1
|
Dixit N, Pyari G, Bansal H, Roy S. Theoretical analysis of low power optogenetic control of synaptic plasticity with subcellular expression of CapChR2 at postsynaptic spine. Sci Rep 2025; 15:11166. [PMID: 40169824 PMCID: PMC11962105 DOI: 10.1038/s41598-025-95355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Precise control of intracellular calcium ([Formula: see text]) concentration at the synaptic neuron terminal can unravel the mechanism behind computation, learning, and memory formation inside the brain. Recently, the discovery of [Formula: see text]-permeable channelrhodopsins (CapChRs) has opened the opportunity to effectively control the intracellular [Formula: see text] concentration using optogenetics. Here, we present a new theoretical model for precise optogenetic control with newly discovered CapChR2 at postsynaptic neuron. A detailed theoretical analysis of coincident stimulation of presynaptic terminal, postsynaptic spine and optogenetic activation of CapChR2-expressing postsynaptic spine shows different ways to control postsynaptic intracellular [Formula: see text] concentration. Irradiance-dependent [Formula: see text] flow is an additional advantage of this novel method. The minimum threshold of light irradiance and optimal ranges of time lag among different stimulations and stimulation frequencies have also been determined. It is shown that synaptic efficacy occurs at 20 µW/mm2 at coincident electrical stimulation of presynaptic terminal and postsynaptic spine with optogenetic activation of CapChR2-expressed postsynaptic spine. The analysis provides a new means of direct optogenetic control of [Formula: see text]-based synaptic plasticity, better understanding of learning and memory processes, and opens prospects for targeted therapeutic interventions to modulate synaptic function and address various neurological disorders.
Collapse
Affiliation(s)
- Nripesh Dixit
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
2
|
Panadés J, Rutz N, Robert HML, Steffen RT, García-Guirado J, Tessier G, Quidant R, Berto P. Reconfigurable Integrated Thermo-Optics for Aberration Correction. ACS PHOTONICS 2024; 11:4804-4811. [PMID: 39584036 PMCID: PMC11583300 DOI: 10.1021/acsphotonics.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024]
Abstract
As miniaturization becomes a growing trend in optical systems, the ability to precisely manipulate wavefronts within micrometric pupils becomes crucial. Extensive efforts to develop integrated micro-optics primarily led to tunable microlenses. Among these approaches, SmartLenses, which use predesigned microheaters to locally change the refractive index in a transparent thermo-optical material, allow to produce tunable micro-optics with free-form shape. However, the shape and sign of the generated wavefront profile are fixed, predetermined by the geometry of the resistor, which severely limits its use, e.g., for aberration correction. Here, we report a precise reconfigurability of the generated wavefront through dynamic shaping of the temperature distribution, enabled by an independent control of concentric resistors. As a proof of principle, we demonstrate a bimodal SmartLens that simultaneously acts as a converging/diverging lens and a positive/negative spherical aberration corrector. Through independent control of Zernike modes, this approach paves the way for compact, broadband, transparent and polarization-insensitive wavefront shapers, with a broad range of potential applications, from endoscopy to information technology.
Collapse
Affiliation(s)
- Josep
M. Panadés
- Sorbonne
Université, CNRS UMR7210, INSERM UMRS968, Institut de la Vision, Paris 75012, France
| | - Nadja Rutz
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Hadrien M. L. Robert
- Sorbonne
Université, CNRS UMR7210, INSERM UMRS968, Institut de la Vision, Paris 75012, France
| | - Raphael T. Steffen
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Jose García-Guirado
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilles Tessier
- Sorbonne
Université, CNRS UMR7210, INSERM UMRS968, Institut de la Vision, Paris 75012, France
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Pascal Berto
- Sorbonne
Université, CNRS UMR7210, INSERM UMRS968, Institut de la Vision, Paris 75012, France
- Universite
Paris Descartes, Sorbonne Paris Cite, Paris 75006, France
- Institut
Universitaire de France (IUF), Paris 75005, France
| |
Collapse
|
3
|
Davenport JB, Güler AD, Zhang Q. Methodology for Studying Hypothalamic Regulation of Feeding Behaviors. Methods Protoc 2024; 7:86. [PMID: 39584979 PMCID: PMC11586955 DOI: 10.3390/mps7060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Continuous advances in neurological research techniques are enabling researchers to further understand the neural mechanisms that regulate energy balance. In this review, we specifically highlight key tools and techniques and explore how they have been applied to study the role of the hypothalamic arcuate nucleus in feeding behaviors. Additionally, we provide a detailed discussion of the advantages and limitations associated with each methodology.
