1
|
Torossian A, Miranda BA, Reis FMCV, Hilgert EL, Gudipati R, Bloom CPV, Wang W, Schuette PJ, Adhikari A. Hypothalamic Control of Learned Flight Induced by Threat Imminence. J Neurosci 2025; 45:e1806242025. [PMID: 40180574 PMCID: PMC12060629 DOI: 10.1523/jneurosci.1806-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Flexible experience-dependent learned escape has paramount survival value. However, flight is generally investigated in the presence of innate threats. To study conditioned escape, we developed a paradigm in which mice learn to escape a moving shock grid, which simulates a naturalistic situation of being chased by a threat. In a single session, mice learn to escape from the shock-delivering moving grid, displaying a "flight upon grid approach" (FUGA). Importantly, this learned flight is also displayed the next day during fear retrieval, in the absence of shock. We reasoned that circuits implicated in escape and learned fear control this behavior. Fittingly, cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd-cck neurons) are necessary for escape from innate threats, and PMd activity modulates learned defense, suggesting it may participate in the maintenance of learned FUGA escapes. Here, we show in male and female mice that inhibiting PMd-cck activity during FUGA acquisition impairs learned flight during fear retrieval. Furthermore, these results were specific to a paradigm with a moving threat, as PMd-cck inhibition during fear acquisition did not alter behavior during fear retrieval in contextual or auditory-cued fear conditioning. Lastly, PMd-cck cells encoded distance to the moving grid and FUGA escape speed, but were not activated by fear-conditioned tones or conditioned freezing. These data show that the PMd is critical for the maintenance of the memory of the threat associated with the grid and underscore recent views demonstrating that the hypothalamus has key contributions for learning flexible experience-dependent survival actions.
Collapse
Affiliation(s)
- Anita Torossian
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Blake A Miranda
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Elizabeth L Hilgert
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Renesh Gudipati
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Catherine P V Bloom
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Weisheng Wang
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, California, 90095
| |
Collapse
|
2
|
Ly A, Hotchkiss H, Prévost ED, Pelletier JM, Deming MA, Murib L, Root DH. Assessing the role of BNST GABA neurons in backward conditioned suppression. Neurobiol Learn Mem 2025; 219:108058. [PMID: 40318802 DOI: 10.1016/j.nlm.2025.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Conditioned suppression is a useful paradigm for measuring learned avoidance. In most conditioned suppression studies, forward conditioning is used where a cue predicts an aversive stimulus. However, backward conditioning, in which an aversive stimulus predicts a cue, provides unique insights into learned avoidance due to its influence on both conditioned excitation and inhibition. We trained mice to consume sucrose in context A, associated an aversive stimulus in context B to few or many forward or backwards paired cues (CS + ), and then tested for conditioned suppression in context A in response to the CS + . We found that few or many forward CS + and few backward CS + produced conditioned suppression, but many backwards cues did not. Administration of diazepam, a positive allosteric modulator of the GABAA receptor, prevented conditioned suppression to the backward CS + but not to the forward CS + . Furthermore, freezing behavior was observed in response to the forward CS + but not the backward CS+, and diazepam had no effect on freezing or locomotion. We next examined BNST GABA neurons for potential sensitivity to backwards cues and conditioned suppression. VGaT BNST signaling increased in response to sucrose licks during the backward CS + but not to licks outside the CS + and not to the backward CS + onset or offset. Using designer receptors, we found that BNST VGaT neuron activation, but not its inhibition, prevented backward conditioned suppression expression. We conclude that backward conditioned suppression is dependent on both positive allosteric modulation of GABA on GABAA receptors by diazepam and BNST GABA neurons.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - Julianne M Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - Melissa A Deming
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - Luma Murib
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301, USA.
