1
|
Robson E, Donahue MM, Mably AJ, Demetrovich PG, Hewitt LT, Colgin LL. Social odors drive hippocampal CA2 place cell responses to social stimuli. Prog Neurobiol 2025; 245:102708. [PMID: 39743170 PMCID: PMC11827691 DOI: 10.1016/j.pneurobio.2024.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
Hippocampal region CA2 is essential for social memory processing. Interaction with social stimuli induces changes in CA2 place cell firing during active exploration and sharp wave-ripples during rest following a social interaction. However, it is unknown whether these changes in firing patterns are caused by integration of multimodal social stimuli or by a specific sensory modality associated with a social interaction. Rodents rely heavily on chemosensory cues in the form of olfactory signals for social recognition processes. To determine the extent to which social olfactory signals contribute to CA2 place cell responses to social stimuli, we recorded CA2 place cells in rats freely exploring environments containing stimuli that included or lacked olfactory content. We found that CA2 place cell firing patterns significantly changed only when social odors were prominent. Also, place cells that increased their firing in the presence of social odors alone preferentially increased their firing during subsequent sharp wave-ripples. Our results suggest that social olfactory cues are essential for changing CA2 place cell firing patterns during and after social interactions. These results support prior work suggesting CA2 performs social functions and shed light on processes underlying CA2 responses to social stimuli.
Collapse
Affiliation(s)
- Emma Robson
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Margaret M Donahue
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Alexandra J Mably
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Peyton G Demetrovich
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lauren T Hewitt
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura Lee Colgin
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Mori K, Sakano H. Associative learning and recollection of olfactory memory during the respiratory cycle in mammals: how is the self cognized in consciousness? Front Neurosci 2025; 18:1513396. [PMID: 39897952 PMCID: PMC11783145 DOI: 10.3389/fnins.2024.1513396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
When we are awake and relaxed, various memory-scenes come up in our mind by spontaneous activation of memory engrams. We find ourselves in the memory-scene longing for it by the present self. The memory scene is also recollected by sensory inputs from the surrounding world for learned behavioral decisions. It is well experienced that odorants act as strong cues in remembering associated memory. Associative learning of odor signals and object cognition enables us to predict cognitive imagery of an environmental object. Here, we discuss the neural network connecting the olfactory cortices to the higher cognitive areas that dynamically switches the processing mode from feedforward to top-down. These processes are correlated with the respiratory cycle to form and recollect odor-object associative memory. We infer that during the inhalation phase, feedforward odor signals drive burst firings of a specific subset of pyramidal cells in the olfactory cortex. In contrast, during the subsequent late-exhalation phase, top-down cognitive scene-signals from the higher areas activate again the same pyramidal cells as those activated by the feedforward signals. Reactivation of pyramidal cells during the exhalation phase may induce plastic changes in the inter-areal synaptic connections in the neural network to form associative-learning memory. In this perspective article, we will discuss associative learning and cognition of self in the mammalian olfactory system.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
3
|
Fink R, Imai S, Gockel N, Lauer G, Renken K, Wietek J, Lamothe-Molina PJ, Fuhrmann F, Mittag M, Ziebarth T, Canziani A, Kubitschke M, Kistmacher V, Kretschmer A, Sebastian E, Schmitz D, Terai T, Gründemann J, Hassan S, Patriarchi T, Reiner A, Fuhrmann M, Campbell RE, Masseck OA. PinkyCaMP a mScarlet-based calcium sensor with exceptional brightness, photostability, and multiplexing capabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.16.628673. [PMID: 39763884 PMCID: PMC11702558 DOI: 10.1101/2024.12.16.628673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Genetically encoded calcium (Ca2+) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all-optical experimental approaches. Here, we present the development of PinkyCaMP, the first mScarlet-based Ca2+ sensor that outperforms current red fluorescent sensors in brightness, photostability, signal-to-noise ratio, and compatibility with optogenetics and neurotransmitter imaging. PinkyCaMP is well-tolerated by neurons, showing no toxicity or aggregation, both in vitro and in vivo. All imaging approaches, including single-photon excitation methods such as fiber photometry, widefield imaging, miniscope imaging, as well as two-photon imaging in awake mice, are fully compatible with PinkyCaMP.