Collapse
Affiliation(s)
- Julia B. Davenport
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (J.B.D.)
| |
Collapse
|
4
|
Futia GL, Zohrabi M, McCullough C, Teel A, Simoes de Souza F, Oroke R, Miscles EJ, Ozbay BN, Kilborn K, Bright VM, Restrepo D, Gopinath JT, Gibson EA. Opto2P-FCM: A MEMS based miniature two-photon microscope with two-photon patterned optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619528. [PMID: 39484501 PMCID: PMC11526896 DOI: 10.1101/2024.10.21.619528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiphoton microscopy combined with optogenetic photostimulation is a powerful technique in neuroscience enabling precise control of cellular activity to determine the neural basis of behavior in a live animal. Two-photon patterned photostimulation has taken this further by allowing interrogation at the individual neuron level. However, it remains a challenge to implement imaging of neural activity with spatially patterned two-photon photostimulation in a freely moving animal. We developed a miniature microscope for high resolution two-photon fluorescence imaging with patterned two-photon optogenetic stimulation. The design incorporates a MEMS scanner for two-photon imaging and a second beam path for patterned two-photon excitation in a compact and lightweight design that can be head-attached to a freely moving animal. We demonstrate cell-specific optogenetics and high resolution MEMS based two-photon imaging in a freely moving mouse. The new capabilities of this miniature microscope design can enable cell-specific studies of behavior that can only be done in freely moving animals.
Collapse
Affiliation(s)
- Gregory L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor McCullough
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alec Teel
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Oroke
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Eduardo J. Miscles
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Baris N. Ozbay
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Castillo VCG, Akbar L, Siwadamrongpong R, Ohta Y, Kawahara M, Sunaga Y, Takehara H, Tashiro H, Sasagawa K, Ohta J. Region of interest determination algorithm of lensless calcium imaging datasets. PLoS One 2024; 19:e0308573. [PMID: 39288120 PMCID: PMC11407621 DOI: 10.1371/journal.pone.0308573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Advances in fluorescence imaging technology have been crucial to the progress of neuroscience. Whether it was specific expression of indicator proteins, detection of neurotransmitters, or miniaturization of fluorescence microscopes, fluorescence imaging has improved upon electrophysiology, the gold standard for monitoring brain activity, and enabled novel methods to sense activity in the brain. Hence, we developed a lightweight and compact implantable CMOS-based lensless Ca2+ imaging device for freely moving transgenic G-CaMP mouse experiments. However, without a lens system, determination of regions of interest (ROI) has proven challenging. Localization of fluorescence activity and separation of signal from noise are difficult. In this study, we report an ROI selection method using a series of adaptive binarizations with a gaussian method and morphological image processing. The parameters for each operation such as the kernel size, sigma and footprint size were optimized. We then validated the utility of the algorithm with simulated data and freely moving nociception experiments using the lensless devices. The device was implanted in the dorsal raphe nucleus to observe pain-related brain activity following a formalin test to stimulate pain. We observed significant increases in fluorescence activity after formalin injection compared to the control group when using the ROI determination algorithm.
Collapse
Affiliation(s)
| | - Latiful Akbar
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Yasumi Ohta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mamiko Kawahara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Sunaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hironari Takehara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroyuki Tashiro
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Jun Ohta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
6
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
7
|
Renteria CA, Park J, Zhang C, Sorrells JE, Iyer RR, Tehrani KF, De la Cadena A, Boppart SA. Large field-of-view metabolic profiling of murine brain tissue following morphine incubation using label-free multiphoton microscopy. J Neurosci Methods 2024; 408:110171. [PMID: 38777156 PMCID: PMC12047187 DOI: 10.1016/j.jneumeth.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Although the effects on neural activation and glucose consumption caused by opiates such as morphine are known, the metabolic machinery underlying opioid use and misuse is not fully explored. Multiphoton microscopy (MPM) techniques have been developed for optical imaging at high spatial resolution. Despite the increased use of MPM for neural imaging, the use of intrinsic optical contrast has seen minimal use in neuroscience. NEW METHOD We present a label-free, multimodal microscopy technique for metabolic profiling of murine brain tissue following incubation with morphine sulfate (MSO4). We evaluate two- and three-photon excited autofluorescence, and second and third harmonic generation to determine meaningful intrinsic contrast mechanisms in brain tissue using simultaneous label-free, autofluorescence multi-harmonic (SLAM) microscopy. RESULTS Regional differences quantified in the cortex, caudate, and thalamus of the brain demonstrate region-specific changes to metabolic profiles measured from FAD intensity, along with brain-wide quantification. While the overall intensity of FAD signal significantly decreased after morphine incubation, this metabolic molecule accumulated near the nucleus accumbens. COMPARISON WITH EXISTING METHODS Histopathology requires tissue fixation and staining to determine cell type and morphology, lacking information about cellular metabolism. Tools such as fMRI or PET imaging have been widely used, but lack cellular resolution. SLAM microscopy obviates the need for tissue preparation, permitting immediate use and imaging of tissue with subcellular resolution in its native environment. CONCLUSIONS This study demonstrates the utility of SLAM microscopy for label-free investigations of neural metabolism, especially the intensity changes in FAD autofluorescence and structural morphology from third-harmonic generation.
