1
|
Relota XJ, Ford A, Savier EL. Behavioral Modulation and Molecular Definition of Wide-Field Vertical Cells in the Mouse Superior Colliculus. J Neurosci 2025; 45:e1816242025. [PMID: 40032526 PMCID: PMC12005361 DOI: 10.1523/jneurosci.1816-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Visual information can have different meanings across species, and the same visual stimulus can drive appetitive or aversive behavior. The superior colliculus (SC), a visual center located in the midbrain has been involved in driving such behaviors. Within this structure, the wide-field vertical cells (WFV) are a conserved morphological cell type that is present in species ranging from reptiles to cats (Basso et al., 2021). Here, we report our investigation of the connectivity of the WFV, their visual responses, and how these responses are modulated by locomotion in male and female laboratory mice. We also address the molecular definition of these cells and attempt to reconcile recent findings acquired by RNA sequencing of single cells in the SC with the Ntsr1-Cre GN209 transgenic mouse line which was previously used to investigate WFV. We use viral strategies to reveal WFV inputs and outputs and confirm their unique response properties using in vivo two-photon imaging. Among the stimuli tested, WFV prefer looming stimuli, a small moving spot, and upward-moving visual stimuli. We find that only visual responses driven by a looming stimulus show a significant modulation by locomotion. We identify several inputs to the WFV as potential candidates for this modulation. These results suggest that WFV integrate information across multiple brain regions and are subject to behavioral modulation. Taken together, our results pave the way to elucidate the role of these neurons in visual behavior and allow us to interrogate the definition of cell types in the light of new molecular definitions.
Collapse
Affiliation(s)
- Xena J Relota
- Molecular and Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexander Ford
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Elise L Savier
- Molecular and Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan 48109
- Ophthalmology and Visual Science Department, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Garcia MM, Kline AM, Onodera K, Tsukano H, Dandu PR, Acosta HC, Kasten M, Manis PB, Kato HK. Noncanonical Short-Latency Auditory Pathway Directly Activates Deep Cortical Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631598. [PMID: 39829930 PMCID: PMC11741258 DOI: 10.1101/2025.01.06.631598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing. We found that L6 of both A1 and A2 receive short-latency (<10 ms) sound inputs, comparable in speed to the canonical A1 L4 input but transmitted through higher-order thalamic nuclei. Additionally, A2 L4 is innervated by a caudal subdivision within the traditionally defined primary thalamus, which we now identify as belonging to the non-primary system. Notably, both thalamic regions receive projections from distinct subdivisions of the higher-order inferior colliculus, which in turn are directly innervated by cochlear nucleus neurons. These findings reveal alternative ascending pathways reaching A2 at L4 and L6 via secondary subcortical structures. Thus, higher-order auditory cortex processes both slow, pre-processed information and rapid, direct sensory inputs, enabling parallel and distributed processing of fast sensory information across cortical areas.
Collapse
Affiliation(s)
- Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Koun Onodera
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey C. Acosta
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Kasten
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Fei Y, Luh M, Ontiri A, Ghauri D, Hu W, Liang L. Coordination of distinct sources of excitatory inputs enhances motion selectivity in the mouse visual thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631826. [PMID: 39829841 PMCID: PMC11741327 DOI: 10.1101/2025.01.08.631826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons. Inhibiting collicular input significantly suppressed visual responses in thalamic neurons and specifically reduced motion selectivity in neurons preferring nasal-to-temporal motion. The reduction in motion selectivity could be the result of silencing sharply tuned direction-selective colliculogeniculate input. These findings suggest that the thalamus is not merely a relay but selectively integrates inputs from multiple regions to build stimulus selectivity and shape the information transmitted to the cortex. HIGHLIGHTS Chronic dual-color calcium imaging reveals diverse visual tuning of collicular axonal boutons.Nearby collicular and retinal boutons often share feature preferences at ∼10 µm scaleSilencing of collicular input suppresses visual responses in the majority of thalamic neurons.Silencing of collicular input reduces motion selectivity in thalamic neurons.
