated levels. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
| |
Collapse
|
2
|
Li T, Zhou W, Ke J, Chen M, Wang Z, Hayashi L, Su X, Jia W, Huang W, Wang CS, Bengyella K, Yang Y, Hernandez R, Zhang Y, Song X, Xu T, Huang T, Liu Y. A pontine center in descending pain control. Neuron 2025:S0896-6273(25)00171-0. [PMID: 40132590 DOI: 10.1016/j.neuron.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Pain sensation changes according to expectation, context, and mood, illustrating how top-down circuits affect somatosensory processing. Here, we used an intersectional strategy to identify anatomical and molecular-spatial features of supraspinal descending neurons activated by distinct noxious stimulation. This approach captured known descending pain pathways as well as spinal projecting neurons that are anatomically mapped to Barrington's nucleus in the dorsal pontine tegmentum. We determined that this population of neurons expresses corticotropin-releasing hormone in Barrington's nucleus (BarCrh) and exhibits time-locked firing in response to noxious stimulation. Chemogenetic activation of BarCrh neurons attenuated nocifensive responses as well as tactile neuropathic pain, while silencing these neurons resulted in thermal hyperalgesia and mechanical allodynia. Mechanistically, we demonstrated that pain-related input from the ventrolateral periaqueductal gray recruits BarCrh neurons, reduces ascending nociceptive transmission, and preferentially activates spinal dynorphin neurons to mediate analgesia. Our data expose a pontine inhibitory descending pathway that powerfully controls nocifensive sensory input to the brain.
Collapse
Affiliation(s)
- Tianming Li
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Wenjie Zhou
- Department of Cardiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Jin Ke
- Shenzhen Key Laboratory of Neuropsychiatric Modulations, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Matthew Chen
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Zhen Wang
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Lauren Hayashi
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Xiaojing Su
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Wenbin Jia
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Wenxi Huang
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Chien-Sheng Wang
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Kapsa Bengyella
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Yang Yang
- Department of Neurology, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, P.R. China
| | - Rafael Hernandez
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Yan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xinglei Song
- Department of Anatomy and Physiology, Shanghai Jiao Tong University, School of Medicine, Shanghai, P.R. China
| | - Tianle Xu
- Department of Cardiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tianwen Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulations, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China.
| | - Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research (NIDCR), National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Su Y, Yang F, Xie JC, Zhang C, Luo RX, Li WS, Liu BL, Su MZ. Electroacupuncture Neural Stimulation Mitigates Bladder Dysfunction and Mechanical Allodynia in Cyclophosphamide Induced Cystitis through Downregulation of the BDNF-TrkB Signaling Pathway. eNeuro 2025; 12:ENEURO.0329-24.2025. [PMID: 40064496 PMCID: PMC11913400 DOI: 10.1523/eneuro.0329-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Central sensitization plays a critical role in bladder pain syndrome/interstitial cystitis (BPS/IC). Electroacupuncture (EA) nerve stimulation therapy has been broadly acknowledged as an effective means of alleviating chronic pathological pain. However, it remains to be explored whether EA is effective in mitigating pain-sensitive symptoms of BPS/IC and the mechanisms involved. This study aims to investigate the analgesic effect and mechanism of EA therapy. To achieve this goal, we employed several techniques: mechanical pain threshold tests to assess pain sensitivity, urodynamic studies to evaluate bladder function, Western blotting (WB) for protein analysis, immunofluorescence for visualizing, and transcriptomics. A rat cystitis model was established through a systemic intraperitoneal injection with cyclophosphamide (CYP). EA therapy was executed by stimulating the deep part of the hypochondriac point, where the 2nd-4th sacral nerves traverse. EA treatment was observed to effectively reduce mechanical allodynia, enhance urinary function, suppress the activation of microglial cells, and alleviate neuroinflammation. Additionally, EA demonstrated the capability to downregulate BDNF-TrkB signal transduction in the spinal dorsal horn. Transcriptome sequencing has indicated that EA therapy potentially inhibits excitatory neural transmission and modulates several pathways related to longevity. Furthermore, EA therapy has shown efficacy in treating conditions such as Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In conclusion, by regulating the BDNF-TrkB signaling, EA nerve stimulation can effectively alleviate bladder dysfunction and mechanical allodynia in cyclophosphamide-induced cystitis model. Our research elucidates the underlying mechanisms of EA therapy in treating bladder dysfunction and offers new theoretical insights for addressing painful sensitization in BPS.Significance Statement Central sensitization is a major factor in bladder pain syndrome/interstitial cystitis (BPS/IC), making effective pain management crucial. This study explores the potential of electroacupuncture (EA) as a therapeutic approach to alleviate pain and improve bladder function in a rat model of BPS/IC induced by cyclophosphamide. Our findings demonstrate that EA therapy significantly reduces mechanical allodynia, enhances urinary function, and decreases neuroinflammation by modulating BDNF-TrkB signaling in the spinal dorsal horn. The research highlights EA's capability to inhibit excitatory neural transmission and provide relief in chronic pain conditions. These results offer new insights into the mechanisms of EA therapy, potentially improving treatment strategies for BPS/IC and similar pain syndromes.