| |
Collapse
|
3
|
Ariyani W, Yoshikawa C, Tsuneoka H, Amano I, Imayoshi I, Ichinose H, Sumi-Ichinose C, Koibuchi N, Kitamura T, Kohno D. Dopaminergic neurons in the paraventricular hypothalamus extend the food consumption phase. Proc Natl Acad Sci U S A 2025; 122:e2411069122. [PMID: 40153459 PMCID: PMC12002271 DOI: 10.1073/pnas.2411069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
Feeding behavior is controlled by various neural networks in the brain that are involved in different feeding phases: Food procurement, consumption, and termination. However, the specific neural circuits controlling the food consumption phase remain poorly understood. Here, we investigated the roles of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PVH) in the feeding behavior in mice. Our results indicated that the PVH dopaminergic neurons were critical for extending the food consumption phase and involved in the development of obesity through epigenetic mechanisms. These neurons synchronized with proopiomelanocortin neurons during consumption, were stimulated by proopiomelanocortin activation, and projected to the lateral habenula (LHb), where dopamine receptor D2 was involved in the increase in food consumption. In addition, upregulated tyrosine hydroxylase (TH) expression in PVH was associated with obesity and indispensable for obesity induction in mice lacking Dnmt3a. Taken together, our results highlight the roles of PVH dopaminergic neurons in promoting food consumption and obesity induction.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Itaru Imayoshi
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa226-8501, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi470-1192, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| |
Collapse
|
4
|
Chowdhury S, Kamatkar NG, Wang WX, Akerele CA, Huang J, Wu J, Nwankpa A, Kane CM, Bhave VM, Huang H, Wang X, Nectow AR. Brainstem neuropeptidergic neurons link a neurohumoral axis to satiation. Cell 2025; 188:1563-1579.e18. [PMID: 39914383 DOI: 10.1016/j.cell.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/03/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
Hunger is evolutionarily hardwired to ensure that an animal has sufficient energy to survive and reproduce. Just as important as knowing when to start eating is knowing when to stop eating. Here, using spatially resolved single-cell phenotyping, we characterize a population of neuropeptidergic neurons in the brainstem's dorsal raphe nucleus (DRN) and describe how they regulate satiation. These neurons track food from sensory presentation through ingestion, integrate these signals with slower-acting humoral cues, and express cholecystokinin (CCK). These CCK neurons bidirectionally regulate meal size, driving a sustained meal termination signal with a built-in delay. They are also well positioned to sense and respond to ingestion: they express a host of metabolic signaling factors and are integrated into an extended network known to regulate feeding. Together, this work demonstrates how DRN CCK neurons regulate satiation and identifies a likely conserved cellular mechanism that transforms diverse neurohumoral signals into a key behavioral output.
Collapse
Affiliation(s)
| | | | - Wendy Xueyi Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Christa A Akerele
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junlin Wu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Amajindi Nwankpa
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Charlotte M Kane
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Varun M Bhave
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hao Huang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University, New York, NY 10032, USA; Division of Cardiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Ly A, Karnosky R, Prévost ED, Hotchkiss H, Pelletier J, Spencer RL, Ford CP, Root DH. VGluT3 BNST neurons transmit GABA and restrict feeding without affecting rewarding or aversive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631003. [PMID: 39803518 PMCID: PMC11722381 DOI: 10.1101/2025.01.01.631003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT). Cell-type specific presynaptic processes were identified in arcuate nucleus (ARC) and the paraventricular nucleus of the hypothalamus (PVN), regions critical for feeding and homeostatic regulation. Whole-cell patch-clamp electrophysiology revealed that, while these neurons co-express VGluT3 and VGaT, they functionally transmit GABA to both ARC and PVN, with rare glutamate co-transmission to ARC. Neuronal recordings of VGluT3 BNST neurons showed greater calcium-dependent signaling in response to sucrose consumption while sated compared with fasted. When fasted, optogenetic stimulation of BNST VGluT3 neurons decreased sucrose consumption using several stimulation conditions but not when stimulation occurred prior to sucrose access, suggesting that BNST VGluT3 activation concurrent with consumption in the fasted state reduces feeding. BNST VGluT3 activation during anxiety-like paradigms (novelty-suppressed feeding, open field, and elevated zero maze) and real-time place conditioning resulted in no changes in anxiety-like or reward/aversion behavior. We interpret these data such that VGluT3 BNST neurons represent a unique cellular population within the BNST that provides inhibitory input to hypothalamic regions to decrease feeding without affecting anxiety-like or reward/aversion behavior.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Rachel Karnosky
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Julianne Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Christopher P. Ford
- Deparment of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
6
|