Collapse
Affiliation(s)
- Carlos A Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rishyashring R Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kayvan F Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandro De la Cadena
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Piscopo L, Collard L, Pisano F, Balena A, Vittorio MD, Pisanello F. Advantages of internal reference in holographic shaping ps supercontinuum pulses through multimode optical fibers. OPTICS EXPRESS 2024; 32:24144-24155. [PMID: 39538862 PMCID: PMC11595516 DOI: 10.1364/oe.528043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024]
Abstract
The use of wavefront shaping has found extensive application to develop ultra-thin endoscopic techniques based on multimode optical fibers (MMF), leveraging on the ability to control modal interference at the fiber's distal end. Although several techniques have been developed to achieve MMF-based laser-scanning imaging, the use of short laser pulses is still a challenging application. This is due to the intrinsic delay and temporal broadening introduced by the fiber itself, which requires additional compensation optics on the reference beam during the calibration procedure. Here we combine the use of a supercontinuum laser and an internal reference-based wavefront shaping system to produce focused spot scanning in multiple planes at the output of a step-index multimode fiber, without the requirement of a delay line or pulse pre-compensation. We benchmarked the performances of internal vs external reference during calibration, finding that the use of an internal reference grants better focusing efficiency. The system was characterized at different wavelengths, showcasing the wavelength resiliency of the different parameters. Lastly, the scanning of focal planes beyond the fiber facet was achieved by exploiting the chromato-axial memory effect.
Collapse
Affiliation(s)
- Linda Piscopo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, 75005, France
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
- RAISE Ecosystem, Genova, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| |
Collapse
|
9
|
Gröger A, Kuschmierz R, Birk A, Pedrini G, Reichelt S. Two-wavelength holographic micro-endoscopy. OPTICS EXPRESS 2024; 32:23687-23701. [PMID: 39538825 DOI: 10.1364/oe.527958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
In this paper, we present a method for micro-endoscopic topography measurement utilizing two-wavelength holography. Initially, we evaluate the inter-core dispersion and cross-talk of two commercially available imaging fiber bundles (CFBs) and introduce the concept of virtual surface roughness as a limiting factor of achievable measurement resolution. Subsequently, we describe a micro-endoscope setup incorporating 3D-printed micro-optics, resulting in a total diameter of less than 450 µm. We evaluate the measurement accuracy using a pyramid-shaped test object and demonstrate that a relative measurement error of 7.5% can be achieved with a simple phase unwrapping approach. Moreover, we demonstrate how leveraging a deep learning approach from existing literature, tailored for heavily noisy phase maps, effectively reduces the relative measurement error. The standard deviation of the measurement error is 4.2 times lower with the deep learning approach.
Collapse
|
10
|
Sims RR, Bendifallah I, Grimm C, Lafirdeen ASM, Domínguez S, Chan CY, Lu X, Forget BC, St-Pierre F, Papagiakoumou E, Emiliani V. Scanless two-photon voltage imaging. Nat Commun 2024; 15:5095. [PMID: 38876987 PMCID: PMC11178882 DOI: 10.1038/s41467-024-49192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.