Collapse
Affiliation(s)
- Ying Su
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Fei Yang
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jun-Cong Xie
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Chi Zhang
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Rui-Xiang Luo
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Shuang Li
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo-Long Liu
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Min-Zhi Su
- Department of Rehabilitation, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
4
|
Wong C, Rodriguez-Hernandez LD, Lister KC, Gu N, Cai W, Hooshmandi M, Fan J, Brown N, Nguyen V, Ribeiro-da-Silva A, Bonin RP, Khoutorsky A. Targeting spinal mechanistic target of rapamycin complex 2 alleviates inflammatory and neuropathic pain. Brain 2025; 148:675-686. [PMID: 39167538 PMCID: PMC11788203 DOI: 10.1093/brain/awae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
The development and maintenance of chronic pain involve the reorganization of spinal nocioceptive circuits. The mechanistic target of rapamycin complex 2 (mTORC2), a central signalling hub that modulates both actin-dependent structural changes and mechanistic target of rapamycin complex 1 (mTORC1)-dependent mRNA translation, plays key roles in hippocampal synaptic plasticity and memory formation. However, its function in spinal plasticity and chronic pain is poorly understood. Here, we show that pharmacological activation of spinal mTORC2 induces pain hypersensitivity, whereas its inhibition, using downregulation of the mTORC2-defining component Rictor, alleviates both inflammatory and neuropathic pain. Cell type-specific deletion of Rictor showed that the selective inhibition of mTORC2 in a subset of excitatory neurons impairs spinal synaptic potentiation and alleviates inflammation-induced mechanical and thermal hypersensitivity and nerve injury-induced heat hyperalgesia. The ablation of mTORC2 in inhibitory interneurons strongly alleviated nerve injury-induced mechanical hypersensitivity. Our findings reveal the role of mTORC2 in chronic pain and highlight its cell type-specific functions in mediating pain hypersensitivity in response to peripheral inflammation and nerve injury.
Collapse
Affiliation(s)
- Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Luis David Rodriguez-Hernandez
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Kevin C Lister
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jonathan Fan
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Vivienne Nguyen
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada
- Alan Edwards Center for the Research on Pain, McGill University, Montreal, QC, H3A 2B4 Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
- Alan Edwards Center for the Research on Pain, McGill University, Montreal, QC, H3A 2B4 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
5
|
He Z, Zhang J, Xu J, Wang Y, Zheng X, Wang W. Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury. Cell Mol Neurobiol 2025; 45:18. [PMID: 39883258 PMCID: PMC11782389 DOI: 10.1007/s10571-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025]
Abstract
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.