Collapse
|
4
|
Sugino H, Tanno S, Yoshida T, Isomura Y, Hira R. Functional segregation and dynamic integration of the corticotectal descending signal in rat. Neurosci Res 2025; 210:38-50. [PMID: 39306244 DOI: 10.1016/j.neures.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The superior colliculus (SC) receives inputs from various brain regions in a layer- and radial subregion-specific manner, but whether the SC exhibits subregion-specific dynamics remains unclear. To address this issue, we recorded the spiking activity of single SC neurons while photoactivating cortical areas in awake head-fixed Thy1-ChR2 rats. We classified 309 neurons that responded significantly into 8 clusters according to the response dynamics. Among them, neurons with monophasic excitatory responses (7-12 ms latency) that returned to baseline within 20 ms were commonly observed in the optic and intermediate gray layers of centromedial and centrolateral SC. In contrast, neurons with complex polyphasic responses were commonly observed in the deep layers of the anterolateral SC. Cross-correlation analysis suggested that the complex pattern could be only partly explained by an internal circuit of the deep gray layer. Our results indicate that medial to centrolateral SC neurons simply relay cortical activity, whereas neurons in the deep layers of the anterolateral SC dynamically integrate inputs from the cortex, SNr, CN, and local circuits. These findings suggest a spatial gradient in SC integration, with a division of labor between simple relay circuits and those integrating complex dynamics.
Collapse
Affiliation(s)
- Hikaru Sugino
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Tanno
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsumi Yoshida
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Bouvier G, Sanzeni A, Hamada E, Brunel N, Scanziani M. Inter- and Intrahemispheric Sources of Vestibular Signals to V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624137. [PMID: 39605728 PMCID: PMC11601413 DOI: 10.1101/2024.11.18.624137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Head movements are sensed by the vestibular organs. Unlike classical senses, signals from vestibular organs are not conveyed to a dedicated cortical area but are broadcast throughout the cortex. Surprisingly, the routes taken by vestibular signals to reach the cortex are still largely uncharted. Here we show that the primary visual cortex (V1) receives real-time head movement signals - direction, velocity, and acceleration - from the ipsilateral pulvinar and contralateral visual cortex. The ipsilateral pulvinar provides the main head movement signal, with a bias toward contraversive movements (e.g. clockwise movements in left V1). Conversely, the contralateral visual cortex provides head movement signals during ipsiversive movements. Crucially, head movement variables encoded in V1 are already encoded in the pulvinar, suggesting that those variables are computed subcortically. Thus, the convergence of inter- and intrahemispheric signals endows V1 with a rich representation of the animal's head movements.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Brunel
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Guillamón-Vivancos T, Favaloro F, Dori F, López-Bendito G. The superior colliculus: New insights into an evolutionarily ancient structure. Curr Opin Neurobiol 2024; 89:102926. [PMID: 39383569 DOI: 10.1016/j.conb.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The superior colliculus is a structure located in the dorsal midbrain with well conserved function and connectivity across species. Essential for survival, the superior colliculus has evolved to trigger rapid orientation and avoidance movements in response to external stimuli. The increasing recognition of the widespread connectivity of the superior colliculus, not only with brainstem and spinal cord, but also with virtually all brain structures, has rekindled the interest on this structure and revealed novel roles in the past few years. In this review, we focus on the most recent advancements in understanding its cellular composition, connectivity and function, with a particular focus on how the cellular diversity and connectivity arises during development, as well as on its recent role in the emergence of sensory circuits.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| | - Fabrizio Favaloro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@F_Favaloro22
| | - Francesco Dori
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@francesco_dori
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
7
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Lian Y, LaChance PA, Malmberg S, Hasselmo ME, Burkitt AN. Distinct cortical spatial representations learned along disparate visual pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617687. [PMID: 39416183 PMCID: PMC11482955 DOI: 10.1101/2024.10.10.617687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representation is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have motion processing within the visual input. Our designed SC-POR model demonstrates that diverse spatial properties of POR neurons can emerge from a learning process based on visual input that incorporates motion processing. Moreover, combining SC-POR model with our previously proposed V1-RSC model, we show that distinct cortical spatial representations in POR and RSC can be learnt along disparate visual pathways (originating in SC and V1), suggesting that the varying features encoded in different visual pathways contribute to the distinct spatial properties in downstream cortical areas.