Collapse
Affiliation(s)
- Ruth R Sims
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Imane Bendifallah
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Christiane Grimm
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Soledad Domínguez
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Chung Yuen Chan
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Benoît C Forget
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | - Valentina Emiliani
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
11
|
Gonzalez-Ramos A, Puigsasllosas-Pastor C, Arcas-Marquez A, Tornero D. Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy. Bioengineering (Basel) 2024; 11:487. [PMID: 38790353 PMCID: PMC11118929 DOI: 10.3390/bioengineering11050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Claudia Puigsasllosas-Pastor
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ainhoa Arcas-Marquez
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
12
|
Gau YTA, Hsu ET, Cha RJ, Pak RW, Looger LL, Kang JU, Bergles DE. Multicore fiber optic imaging reveals that astrocyte calcium activity in the mouse cerebral cortex is modulated by internal motivational state. Nat Commun 2024; 15:3039. [PMID: 38589390 PMCID: PMC11002016 DOI: 10.1038/s41467-024-47345-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.
Collapse
Affiliation(s)
- Yung-Tian A Gau
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | - Eric T Hsu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Richard J Cha
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca W Pak
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Loren L Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jin U Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Zhang Z, Liu SJ, Mattison B, Yang W. Simultaneous Dual-region Functional Imaging in Miniaturized Two-photon Microscopy. BIOMEDICAL OPTICS (WASHINGTON, D.C.) 2024; 2024:BM3C.4. [PMID: 39634364 PMCID: PMC11617035 DOI: 10.1364/brain.2024.bm3c.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We demonstrate simultaneous dual-region in-vivo imaging of brain activity in mouse cortex through a miniaturized spatial-multiplexed two-photon microscope platform, which doubles the imaging speed. Neuronal signals from the two regions are computationally demixed and extracted.
Collapse
Affiliation(s)
- Zixiao Zhang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Shing-Jiuan Liu
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Ben Mattison
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Lorca-Cámara A, Tourain C, de Sars V, Emiliani V, Accanto N. Multicolor two-photon light-patterning microscope exploiting the spatio-temporal properties of a fiber bundle. BIOMEDICAL OPTICS EXPRESS 2024; 15:2094-2109. [PMID: 38633065 PMCID: PMC11019707 DOI: 10.1364/boe.507690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024]
Abstract
The development of efficient genetically encoded indicators and actuators has opened up the possibility of reading and manipulating neuronal activity in living tissues with light. To achieve precise and reconfigurable targeting of large numbers of neurons with single-cell resolution within arbitrary volumes, different groups have recently developed all-optical strategies based on two-photon excitation and spatio-temporal shaping of ultrashort laser pulses. However, such techniques are often complex to set up and typically operate at a single wavelength only. To address these issues, we have developed a novel optical approach that uses a fiber bundle and a spatial light modulator to achieve simple and dual-color two-photon light patterning in three dimensions. By leveraging the core-to-core temporal delay and the wavelength-independent divergence characteristics of fiber bundles, we have demonstrated the capacity to generate high-resolution excitation spots in a 3D region with two distinct laser wavelengths simultaneously, offering a suitable and simple alternative for precise multicolor cell targeting.
Collapse
Affiliation(s)
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Vincent de Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Nicolò Accanto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
15
|
Kalelkar A, Sipe G, Castro E Costa AR, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. Neuropharmacology 2024; 245:109800. [PMID: 38056524 PMCID: PMC11292593 DOI: 10.1016/j.neuropharm.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ilka M Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA.
| |
Collapse
|
16
|
Jared Ramirez Sanchez L, Li B. Driving valence-specific behavior through single-cell resolution control in the amygdala. Neuron 2024; 112:521-523. [PMID: 38387436 DOI: 10.1016/j.neuron.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In this issue of Neuron, Piantadosi et al.1 demonstrate that by precisely controlling the activity of individual negative-valence neurons and positive-valence neurons in the basolateral amygdala, one can alter animals' appetitive or aversive responses, respectively, establishing a causal role of these neurons in valence-specific behavior.
