1
|
Zhou S, Zhu Y, Du A, Niu S, Du Y, Yang Y, Chen W, Du S, Sun L, Liu Y, Wu H, Lou H, Li XM, Duan S, Yang H. A midbrain circuit mechanism for noise-induced negative valence coding. Nat Commun 2025; 16:4610. [PMID: 40382338 DOI: 10.1038/s41467-025-59956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Unpleasant sounds elicit a range of negative emotional reactions, yet the underlying neural mechanisms remain largely unknown. Here we show that glutamatergic neurons in the central inferior colliculus (CICglu) relay noise information to GABAergic neurons in the ventral tegmental area (VTAGABA) via the cuneiform nucleus (CnF), encoding negative emotions in mice. In contrast, the CICglu→medial geniculate (MG) canonical auditory pathway processes salient stimuli. By combining viral tracing, calcium imaging, and optrode recording, we demonstrate that the CnF acts downstream of CICglu to convey negative valence to the mesolimbic dopamine system by activating VTAGABA neurons. Optogenetic or chemogenetic inhibition of any connection within the CICglu→CnFglu → VTAGABA circuit, or direct excitation of the mesolimbic dopamine (DA) system is sufficient to alleviate noise-induced negative emotion perception. Our findings highlight the significance of the CICglu→CnFglu → VTAGABA circuit in coping with acoustic stressors.
Collapse
Affiliation(s)
- Siyao Zhou
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yuebin Zhu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Ana Du
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shuai Niu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yonglan Du
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Siyu Du
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Li Sun
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yijun Liu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Huifang Lou
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hongbin Yang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Hanna C, Comstock F, Chatrath S, Posner A, Butsch J, Blum K, Gold MS, Georger L, Mastrandrea LD, Quattrin T, Thanos PK. Utilization of a precision medicine genetic and psychosocial approach in outcome assessment of bariatric weight loss surgery: a narrative review. Front Public Health 2025; 13:1516122. [PMID: 40376058 PMCID: PMC12078287 DOI: 10.3389/fpubh.2025.1516122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
The obesity epidemic has become a global public health issue, impacting more than one billion people worldwide. 9% of the US population, or 28.8 million Americans will have an eating disorder in their lifetime. In fact, global eating disorder prevalence increased from 3.5% to 7.8% between 2000 and 2018. In spite of the fact that less than 6% of people with an eating disorder are medically underweight, it is indeed an important factor when considering issues related to obesity. This public health problem is often described as being caused by various genetic and psychosocial factors. One of the most effective strategies for treating morbid obesity and achieving significant weight loss is bariatric surgery. Recent focus on precision medicine approaches has expanded into bariatric surgery in an effort to better understand and achieve improved outcomes and reduce risk for post-operative weight regain and addiction transfers during the recovery process. Addiction transfers, including substance and non-substance addictions, are well established concerns for post-bariatric patients. This review details the genetic, molecular and psychosocial factors that can be utilized to inform and guide personalized treatment. Additionally, this review details some of the molecular mechanisms including dysregulation of catecholamine signaling as well as other neurotransmitter systems relevant to help further understand recovery science.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Fiona Comstock
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Shtakshe Chatrath
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
| | - Alan Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John Butsch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA, United States
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Lesley Georger
- Department of Natural Sciences and Mathematics, D'Youville University, Buffalo, NY, United States
| | - Lucy D. Mastrandrea
- UBMD Pediatrics Division of Endocrinology/Diabetes, Buffalo, NY, United States
| | - Teresa Quattrin
- UBMD Pediatrics Division of Endocrinology/Diabetes, Buffalo, NY, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, United States
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
3
|