Collapse
Affiliation(s)
- Yanbo Lian
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Patrick A. LaChance
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Samantha Malmberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
Street JS, Jeffery KJ. The dorsal thalamic lateral geniculate nucleus is required for visual control of head direction cell firing direction in rats. J Physiol 2024; 602:5247-5267. [PMID: 39235958 DOI: 10.1113/jp286868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Head direction (HD) neurons, signalling facing direction, generate a signal that is primarily anchored to the outside world by visual inputs. We investigated the route for visual landmark information into the HD system in rats. There are two candidates: an evolutionarily older, larger subcortical retino-tectal pathway and a more recently evolved, smaller cortical retino-geniculo-striate pathway. We disrupted the cortical pathway by lesioning the dorsal lateral geniculate thalamic nuclei bilaterally, and recorded HD cells in the postsubicular cortex as rats foraged in a visual-cue-controlled enclosure. In lesioned rats we found the expected number of postsubicular HD cells. Although directional tuning curves were broader across a trial, this was attributable to the increased instability of otherwise normal-width tuning curves. Tuning curves were also poorly responsive to polarizing visual landmarks and did not distinguish cues based on their visual pattern. Thus, the retino-geniculo-striate pathway is not crucial for the generation of an underlying, tightly tuned directional signal but does provide the main route for vision-based anchoring of the signal to the outside world, even when visual cues are high in contrast and low in detail. KEY POINTS: Head direction (HD) cells indicate the facing direction of the head, using visual landmarks to distinguish directions. In rats, we investigated whether this visual information is routed through the thalamus to the visual cortex or arrives via the superior colliculus, which is a phylogenetically older and (in rodents) larger pathway. We lesioned the thalamic dorsal lateral geniculate nucleus (dLGN) in rats and recorded the responsiveness of cortical HD cells to visual cues. We found that cortical HD cells had normal tuning curves, but these were slightly more unstable during a trial. Most notably, HD cells in dLGN-lesioned animals showed little ability to distinguish highly distinct cues and none to distinguish more similar cues. These results suggest that directional processing of visual landmarks in mammals requires the geniculo-cortical pathway, which raises questions about when and how visual directional landmark processing appeared during evolution.
Collapse
Affiliation(s)
- James S Street
- Institute of Neurology, University College London, London, UK
| | - Kate J Jeffery
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Furutachi S, Franklin AD, Aldea AM, Mrsic-Flogel TD, Hofer SB. Cooperative thalamocortical circuit mechanism for sensory prediction errors. Nature 2024; 633:398-406. [PMID: 39198646 PMCID: PMC11390482 DOI: 10.1038/s41586-024-07851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
The brain functions as a prediction machine, utilizing an internal model of the world to anticipate sensations and the outcomes of our actions. Discrepancies between expected and actual events, referred to as prediction errors, are leveraged to update the internal model and guide our attention towards unexpected events1-10. Despite the importance of prediction-error signals for various neural computations across the brain, surprisingly little is known about the neural circuit mechanisms responsible for their implementation. Here we describe a thalamocortical disinhibitory circuit that is required for generating sensory prediction-error signals in mouse primary visual cortex (V1). We show that violating animals' predictions by an unexpected visual stimulus preferentially boosts responses of the layer 2/3 V1 neurons that are most selective for that stimulus. Prediction errors specifically amplify the unexpected visual input, rather than representing non-specific surprise or difference signals about how the visual input deviates from the animal's predictions. This selective amplification is implemented by a cooperative mechanism requiring thalamic input from the pulvinar and cortical vasoactive-intestinal-peptide-expressing (VIP) inhibitory interneurons. In response to prediction errors, VIP neurons inhibit a specific subpopulation of somatostatin-expressing inhibitory interneurons that gate excitatory pulvinar input to V1, resulting in specific pulvinar-driven response amplification of the most stimulus-selective neurons in V1. Therefore, the brain prioritizes unpredicted sensory information by selectively increasing the salience of unpredicted sensory features through the synergistic interaction of thalamic input and neocortical disinhibitory circuits.
Collapse
Affiliation(s)
- Shohei Furutachi
- Sainsbury Wellcome Centre, University College London, London, UK.
| | | | - Andreea M Aldea
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
11
|
Reyes-Pinto R, Rojas MJ, Letelier JC, Marín GJ, Mpodozis J. Early Development of the Thalamo-Pallial Stage of the Tectofugal Visual Pathway in the Chicken (Gallus gallus). J Comp Neurol 2024; 532:e25657. [PMID: 38987912 DOI: 10.1002/cne.25657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.
Collapse
Affiliation(s)
- Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María-José Rojas
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan-Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
13
|
Matcham AC, Toma K, Tsai NY, Sze CJ, Lin PY, Stewart IF, Duan X. Cadherin-13 Maintains Retinotectal Synapses via Transneuronal Interactions. J Neurosci 2024; 44:e1310232023. [PMID: 38123991 PMCID: PMC10860569 DOI: 10.1523/jneurosci.1310-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.
Collapse
Affiliation(s)
- Angela C Matcham
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Kenichi Toma
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Nicole Y Tsai
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Christina J Sze
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Pin-Yeh Lin
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Ilaria F Stewart
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Xin Duan
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| |
Collapse
|
14
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|