Collapse
Affiliation(s)
- Ziyu He
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Zhang
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Xu
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
- Stem Cell Research Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Wang
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T, Shigeta M, Inoue M, Miyamichi K, Matsushita N, Mashimo T, Miyasaka Y, Dai Y, Noguchi K, Watanabe Y, Kobayashi M, Kobayashi K, Cui Y. Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia. SCIENCE ADVANCES 2025; 11:eadp8494. [PMID: 39813331 PMCID: PMC11734720 DOI: 10.1126/sciadv.adp8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats. Chemogenetic manipulation demonstrated that specific activation of μ-opioid receptor-positive (MOR+) neurons in the mPFC or suppression of the mPFC-ventrolateral periaqueductal gray (vlPAG) circuit inhibited placebo analgesia in rats. MOR+ neurons in the mPFC are monosynaptically connected and directly inhibit layer V pyramidal neurons that project to the vlPAG via GABAA receptors. Thus, intrinsic opioid signaling in the mPFC disinhibits excitatory outflow to the vlPAG by suppressing MOR+ neurons, leading to descending pain inhibitory system activation that initiates placebo analgesia. Our results shed light on the fundamental neurobiological mechanism of the placebo effect that maximizes therapeutic efficacy and reduces adverse drug effects in medical practice.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomoko Shimizu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
7
|
Yang T, Liu X, Cao R, Zhou X, Li W, Wu W, Yu W, Zhang X, Guo Z, Cui S. Establishment of a Magnetically Controlled Scalable Nerve Injury Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405265. [PMID: 39287118 PMCID: PMC11538664 DOI: 10.1002/advs.202405265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Animal models of peripheral nerve injury (PNI) serve as the fundamental basis for the investigations of nerve injury, regeneration, and neuropathic pain. The injury properties of such models, including the intensity and duration, significantly influence the subsequent pathological changes, pain development, and therapeutic efficacy. However, precise control over the intensity and duration of nerve injury remains challenging within existing animal models, thereby impeding accurate and comparative assessments of relevant cases. Here, a new model that provides quantitative and off-body controllable injury properties via a magnetically controlled clamp, is presented. The clamp can be implanted onto the rat sciatic nerve and exert varying degrees of compression under the control of an external magnetic field. It is demonstrated that this model can accurately simulate various degrees of pathology of human patients by adjusting the magnetic control and reveal specific pathological changes resulting from intensity heterogeneity that are challenging to detect previously. The controllability and quantifiability of this model may significantly reduce the uncertainty of central response and inter-experimenter variability, facilitating precise investigations into nerve injury, regeneration, and pain mechanisms.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xilin Liu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering of Jilin University5988 Renmin StreetChangchun130025China
| | - Wei Yu
- Department of Wound Repair, Plastic and Reconstructive MicrosurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Xianyu Zhang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| |
Collapse
|
8
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
9
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
10
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Qiu H, Miraucourt LS, Petitjean H, Xu M, Theriault C, Davidova A, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Levesque-Damphousse P, Estall JL, Bourinet E, Sharif-Naeini R. Parvalbumin gates chronic pain through the modulation of firing patterns in inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2403777121. [PMID: 38916998 PMCID: PMC11228497 DOI: 10.1073/pnas.2403777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
Collapse
Affiliation(s)
- Haoyi Qiu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Loïs S. Miraucourt
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Hugues Petitjean
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mengyi Xu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Catherine Theriault
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Albena Davidova
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Vanessa Soubeyre
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Luc Bauchet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | | | - Jennifer L. Estall
- Institut de Recherches Cliniques de Montréal, Montreal, QCH2W 1R7, Canada
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Reza Sharif-Naeini
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| |
Collapse
|
12
|
Lister KC, Wong C, Uttam S, Parisien M, Stecum P, Brown N, Cai W, Hooshmandi M, Gu N, Amiri M, Beaudry F, Jafarnejad SM, Tavares-Ferreira D, Inturi NN, Mazhar K, Zhao HT, Fitzsimmons B, Gkogkas CG, Sonenberg N, Price TJ, Diatchenko L, Atlasi Y, Mogil JS, Khoutorsky A. Translational control in the spinal cord regulates gene expression and pain hypersensitivity in the chronic phase of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600539. [PMID: 38979173 PMCID: PMC11230214 DOI: 10.1101/2024.06.24.600539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensitization of spinal nociceptive circuits plays a crucial role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV+) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV+ neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV+ neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, particularly in inhibitory neurons, play a role in mediating neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Kevin C. Lister