Handa T, Sugiyama T, Islam T, Johansen JP, Yanagawa Y, McHugh TJ, Okamoto H. The neural pathway from the superior subpart of the medial habenula to the interpeduncular nucleus suppresses anxiety. Mol Psychiatry 2025:10.1038/s41380-025-02964-8. [PMID: 40140491 DOI: 10.1038/s41380-025-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The medial habenula (MHb) and its projection target, the interpeduncular nucleus (IPN), are highly conserved throughout vertebrate evolution. The MHb-IPN pathway connects the limbic system to the brainstem, consisting of subpathways that project in a topographically organized manner, and has been implicated in the regulation of fear and anxiety. Previous studies have revealed subregion-specific functions of the cholinergic ventral MHb and a substance P (SP)-positive (SP+) subpart of the dorsal MHb (dMHb). In contrast, the dMHb also contains another subpart, a SP-negative subpart known as the 'superior part of MHb (MHbS)'. Although the MHbS has been characterized from various aspects, e.g. distinct c-Fos responses to stressful events and electrophysiological properties compared to other subregions, many of its physiological functions remain to be investigated. Here we found that dopamine receptor D3 (DRD3)-Cre mice enable the labeling of the IPN subregion that receives the MHbS projection. The Cre-expressing somata within the lateral subnucleus of the IPN (LIPN) were concentrated in its most lateral area, which we refer to as the 'lateral subregion of the LIPN (lLIPN)'. This region is characterized by the absence of SP+ axons, in contrast to the medial subregion of the LIPN (mLIPN) innervated by the SP+ axons from the dorsal MHb. Chemogenetic activation and genetically induced synaptic silencing of the DRD3-Cre+ cells reduced and enhanced anxiety-like behavior, respectively. Moreover, c-Fos expression was increased in the lLIPN under an anxiogenic environment. These findings suggest that the MHbS-lLIPN pathway is activated under anxiogenic environments to counteract anxiety.
Collapse
Affiliation(s)
- Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Molecular Neuroscience, Medical Research Institute, Institute of Science Tokyo (formerly Tokyo Medical and Dental University), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-15 Showacho, Maebashi, Gunma, 371-8511, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN CBS-Kao Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8489, Japan.
- Institute of Neuropsychiatry, 91 Bentencho, Shinjuku, Tokyo, 162-0851, Japan.
| |
Collapse
|
4
|
Wang Y, Yang Z, Shi X, Han H, Li AN, Zhang B, Yuan W, Sun YH, Li XM, Lian H, Li MD. Investigating the effect of Arvcf reveals an essential role on regulating the mesolimbic dopamine signaling-mediated nicotine reward. Commun Biol 2025; 8:429. [PMID: 40082601 PMCID: PMC11906728 DOI: 10.1038/s42003-025-07837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
The mesolimbic dopamine system is crucial for drug reinforcement and reward learning, leading to addiction. We previously demonstrated that Arvcf was associated significantly with nicotine and alcohol addiction through genome-wide association studies. However, the role and mechanisms of Arvcf in dopamine-mediated drug reward processes were largely unknown. In this study, we first showed that Arvcf mediates nicotine-induced reward behavior by using conditioned place preference (CPP) model on Arvcf-knockout (Arvcf-KO) animal model. Then, we revealed that Arvcf was mainly expressed in VTA dopaminergic neurons whose expression could be upregulated by nicotine treatment. Subsequently, our SnRNA-seq analysis revealed that Arvcf was directly involved in dopamine biosynthesis in VTA dopaminergic neurons. Furthermore, we found that Arvcf-KO led to a significant reduction in both the dopamine synthesis and release in the nucleus accumbens (NAc) on nicotine stimulation. Specifically, we demonstrated that inhibition of Arvcf in VTA dopaminergic neurons decreased dopamine release within VTA-NAc circuit and suppressed nicotine reward-related behavior, while overexpression of Arvcf led to the opposite results. Taken together, these findings highlight the role of Arvcf in regulating dopamine signaling and reward learning, and its enhancement of dopamine release in the VTA-NAc circuit as a novel mechanism for nicotine reward.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Cheng CN, Kozłowska A, Li WL, Wu CW, Wang YC, Huang ACW. NMDA-induced lesions of the nucleus accumbens core increase the innately rewarding saccharin solution intake and methamphetamine-induced conditioned place preference but not conditioned taste aversion in rats. Pharmacol Biochem Behav 2025; 248:173957. [PMID: 39814213 DOI: 10.1016/j.pbb.2025.173957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The role of the nucleus accumbens (NAc) core in determining the valence of innately rewarding saccharin solution intake, methamphetamine (MAMPH)-induced conditioned taste aversion (CTA), and conditioned place preference (CPP) reward remains unclear. The present study utilized the "pre- and post-association" experimental paradigm (2010) to test whether the rewarding and aversive properties of MAMPH can be modulated by an N-methyl-D-aspartic