Collapse
Affiliation(s)
- Ryan Fink
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nala Gockel
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - German Lauer
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Jonas Wietek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
| | | | - Falko Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Annika Canziani
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | | | - Anny Kretschmer
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eva Sebastian
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Einstein Center for Neuroscience, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jan Gründemann
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sami Hassan
- System Neurobiology,University of Bremen, Bremen, Germany
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University and ETH Zürich, Switzerland
| | - Andreas Reiner
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Canada
| | | |
Collapse
|
4
|
Kassraian P, Bigler SK, Gilly Suarez DM, Shrotri N, Barnett A, Lee HJ, Young WS, Siegelbaum SA. The hippocampal CA2 region discriminates social threat from social safety. Nat Neurosci 2024; 27:2193-2206. [PMID: 39406949 DOI: 10.1038/s41593-024-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/23/2024] [Indexed: 11/07/2024]
Abstract
The dorsal cornu ammonis 2 (dCA2) region of the hippocampus enables the discrimination of novel from familiar conspecifics. However, the neural bases for more complex social-spatial episodic memories are unknown. Here we report that the spatial and social contents of an aversive social experience require distinct hippocampal regions. While dorsal CA1 (dCA1) pyramidal neurons mediate the memory of an aversive location, dCA2 pyramidal neurons enable the discrimination of threat-associated (CS+) from safety-associated (CS-) conspecifics in both female and male mice. Silencing dCA2 during encoding or recall trials disrupted social fear discrimination memory, resulting in fear responses toward both the CS+ and CS- mice. Calcium imaging revealed that the aversive experience strengthened and stabilized dCA2 representations of both the CS+ and CS- mice, with the incorporation of an abstract representation of social valence into representations of social identity. Thus, dCA2 contributes to both social novelty detection and the adaptive discrimination of threat-associated from safety-associated individuals during an aversive social episodic experience.
Collapse
Affiliation(s)
- Pegah Kassraian
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA.
| | - Shivani K Bigler
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Diana M Gilly Suarez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Neilesh Shrotri
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Anastasia Barnett
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Heon-Jin Lee
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - W Scott Young
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Steven A Siegelbaum
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City, NY, USA
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York City, NY, USA
| |
Collapse
|
5
|
Robson E, Donahue MM, Mably AJ, Demetrovich PG, Hewitt LT, Colgin LL. Social odors drive hippocampal CA2 place cell responses to social stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603738. [PMID: 39071428 PMCID: PMC11275720 DOI: 10.1101/2024.07.16.603738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hippocampal region CA2 is essential for social memory processing. Interaction with social stimuli induces changes in CA2 place cell firing during active exploration and sharp wave-ripples during rest following a social interaction. However, it is unknown whether these changes in firing patterns are caused by integration of multimodal social stimuli or by a specific sensory modality associated with a social interaction. Rodents rely heavily on chemosensory cues in the form of olfactory signals for social recognition processes. To determine the extent to which social olfactory signals contribute to CA2 place cell responses to social stimuli, we recorded CA2 place cells in rats freely exploring environments containing stimuli that included or lacked olfactory content. We found that CA2 place cell firing patterns significantly changed only when social odors were prominent. Also, place cells that increased their firing in the presence of social odors alone preferentially increased their firing during subsequent sharp wave-ripples. Our results suggest that social olfactory cues are essential for changing CA2 place cell firing patterns during and after social interactions. These results support prior work suggesting CA2 performs social functions and shed light on processes underlying CA2 responses to social stimuli.
