1
|
Hall AF, Wang DV. A cortical-hippocampal communication undergoes rebalancing after new learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645547. [PMID: 40196557 PMCID: PMC11974847 DOI: 10.1101/2025.03.26.645547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The brain's ability to consolidate a wide range of memories while maintaining their distinctiveness across experiences remains poorly understood. Sharp-wave ripples, neural oscillations that occur predominantly within CA1 of the hippocampus during immobility and sleep, have been shown to play a critical role in the consolidation process. More recently, evidence has uncovered functional heterogeneity of pyramidal neurons within distinct sublayers of CA1 that display unique properties during ripples, potentially contributing to memory specificity. Despite this, it remains unclear exactly how ripples shift the activity of CA1 neuronal populations to accommodate the consolidation of specific memories and how sublayer differences manifest. Here, we studied interactions between the anterior cingulate cortex (ACC) and CA1 neurons during ripples and discovered a reorganization of their communication following learning. Notably, this reorganization appeared specifically for CA1 superficial (CA1sup) sublayer neurons. Utilizing a generalized linear model decoder, we demonstrate the pre-existence of ACC-to-CA1sup communication, which is suppressed during new learning and subsequent sleep suggesting that ACC activity may reallocate the contribution of CA1sup neurons during memory acquisition and consolidation. Further supporting this notion, we found that optogenetic stimulations of the ACC preferentially suppressed CA1sup interneurons while activating a unique subset of CA1 interneurons. Overall, these findings highlight a possible role of the ACC in rebalancing CA1 neuronal populations' contribution to ripple contents surrounding learning.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
2
|
Nagahama K, Jung VH, Kwon HB. Cutting-edge methodologies for tagging and tracing active neuronal coding in the brain. Curr Opin Neurobiol 2025; 92:102997. [PMID: 40056794 DOI: 10.1016/j.conb.2025.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Decoding the neural substrates that underlie learning and behavior is a fundamental goal in neuroscience. Identifying "key players" at the molecular, cellular, and circuit levels has become possible with recent advancements in molecular technologies offering high spatiotemporal resolution. Immediate-early genes are effective markers of neural activity and plasticity, allowing for the identification of active cells involved in memory-based behavior. A calcium-dependent labeling system coupled with light or biochemical proximity labeling allows characterization of active cell ensembles and circuitry across broader brain regions within short time windows, particularly during transient behaviors. The integration of these systems expands the ability to address diverse research questions across behavioral paradigms. This review examines current molecular systems for activity-dependent labeling, highlighting their applications in identifying specific cell ensembles and circuits relevant to various scientific questions and further discuss their significance, along with future directions for the development of innovative methodologies.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Veronica Hyeyoon Jung
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires Satb2. J Neurosci 2025; 45:e0737242024. [PMID: 39753301 PMCID: PMC11841754 DOI: 10.1523/jneurosci.0737-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif. We found that the transcriptional regulator SATB2, which is necessary for pyramidal cell differentiation in the neocortex, is selectively expressed in superficial PCs during early postnatal development. To investigate its role in CA1, we conditionally knocked out Satb2 from pyramidal cells during embryonic development using both male and female Emx1IRES-Cre; Satb2flox/flox mice. Loss of Satb2 resulted in increased feedforward inhibition of CA3 Schaffer collateral input to superficial PCs, which matched that observed to deep PCs in control mice. Using paired whole-cell recordings between PCs and PV+ interneurons, we found this was due to an increase in the strength of unitary inhibitory synaptic connections from PV+ interneurons to mutant superficial PCs. Regulation of synapse strength was restricted to inhibitory synapses; excitatory synaptic connections from CA3 to CA1 PCs and CA1 PCs to PV+ interneurons were not affected by loss of Satb2 Finally, we show that SATB2 expression in superficial PCs is necessary to suppress the formation of synapses from PV+ interneurons during synaptogenesis. Thus, early postnatal expression of SATB2 in superficial PCs is necessary for the development of biased feedforward inhibition in CA1.
Collapse
Affiliation(s)
- Meretta A Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Noor Bibi
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alireza Safa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Devipriyanka Nagarajan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
4
|
Gava GP, Lefèvre L, Broadbelt T, McHugh SB, Lopes-Dos-Santos V, Brizee D, Hartwich K, Sjoberg H, Perestenko PV, Toth R, Sharott A, Dupret D. Organizing the coactivity structure of the hippocampus from robust to flexible memory. Science 2024; 385:1120-1127. [PMID: 39236189 PMCID: PMC7616439 DOI: 10.1126/science.adk9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.
Collapse
Affiliation(s)
- Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tabitha Broadbelt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hanna Sjoberg
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Sánchez-Bellot C, de la Prida LM. Brain oscillations: Hippocampal-prefrontal ripples unfolded. Curr Biol 2024; 34:R637-R639. [PMID: 38981432 DOI: 10.1016/j.cub.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Memory consolidation is the process of translating memory traces from the hippocampus to the cortex. Hippocampal ripples are key in driving this transfer. A new study now shows that independent cortical ripples can suppress this communication. What could be the underlying mechanisms?
Collapse
|
7
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
8
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
9
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
10
|
Torres G, Sheikh AA, Carpo BG, Sood RA, Mourad M, Leheste JR. Disgust sensitivity and psychopathic behavior: A narrative review. Transl Neurosci 2024; 15:20220358. [PMID: 39669227 PMCID: PMC11635422 DOI: 10.1515/tnsci-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 12/14/2024] Open
Abstract
Humans live under constant threat from pathogenic microorganisms and minimizing such threat has been a major evolutionary selective force in shaping human behavior and health. A particular adaptive mechanism against the harm caused by parasites and their infectiousness is disgust sensitivity, which has evolved to detect and avoid poisonous foods as well as bodily secretions harboring virulent microorganisms. This ubiquitous and reflexive behavior requires the integration of several internal and external sensory signals between the brain, the autonomic nervous system (ANS), and the gastrointestinal tract. Although the emotional expression of disgust is experienced by almost all individuals, the neural mechanisms of sensory signals underlying disgust sensitivity may differ in certain psychiatric conditions. Psychopathy, for instance, is a personality disorder in which disgust sensitivity to contagious bodily secretions is apparently absent or downregulated from its atypical personality temperament. In this review, we provide convergent behavioral, anatomical, and cellular evidence to suggest that a fractured experience of disgust sensitivity might be an additional feature of psychopathic behavior. First, we discuss the neural networks of certain brain regions mediating the emotional states of disgust and then discuss the intersection of the ANS and gastrointestinal tract in the processing of disgust and its relevance to aberrant antisocial behavior. Together, this work highlights the interconnections between the brain and the bilateral body plan as an integrated cell network that is relevant for understanding common principles underlying function and dysfunction of disgust levels in psychiatric domains.
Collapse
Affiliation(s)
- German Torres
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| | - Amina A. Sheikh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| | - Beatrice G. Carpo
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| | - Riya A. Sood
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| | - Mervat Mourad
- Department of Clinical Specialties, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| | - Joerg R. Leheste
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, New York, 11568, United States of America
| |
Collapse
|
11
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|