acid (NMDA) lesion in the NAc core. Moreover, it tested how an NAc core NMDA lesion affected the innate reward of saccharin solution intake. The results demonstrate that MAMPH could simultaneously induce an aversive CTA and a rewarding CPP effect, supporting the paradoxical effect hypothesis of abused drugs, in particular amphetamine. Meanwhile, the NMDA-lesioned NAc core increased the reward effect of CPP but did not alter the aversive CTA effect. The NAc core NMDA lesion also enhanced the innate reward of saccharin solution intake. The NAc core therefore seemingly plays an inhibitory role in the innate reward of saccharin solution intake and in the CPP effect. The paradoxical effect hypothesis of abused drugs provides some explanations for the present data in the case of MAMPH administrations. The NAc core may play an essential role in modulating the rewarding but not the aversive properties of MAMPH. The present findings could contribute to the understanding and eventual advancement of clinical interventions for drug addiction and the development of novel pharmacological treatments.
Collapse
Affiliation(s)
- Cai-N Cheng
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | - Wei-Lun Li
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Chi-Wen Wu
- Department of Pharmacy, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan
| | - Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | |
Collapse
|
6
|
Zichó K, Balog BZ, Sebestény RZ, Brunner J, Takács V, Barth AM, Seng C, Orosz Á, Aliczki M, Sebők H, Mikics E, Földy C, Szabadics J, Nyiri G. Identification of the subventricular tegmental nucleus as brainstem reward center. Science 2025; 387:eadr2191. [PMID: 39847621 DOI: 10.1126/science.adr2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release. Mice self-stimulate the SVTg, which can also be activated directly by the neocortex, resulting in effective inhibition of the lateral habenula, a region associated with depression. This mechanism may also explain why SVTg suppression induces aversion and increases fear. The translational relevance of these findings is supported by evidence in the rat, monkey, and human brainstem, establishing SVTg as a key hub for reward processing, emotional valence, and motivation.
Collapse
Affiliation(s)
- Krisztián Zichó
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Boldizsár Zsolt Balog
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Réka Z Sebestény
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Virág Takács
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Albert M Barth
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Manó Aliczki
- Laboratory of Translational Behavioral Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Hunor Sebők
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Laboratory of Translational Behavioral Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - János Szabadics
- Laboratory of Cellular Neuropharmacology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Zheng Z, Liu Y, Mu R, Guo X, Feng Y, Guo C, Yang L, Qiu W, Zhang Q, Yang W, Dong Z, Qiu S, Dong Y, Cui Y. A small population of stress-responsive neurons in the hypothalamus-habenula circuit mediates development of depression-like behavior in mice. Neuron 2024; 112:3924-3939.e5. [PMID: 39389052 DOI: 10.1016/j.neuron.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Accumulating evidence has shown that various brain functions are associated with experience-activated neuronal ensembles. However, whether such neuronal ensembles are engaged in the pathogenesis of stress-induced depression remains elusive. Utilizing activity-dependent viral strategies in mice, we identified a small population of stress-responsive neurons, primarily located in the middle part of the lateral hypothalamus (mLH) and the medial part of the lateral habenula (LHbM). These neurons serve as "starter cells" to transmit stress-related information and mediate the development of depression-like behaviors during chronic stress. Starter cells in the mLH and LHbM form dominant connections, which are selectively potentiated by chronic stress. Silencing these connections during chronic stress prevents the development of depression-like behaviors, whereas activating these connections directly elicits depression-like behaviors without stress experience. Collectively, our findings dissect a core functional unit within the LH-LHb circuit that mediates the development of depression-like behaviors in mice.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Liang Yang
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Wenxi Qiu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuang Qiu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
Higgs MH, Beckstead MJ. Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons. eNeuro 2024; 11:ENEURO.0203-24.2024. [PMID: 38969500 PMCID: PMC11287791 DOI: 10.1523/eneuro.0203-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.