Ly A, Hotchkiss H, Prévost ED, Pelletier J, Deming M, Murib L, Root DH. Assessing the role of BNST GABA neurons in backward conditioned suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631006. [PMID: 39803568 PMCID: PMC11722385 DOI: 10.1101/2025.01.01.631006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Conditioned suppression is a useful paradigm for measuring learned avoidance. In most conditioned suppression studies, forward conditioning is used where a cue predicts an aversive stimulus. However, backward conditioning, in which an aversive stimulus predicts a cue, provides unique insights into learned avoidance due to its influence on both conditioned excitation and inhibition. We trained mice to consume sucrose in context A, associated an aversive stimulus in context B to few or many forward or backwards paired cues (CS+), and then tested for conditioned suppression in context A in response to the CS+. We found that few or many forward CS+ and few backward CS+ produced conditioned suppression, but many backwards cues did not. Administration of diazepam, a positive allosteric modulator of the GABA-A receptor, prevented conditioned suppression to the backward CS+ but not to the forward CS+. Furthermore, freezing behavior was observed in response to the forward CS+ but not the backward CS+, and diazepam had no effect on freezing or locomotion. We next examined BNST GABA neurons for potential sensitivity to backwards cues and conditioned suppression. VGaT BNST signaling increased in response to sucrose licks during the backward CS+ but not to licks outside the CS+ and not to the backward CS+ onset or offset. Using designer receptors, we found that BNST VGaT neuron activation, but not its inhibition, prevented backward conditioned suppression expression. We conclude that backward conditioned suppression is dependent on both positive allosteric modulation of GABA on GABA-A receptors by diazepam and BNST GABA neurons.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Julianne Pelletier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Melissa Deming
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Luma Murib
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
7
|
Sweet SR, Biddinger JE, Zimmermann JB, Yu GL, Simerly RB. Early perturbations to fluid homeostasis alter development of hypothalamic feeding circuits with context-specific changes in ingestive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620307. [PMID: 39484367 PMCID: PMC11527132 DOI: 10.1101/2024.10.25.620307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Drinking and feeding are tightly coordinated homeostatic events and the paraventricular nucleus of the hypothalamus (PVH) represents a possible node of neural integration for signals related to energy and fluid homeostasis. We used TRAP2;Ai14 and Fos labeling to visualize neurons in the PVH and median preoptic nucleus (MEPO) responding to both water deprivation and hunger. Moreover, we determined that structural and functional development of dehydration-sensitive inputs to the PVH from the MEPO precedes those of agouti-related peptide (AgRP) neurons, which convey hunger signals and are known to be developmentally programmed by nutrition. We also determined that osmotic hyperstimulation of neonatal mice led to enhanced AgRP inputs to the PVH in adulthood, as well as disruptions to ingestive behaviors during high-fat diet feeding and dehydration-anorexia. Thus, development of feeding circuits is impacted not only by nutritional signals, but also by early perturbations to fluid homeostasis with context-specific consequences for coordination of ingestive behavior.
Collapse
|
8
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Wang Q, Sun RY, Hu JX, Sun YH, Li CY, Huang H, Wang H, Li XM. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat Commun 2024; 15:7728. [PMID: 39231981 PMCID: PMC11375128 DOI: 10.1038/s41467-024-51983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Yue Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Xue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
10
|
Alcantara IC, Li C, Mickelsen LE, Mazzone CM, de Araujo Salgado I, Gao C, Papas BN, Xiao C, Karolczak EO, Goldschmidt AI, Gonzalez SR, Piñol RA, Li JL, Cui G, Reitman ML, Krashes MJ. A Hypothalamic Circuit that Modulates Feeding and Parenting Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604437. [PMID: 39091749 PMCID: PMC11291030 DOI: 10.1101/2024.07.22.604437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Across mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production1-5. While many neural circuits underlying feeding and parenting behaviors are well characterized6-9, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger. Furthermore, we showed that heightened appetite in lactating mice was accompanied by increased activity of hunger-promoting agouti-related peptide (AgRP) neurons in the ARC. To assess the strength of hunger versus maternal drives, we designed a conflict assay where female mice chose between a food source or a chamber containing pups and nesting material. Although food-deprived lactating mothers prioritized parenting over feeding, hunger reduced the duration and disrupted the sequences of parenting behaviors in both lactating and virgin females. We discovered that ARCAgRP neurons directly inhibit bombesin receptor subtype-3 (BRS3) neurons in the MPOA, a population that governs both parenting and satiety. Selective activation of this ARCAgRP to MPOABRS3 circuit shifted behaviors from parenting to food-seeking. Thus, hypothalamic networks are modulated by physiological states and work antagonistically during the prioritization of competing motivated behaviors.
Collapse
Affiliation(s)
- Ivan C. Alcantara
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Neuroscience, Brown University, Providence, RI, USA 20912
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Laura E. Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Christopher M. Mazzone
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Claire Gao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Brian N. Papas
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Eva O. Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Abigail I. Goldschmidt
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Ramón A. Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jian-Liang Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Guohong Cui
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Michael J. Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
11
|
Stempel AV, Evans DA, Arocas OP, Claudi F, Lenzi SC, Kutsarova E, Margrie TW, Branco T. Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice. Curr Biol 2024; 34:3031-3039.e7. [PMID: 38936364 DOI: 10.1016/j.cub.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.