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Patricia Stecum
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Nikhil Nageshwar Inturi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | | | | | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Luda Diatchenko
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Jeffrey S. Mogil
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. Cell Rep 2024; 43:114057. [PMID: 38583149 PMCID: PMC11210282 DOI: 10.1016/j.celrep.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury, collectively referred to as nociplastic pain, are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitters, we demonstrate that activation of Calca neurons is necessary for the manifestation and maintenance of chronic pain. Additionally, by directly stimulating Calca neurons, we demonstrate that Calca neuron activity is sufficient to drive nociplasticity. Aversive stimuli of multiple sensory modalities, such as exposure to nitroglycerin, cisplatin, or lithium chloride, can drive nociplasticity in a Calca-neuron-dependent manner. Aversive events drive nociplasticity in Calca neurons in the form of increased activity and excitability; however, neuroplasticity also appears to occur in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. Cell Rep 2024; 43:113718. [PMID: 38294904 PMCID: PMC11101906 DOI: 10.1016/j.celrep.2024.113718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Genelle Rankin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zihe Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
16
|
Changkakoti L, Das JM, Borah R, Rajabalaya R, David SR, Balaraman AK, Pramanik S, Haldar PK, Bala A. Protein Kinase C (PKC)-mediated TGF-β Regulation in Diabetic Neuropathy: Emphasis on Neuro-inflammation and Allodynia. Endocr Metab Immune Disord Drug Targets 2024; 24:777-788. [PMID: 37937564 DOI: 10.2174/0118715303262824231024104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
According to the World Health Organization (WHO), diabetes has been increasing steadily over the past few decades. In developing countries, it is the cause of increased morbidity and mortality. Diabetes and its complications are associated with education, occupation, and income across all levels of socioeconomic status. Factors, such as hyperglycemia, social ignorance, lack of proper health knowledge, and late access to medical care, can worsen diabetic complications. Amongst the complications, neuropathic pain and inflammation are considered the most common causes of morbidity for common populations. This review is focused on exploring protein kinase C (PKC)-mediated TGF-946; regulation in diabetic complications with particular emphasis on allodynia. The role of PKC-triggered TGF-946; in diabetic neuropathy is not well explored. This review will provide a better understanding of the PKC-mediated TGF-946; regulation in diabetic neuropathy with several schematic illustrations. Neuroinflammation and associated hyperalgesia and allodynia during microvascular complications in diabetes are scientifically illustrated in this review. It is hoped that this review will facilitate biomedical scientists to better understand the etiology and target drugs effectively to manage diabetes and diabetic neuropathy.
Collapse
Affiliation(s)
- Liza Changkakoti
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| | - Jitu Mani Das
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE 1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba Rani David
- School of Pharmacology, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Ashok Kumar Balaraman
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology (IIT), Guwahati, Assam- 781039, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Division of Pharmacology & Toxicology, Jadavpur University, Kolkata, 700032, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| |
Collapse
|
17
|
Ma XN, Yao CH, Yang YJ, Li X, Zhou MY, Yang J, Zhang S, Yu BY, Dai WL, Liu JH. Blockade of spinal dopamine D1/D2 receptor heteromers by levo-Corydalmine suppressed calcium signaling cascade in spinal neurons to alleviate bone cancer pain in rats. J Cancer 2024; 15:1041-1052. [PMID: 38230224 PMCID: PMC10788731 DOI: 10.7150/jca.91129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.
Collapse
Affiliation(s)
- Xiao-Nan Ma
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yu-Jie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meng-Yuan Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
18
|
Sun C, Deng J, Ma Y, Meng F, Cui X, Li M, Li J, Li J, Yin P, Kong L, Zhang L, Tang P. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol 2023; 370:114570. [PMID: 37852469 DOI: 10.1016/j.expneurol.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yifei Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
19
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564223. [PMID: 37961621 PMCID: PMC10634894 DOI: 10.1101/2023.10.26.564223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitter or directly stimulating them we demonstrate that activation of Calca neurons is both necessary for the manifestation of chronic pain after nerve ligation and is sufficient to drive nociplasticity in wild-type mice. Aversive stimuli such as exposure to nitroglycerin, cisplatin, or LiCl can drive nociplasticity in a Calca-neuron-dependent manner. Calcium fluorescence imaging reveals that nitroglycerin activates PBN Calca neurons and potentiates their responses to mechanical stimulation. The activity and excitability of Calca neurons increased for several days after aversive events, but prolonged nociplasticity likely occurs in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, NY 10010, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Lead Contact
| |
Collapse
|
20
|
Duester G. Insufficient support for retinoic acid receptor control of synaptic plasticity through a non-genomic mechanism. Front Neuroendocrinol 2023; 71:101099. [PMID: 37647946 PMCID: PMC10840951 DOI: 10.1016/j.yfrne.2023.101099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