Collapse
Affiliation(s)
| | - Bo Li
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
17
|
Lorca-Cámara A, Blot FGC, Accanto N, Emiliani V. [A two-photon fiberscope for imaging and optogenetic photostimulation of neurons in freely moving mice]. Med Sci (Paris) 2023; 39:815-819. [PMID: 38018920 DOI: 10.1051/medsci/2023150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Affiliation(s)
- Antonio Lorca-Cámara
- Groupe d'ingénierie du front d'onde appliquée à la microscopie, Sorbonne université, Inserm, CNRS, Institut de la vision, Paris, France
| | - François G C Blot
- Groupe d'ingénierie du front d'onde appliquée à la microscopie, Sorbonne université, Inserm, CNRS, Institut de la vision, Paris, France
| | - Nicolò Accanto
- Groupe d'ingénierie du front d'onde appliquée à la microscopie, Sorbonne université, Inserm, CNRS, Institut de la vision, Paris, France
| | - Valentina Emiliani
- Groupe d'ingénierie du front d'onde appliquée à la microscopie, Sorbonne université, Inserm, CNRS, Institut de la vision, Paris, France
| |
Collapse
|
18
|
Weinberg G, Weiss U, Katz O. Image scanning lensless fiber-bundle endomicroscopy. OPTICS EXPRESS 2023; 31:37050-37057. [PMID: 38017842 DOI: 10.1364/oe.496369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/30/2023]
Abstract
Fiber-based confocal endomicroscopy has shown great promise for minimally-invasive deep-tissue imaging. Despite its advantages, confocal fiber-bundle endoscopy inherently suffers from undersampling due to the spacing between fiber cores, and low collection efficiency when the target is not in proximity to the distal fiber facet. Here, we demonstrate an adaptation of image-scanning microscopy (ISM) to lensless fiber bundle endoscopy, doubling the spatial sampling frequency and significantly improving collection efficiency. Our approach only requires replacing the confocal detector with a camera. It improves the spatial resolution for targets placed at a distance from the fiber tip, and addresses the fundamental challenge of aliasing/pixelization artifacts.
Collapse
|
19
|
Wang C, Chen Q, Liu H, Wu R, Jiang X, Fu Q, Zhao Z, Zhao Y, Gao Y, Yu B, Jiao H, Wang A, Xiao S, Feng L. Miniature Two-Photon Microscopic Imaging Using Dielectric Metalens. NANO LETTERS 2023; 23:8256-8263. [PMID: 37651617 DOI: 10.1021/acs.nanolett.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Miniature two-photon microscopy has emerged as a powerful technique for investigating brain activity in freely moving animals. Ongoing research objectives include reducing probe weight and minimizing animal behavior constraints caused by probe attachment. Employing dielectric metalenses, which enable the use of sizable optical components in flat device structures while maintaining imaging resolution, is a promising solution for addressing these challenges. In this study, we designed and fabricated a titanium dioxide metalens with a wavelength of 920 nm and a high aspect ratio. Furthermore, a meta-optic two-photon microscope weighing 1.36 g was developed. This meta-optic probe has a lateral resolution of 0.92 μm and an axial resolution of 18.08 μm. Experimentally, two-photon imaging of mouse brain structures in vivo was also demonstrated. The flat dielectric metalens technique holds promising opportunities for high-performance integrated miniature nonlinear microscopy and endomicroscopy platforms in the biomedical field.
Collapse
Affiliation(s)
- Conghao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Qinmiao Chen
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huilan Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Precision Opto-Mechatronics Technology (Ministry of Education), Beihang University, Beijing 100191, China
| | - Runlong Wu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiong Jiang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qiang Fu
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Zhe Zhao
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ye Zhao
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Yuqian Gao
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Bosong Yu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Hongchen Jiao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Aimin Wang
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lishuang Feng
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Precision Opto-Mechatronics Technology (Ministry of Education), Beihang University, Beijing 100191, China
- Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310063, China
| |
Collapse
|
20
|
Kang M, Choi W, Choi W, Choi Y. Fourier holographic endoscopy for imaging continuously moving objects. OPTICS EXPRESS 2023; 31:11705-11716. [PMID: 37155799 DOI: 10.1364/oe.482923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Coherent fiber bundles are widely used for endoscopy, but conventional approaches require distal optics to form an object image and acquire pixelated information owing to the geometry of the fiber cores. Recently, holographic recording of a reflection matrix enables a bare fiber bundle to perform pixelation-free microscopic imaging as well as allows a flexible mode operation, because the random core-to-core phase retardations due to any fiber bending and twisting could be removed in situ from the recorded matrix. Despite its flexibility, the method is not suitable for a moving object because the fiber probe should remain stationary during the matrix recording to avoid the alteration of the phase retardations. Here, we acquire a reflection matrix of a Fourier holographic endoscope equipped with a fiber bundle and explore the effect of fiber bending on the recorded matrix. By removing the motion effect, we develop a method that can resolve the perturbation of the reflection matrix caused by a continuously moving fiber bundle. Thus, we demonstrate high-resolution endoscopic imaging through a fiber bundle, even when the fiber probe changes its shape along with the moving objects. The proposed method can be used for minimally invasive monitoring of behaving animals.
Collapse
|