Collapse
Affiliation(s)
- Matthew H Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
10
|
Zhou S, Duan S, Yang H. Protocol for fiber photometry recording from deep brain regions in head-fixed mice. STAR Protoc 2024; 5:103131. [PMID: 38875116 PMCID: PMC11225901 DOI: 10.1016/j.xpro.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
To exclude the influence of motion on in vivo calcium imaging, animals usually need to be fixed. However, the whole-body restraint can cause stress in animals, affecting experimental results. In addition, some brain regions are prone to bleeding during surgery, which lowers the success rate of calcium imaging. Here, we present a protocol for calcium imaging using heparin-treated fiber in head-fixed mice. We describe steps for stereotaxic surgery, including virus injection and optic fiber implantation, fiber photometry, and data analysis. For complete details on the use and execution of this protocol, please refer to Du et al.1.
Collapse
Affiliation(s)
- Siyao Zhou
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Shumin Duan
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Hongbin Yang
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Li XY, Zhang SY, Hong YZ, Chen ZG, Long Y, Yuan DH, Zhao JJ, Tang SS, Wang H, Hong H. TGR5-mediated lateral hypothalamus-dCA3-dorsolateral septum circuit regulates depressive-like behavior in male mice. Neuron 2024; 112:1795-1814.e10. [PMID: 38518778 DOI: 10.1016/j.neuron.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.
Collapse
Affiliation(s)
- Xu-Yi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Ya Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Zhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Gang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Hua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Jia Zhao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Su Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-Computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Molas S, Freels TG, Zhao-Shea R, Lee T, Gimenez-Gomez P, Barbini M, Martin GE, Tapper AR. Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit. Nat Commun 2024; 15:2891. [PMID: 38570514 PMCID: PMC10991551 DOI: 10.1038/s41467-024-47255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
- Institute for Behavioral Genetics, University of Colorado Boulder 1480 30th St, Boulder, 80303, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder 1905 Colorado Ave, Boulder, 80309, CO, USA.
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Timothy Lee
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Melanie Barbini
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Gilles E Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
| |
Collapse
|
13
|
Sands LP, Jiang A, Liebenow B, DiMarco E, Laxton AW, Tatter SB, Montague PR, Kishida KT. Subsecond fluctuations in extracellular dopamine encode reward and punishment prediction errors in humans. SCIENCE ADVANCES 2023; 9:eadi4927. [PMID: 38039368 PMCID: PMC10691773 DOI: 10.1126/sciadv.adi4927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
In the mammalian brain, midbrain dopamine neuron activity is hypothesized to encode reward prediction errors that promote learning and guide behavior by causing rapid changes in dopamine levels in target brain regions. This hypothesis (and alternatives regarding dopamine's role in punishment-learning) has limited direct evidence in humans. We report intracranial, subsecond measurements of dopamine release in human striatum measured, while volunteers (i.e., patients undergoing deep brain stimulation surgery) performed a probabilistic reward and punishment learning choice task designed to test whether dopamine release encodes only reward prediction errors or whether dopamine release may also encode adaptive punishment learning signals. Results demonstrate that extracellular dopamine levels can encode both reward and punishment prediction errors within distinct time intervals via independent valence-specific pathways in the human brain.
Collapse
Affiliation(s)
- L. Paul Sands
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - P. Read Montague
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG London, UK
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|