It is well established that retinoic acid receptors (RARs) function as nuclear receptors that control gene expression in response to binding of the ligand retinoic acid (RA). However, some studies have proposed that RAR-alpha (RARa) controls synaptic plasticity via non-genomic effects outside the nucleus, i.e. effects on mRNA translation of GluA1, a sub-unit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. In order to support this non-genomic mechanism, studies have reported RARa knockout mice or treatment with pharmacological levels of RA and RAR antagonists to propose that RARa is required to control normal synaptic plasticity. A major shortcoming of the non-genomic hypothesis is that there have been no mutational studies showing that RARa can bind the GluA1 mRNA to control GLUA1 protein levels in a non-genomic manner. Also, without a genetic study that removes the endogenous ligand RA, it is impossible to conclude that RARa and its ligand RA control synaptic plasticity through a non-genomic signaling mechanism.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Chen P, Song XJ. Vitamins in neuropathy: pathophysiological and therapeutic roles. Curr Opin Neurol 2023; 36:388-393. [PMID: 37639435 DOI: 10.1097/wco.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Vitamin deficiency is a risk factor in the development of peripheral neuropathy, which leads to complex and severe diseases. This review provides an update overview of the literature on the roles of vitamins in peripheral neuropathy, highlighting their pathophysiological and therapeutic roles. RECENT FINDINGS The importance and clinical manifestations and implications of the vitamins and vitamin deficiencies are further demonstrated in peripheral neuropathy and the associated diseases. Vitamin deficiency is common in various severe and complex diseases such as diabetes, chemotherapy, acute nutritional axonal neuropathy, dermatitis, complex regional pain syndrome, postherpetic neuralgia, carpal tunnel syndrome, and so forth and some rare clinical case reports. There is evidence that deficiencies of almost all vitamins are associated with diabetic neuropathy. Vitamin supplementation may serve as an effective therapeutic strategy. SUMMARY The vitamins play critical roles in maintaining physiological functions, and vitamin deficiencies cause peripheral neuropathy with various severe and complex diseases. The therapeutic benefits of vitamins and further understanding of the mechanisms for vitamin treatment effects should be emphasized and highlighted. More clinical trials are needed to establish optimal treatment strategies for vitamins in the various neuropathies. A large range of people/patients screening for vitamin deficiencies may be considered in order to provide early diagnosis and timely medical assistance.
Collapse
Affiliation(s)
- Peng Chen
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | | |
Collapse
|
22
|
Ma X, Miraucourt LS, Qiu H, Sharif-Naeini R, Khadra A. Modulation of SK Channels via Calcium Buffering Tunes Intrinsic Excitability of Parvalbumin Interneurons in Neuropathic Pain: A Computational and Experimental Investigation. J Neurosci 2023; 43:5608-5622. [PMID: 37451982 PMCID: PMC10401647 DOI: 10.1523/jneurosci.0426-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023] Open
Abstract
Parvalbumin-expressing interneurons (PVINs) play a crucial role within the dorsal horn of the spinal cord by preventing touch inputs from activating pain circuits. In both male and female mice, nerve injury decreases PVINs' output via mechanisms that are not fully understood. In this study, we show that PVINs from nerve-injured male mice change their firing pattern from tonic to adaptive. To examine the ionic mechanisms responsible for this decreased output, we used a reparametrized Hodgkin-Huxley type model of PVINs, which predicted (1) the firing pattern transition is because of an increased contribution of small conductance calcium-activated potassium (SK) channels, enabled by (2) impairment in intracellular calcium buffering systems. Analyzing the dynamics of the Hodgkin-Huxley type model further demonstrated that a generalized Hopf bifurcation differentiates the two types of state transitions observed in the transient firing of PVINs. Importantly, this predicted mechanism holds true when we embed the PVIN model within the neuronal circuit model of the spinal dorsal horn. To experimentally validate this hypothesized mechanism, we used pharmacological modulators of SK channels and demonstrated that (1) tonic firing PVINs from naive male mice become adaptive when exposed to an SK channel activator, and (2) adapting PVINs from nerve-injured male mice return to tonic firing on SK channel blockade. Our work provides important insights into the cellular mechanism underlying the decreased output of PVINs in the spinal dorsal horn after nerve injury and highlights potential pharmacological targets for new and effective treatment approaches to neuropathic pain.SIGNIFICANCE STATEMENT Parvalbumin-expressing interneurons (PVINs) exert crucial inhibitory control over Aβ fiber-mediated nociceptive pathways at the spinal dorsal horn. The loss of their inhibitory tone leads to neuropathic symptoms, such as mechanical allodynia, via mechanisms that are not fully understood. This study identifies the reduced intrinsic excitability of PVINs as a potential cause for their decreased inhibitory output in nerve-injured condition. Combining computational and experimental approaches, we predict a calcium-dependent mechanism that modulates PVINs' electrical activity following nerve injury: a depletion of cytosolic calcium buffer allows for the rapid accumulation of intracellular calcium through the active membranes, which in turn potentiates SK channels and impedes spike generation. Our results therefore pinpoint SK channels as potential therapeutic targets for treating neuropathic symptoms.