Collapse
Affiliation(s)
- Emma Robson
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Margaret M. Donahue
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Alexandra J. Mably
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Peyton G. Demetrovich
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Lauren T. Hewitt
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Laura Lee Colgin
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
6
|
Leung LS, Gill RS, Shen B, Chu L. Cholinergic and behavior-dependent beta and gamma waves are coupled between olfactory bulb and hippocampus. Hippocampus 2024; 34:464-490. [PMID: 38949057 DOI: 10.1002/hipo.23622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Olfactory oscillations may enhance cognitive processing through coupling with beta (β, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at β and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal β, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of β waves in OB with β waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of β/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-β and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with β and γ2 waves at CA1 alveus after pilocarpine. It is concluded that β and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at β and γ frequencies may enhance cognitive functions.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Ravnoor Singh Gill
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Bixia Shen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Villegas A, Siegelbaum SA. Modulation of aggression by social novelty recognition memory in the hippocampal CA2 region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592403. [PMID: 38746353 PMCID: PMC11092780 DOI: 10.1101/2024.05.03.592403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The dorsal CA2 subregion (dCA2) of the hippocampus exerts a critical role in social novelty recognition (SNR) memory and in the promotion of social aggression. Whether the social aggression and SNR memory functions of dCA2 are related or represent independent processes is unknown. Here we investigated the hypotheses that an animal is more likely to attack a novel compared to familiar animal and that dCA2 promotes social aggression through its ability to discriminate between novel and familiar conspecifics. To test these ideas, we conducted a multi-day resident intruder (R-I) test of aggression towards novel and familiar conspecifics. We found that mice were more likely to attack a novel compared to familiarized intruder and that silencing of dCA2 caused a more profound inhibition of aggression towards a novel than familiarized intruder. To explore whether and how dCA2 pyramidal neurons encode aggression, we recorded their activity using microendoscopic calcium imaging throughout the days of the R-I test. We found that a fraction of dCA2 neurons were selectively activated or inhibited during exploration, dominance, and attack behaviors and that these signals were enhanced during interaction with a novel compared to familiarized conspecific. Based on dCA2 population activity, a set of binary linear classifiers accurately decoded whether an animal was engaged in each of these forms of social behavior. Of particular interest, the accuracy of decoding aggression was greater with novel compared to familiarized intruders, with significant cross-day decoding using the same familiar animal on each day but not for a familiar-novel pair. Together, these findings demonstrate that dCA2 integrates information about social novelty with signals of behavioral state to promote aggression towards novel conspecifics.
Collapse
|
9
|
Denney KA, Wu MV, Sun SED, Moon S, Tollkuhn J. Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain. Horm Behav 2024; 158:105463. [PMID: 37995608 PMCID: PMC11145901 DOI: 10.1016/j.yhbeh.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.
Collapse
Affiliation(s)
- Katherine A Denney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Soyoun Moon
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
10
|
Yokose J, Marks WD, Kitamura T. Visuotactile integration facilitates mirror-induced self-directed behavior through activation of hippocampal neuronal ensembles in mice. Neuron 2024; 112:306-318.e8. [PMID: 38056456 DOI: 10.1016/j.neuron.2023.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Remembering the visual features of oneself is critical for self-recognition. However, the neural mechanisms of how the visual self-image is developed remain unknown because of the limited availability of behavioral paradigms in experimental animals. Here, we demonstrate a mirror-induced self-directed behavior (MSB) in mice, resembling visual self-recognition. Mice displayed increased mark-directed grooming to remove ink placed on their heads when an ink-induced visual-tactile stimulus contingency occurred. MSB required mirror habituation and social experience. The chemogenetic inhibition of dorsal or ventral hippocampal CA1 (vCA1) neurons attenuated MSB. Especially, a subset of vCA1 neurons activated during the mirror exposure was significantly reactivated during re-exposure to the mirror and was necessary for MSB. The self-responding vCA1 neurons were also reactivated when mice were exposed to a conspecific of the same strain. These results suggest that visual self-image may be developed through social experience and mirror habituation and stored in a subset of vCA1 neurons.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Kassraian P, Bigler SK, Gilly DM, Shrotri N, Siegelbaum SA. A neural mechanism for discriminating social threat from social safety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547723. [PMID: 37461518 PMCID: PMC10350012 DOI: 10.1101/2023.07.04.547723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The ability to distinguish a threatening from non-threatening conspecific based on past experience is critical for adaptive social behaviors. Although recent progress has been made in identifying the neural circuits that contribute to different types of positive and negative social interactions, the neural mechanisms that enable the discrimination of individuals based on past aversive experiences remain unknown. Here, we developed a modified social fear conditioning paradigm that induced in both sexes robust behavioral discrimination of a conspecific associated with a footshock (CS+) from a non-reinforced interaction partner (CS-). Strikingly, chemogenetic or optogenetic silencing of hippocampal CA2 pyramidal neurons, which have been previously implicated in social novelty recognition memory, resulted in generalized avoidance fear behavior towards the equally familiar CS-and CS+. One-photon calcium imaging revealed that the accuracy with which CA2 representations discriminate the CS+ from the CS-animal was enhanced following social fear conditioning and strongly correlated with behavioral discrimination. Moreover the CA2 representations incorporated a generalized or abstract representation of social valence irrespective of conspecific identity and location. Thus, our results demonstrate, for the first time, that the same hippocampal CA2 subregion mediates social memories based on conspecific familiarity and social threat, through the incorporation of a representation of social valence into an initial representation of social identity.
Collapse
|