Collapse
Affiliation(s)
- A Vanessa Stempel
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| | - Dominic A Evans
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Oriol Pavón Arocas
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Stephen C Lenzi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Elena Kutsarova
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Troy W Margrie
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK.
| |
Collapse
|
12
|
Dodt S, Widdershooven NV, Dreisow ML, Weiher L, Steuernagel L, Wunderlich FT, Brüning JC, Fenselau H. NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation. Nat Commun 2024; 15:5439. [PMID: 38937485 PMCID: PMC11211344 DOI: 10.1038/s41467-024-49766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Collapse
Affiliation(s)
- Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Noah V Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Lisa Weiher
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
| |
Collapse
|
13
|
Sayar-Atasoy N, Yavuz Y, Laule C, Dong C, Kim H, Rysted J, Flippo K, Davis D, Aklan I, Yilmaz B, Tian L, Atasoy D. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons. Cell Rep 2024; 43:113630. [PMID: 38165803 PMCID: PMC10865729 DOI: 10.1016/j.celrep.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the μ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.
Collapse
Affiliation(s)
- Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Rysted
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle Flippo
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Barbano MF, Zhang S, Chen E, Espinoza O, Mohammad U, Alvarez-Bagnarol Y, Liu B, Hahn S, Morales M. Lateral hypothalamic glutamatergic inputs to VTA glutamatergic neurons mediate prioritization of innate defensive behavior over feeding. Nat Commun 2024; 15:403. [PMID: 38195566 PMCID: PMC10776608 DOI: 10.1038/s41467-023-44633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The lateral hypothalamus (LH) is involved in feeding behavior and defense responses by interacting with different brain structures, including the Ventral Tegmental Area (VTA). Emerging evidence indicates that LH-glutamatergic neurons infrequently synapse on VTA-dopamine neurons but preferentially establish multiple synapses on VTA-glutamatergic neurons. Here, we demonstrated that LH-glutamatergic inputs to VTA promoted active avoidance, long-term aversion, and escape attempts. By testing feeding in the presence of a predator, we observed that ongoing feeding was decreased, and that this predator-induced decrease in feeding was abolished by photoinhibition of the LH-glutamatergic inputs to VTA. By VTA specific neuronal ablation, we established that predator-induced decreases in feeding were mediated by VTA-glutamatergic neurons but not by dopamine or GABA neurons. Thus, we provided evidence for an unanticipated neuronal circuitry between LH-glutamatergic inputs to VTA-glutamatergic neurons that plays a role in prioritizing escape, and in the switch from feeding to escape in mice.
Collapse
Affiliation(s)
- M Flavia Barbano
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Emma Chen
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Orlando Espinoza
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uzma Mohammad
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yocasta Alvarez-Bagnarol
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Bing Liu
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Suyun Hahn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Klima ML, Kruger KA, Goldstein N, Pulido S, Low AYT, Assenmacher CA, Alhadeff AL, Betley JN. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits. Cell Rep 2023; 42:113338. [PMID: 37910501 DOI: 10.1016/j.celrep.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.
Collapse
Affiliation(s)
- Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla A Kruger
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Pulido
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Amber L Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science 2023; 382:405-412. [PMID: 37883555 DOI: 10.1126/science.adh8285] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.
Collapse
Affiliation(s)
- Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Ly A, Barker A, Hotchkiss H, Prévost ED, McGovern DJ, Kilpatrick Z, Root DH. Bed nucleus of the stria terminalis GABA neurons are necessary for changes in foraging behaviour following an innate threat. Eur J Neurosci 2023; 58:3630-3649. [PMID: 37715507 PMCID: PMC10748738 DOI: 10.1111/ejn.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Foraging is a universal behaviour that has co-evolved with predation pressure. We investigated the role of the bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Both robotic and live predator interactions increased BNST GABA neuron activity. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared with pre-encounter behaviour. Inhibition of BNST GABA neurons had no effect on foraging behaviour post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and significantly altered their overall foraging performance. Inhibition of BNST GABA neurons during live predator exposure prevented changes in foraging behaviour from developing after a live predator threat. BNST GABA neuron inhibition did not alter foraging behaviour during robotic or live predator threats. We conclude that these results demonstrate that while both robotic and live predator encounters effectively intrude on foraging behaviour, the perceived risk and behavioural consequences of the threat are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behaviour.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alexandra Barker
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, USA
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|