Collapse
Affiliation(s)
- Xinyue Ma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Loïs S Miraucourt
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Haoyi Qiu
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Reza Sharif-Naeini
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
23
|
Kashyap Y, He Y, Sadhu N, Yao Y, Wilkie DJ, Molokie RE, Wang ZJ. An alcohol dehydrogenase 7 gene polymorphism associates with both acute and chronic pain in sickle cell disease. Pharmacogenomics 2023; 24:641-649. [PMID: 37712142 PMCID: PMC10621759 DOI: 10.2217/pgs-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction: As the most distressing complication of sickle cell disease (SCD), pain is marked by considerable heterogenicity. In this study we explored the potential association of alcohol dehydrogenase 7 gene (ADH7) polymorphism rs971074 with sickle cell pain. Methods: We analyzed clinical phenotypes and the rs971074 single-nucleotide polymorphism in ADH7 by MassARRAY-iPlex analysis in a cohort of SCD patients. Results: The synonymous rs971074 was significantly associated with both acute and chronic pain in SCD. Patients with the minor T allele(s) recorded significantly more crisis episodes and severe chronic pain symptoms. Conclusion: Our study has identified the rs971074 minor T allele as a genetic biomarker potentially influencing acute and chronic pain. These findings may ultimately help inform strategies to develop precision pain therapies in SCD.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL 60612, USA
| | - Ying He
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL 60612, USA
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nilanjana Sadhu
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL 60612, USA
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA
| | - Robert E Molokie
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL 60612, USA
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612, USA
- Division of Hematology/Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Zaijie Jim Wang
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL 60612, USA
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois Chicago College of Engineering, Chicago, IL 60607, USA
| |
Collapse
|
24
|
Lenz M, Eichler A, Kruse P, Stöhr P, Kleidonas D, Galanis C, Lu H, Vlachos A. Denervated mouse CA1 pyramidal neurons express homeostatic synaptic plasticity following entorhinal cortex lesion. Front Mol Neurosci 2023; 16:1148219. [PMID: 37122623 PMCID: PMC10130538 DOI: 10.3389/fnmol.2023.1148219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Structural, functional, and molecular reorganization of denervated neural networks is often observed in neurological conditions. The loss of input is accompanied by homeostatic synaptic adaptations, which can affect the reorganization process. A major challenge of denervation-induced homeostatic plasticity operating in complex neural networks is the specialization of neuronal inputs. It remains unclear whether neurons respond similarly to the loss of distinct inputs. Here, we used in vitro entorhinal cortex lesion (ECL) and Schaffer collateral lesion (SCL) in mouse organotypic entorhino-hippocampal tissue cultures to study denervation-induced plasticity of CA1 pyramidal neurons. We observed microglia accumulation, presynaptic bouton degeneration, and a reduction in dendritic spine numbers in the denervated layers 3 days after SCL and ECL. Transcriptome analysis of the CA1 region revealed complex changes in differential gene expression following SCL and ECL compared to non-lesioned controls with a specific enrichment of differentially expressed synapse-related genes observed after ECL. Consistent with this finding, denervation-induced homeostatic plasticity of excitatory synapses was observed 3 days after ECL but not after SCL. Chemogenetic silencing of the EC but not CA3 confirmed the pathway-specific induction of homeostatic synaptic plasticity in CA1. Additionally, increased RNA oxidation was observed after SCL and ECL. These results reveal important commonalities and differences between distinct pathway lesions and demonstrate a pathway-specific induction of denervation-induced homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533541. [PMID: 36993199 PMCID: PMC10055222 DOI: 10.1101/2023.03.20.533541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) is not known. We addressed this using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons was not observed. We did, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns were recapitulated by silencing DH parvalbumin + (PV + ) inhibitory interneurons, previously implicated in mechanical allodynia, as were allodynic pain-like behaviors in mice. These findings reveal decorrelated DH network activity, driven by alterations in PV + interneurons, as a prominent feature of neuropathic pain, and suggest that restoration of proper temporal activity is a potential treatment for chronic neuropathic pain.
Collapse
|
26
|
RAR-alpha: Creator, protector, and tormentor. Neuron 2022; 110:4033-4035. [PMID: 36549266 DOI: 10.1016/j.neuron.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoic acid receptors are important for homeostatic synaptic plasticity and have many beneficial effects within the brain. New work by Cao et al.1 uncovers a role for these receptors in driving neuropathic pain development, thus identifying a potential preventative therapeutic target.
Collapse
|
27
|
Why the lightest touch can cause burning pain. Nature 2022. [PMID: 36261719 DOI: 10.1038/d41586-022-03280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|