1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Chen G, Luo M, Chen W, Zhang Y, Gu Z, Xu M, Zhang Y, Bian J. The primary somatosensory sensory cortex-basolateral amygdala pathway contributes to comorbid depression in spared nerve injury-induced neuropathic pain. Sci Rep 2025; 15:13678. [PMID: 40258918 PMCID: PMC12012082 DOI: 10.1038/s41598-025-97164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Comorbid depression in chronic pain is a prevalent health problem, yet the underlying neural mechanisms remain largely unexplored. This study identified a dedicated neural circuit connecting the hind limb region of the primary somatosensory cortex (S1HL) to the basolateral amygdala (BLA) that mediated neuropathic pain-induced depression. We demonstrated that depressive-like behaviors in the chronic phase of a mouse neuropathic pain model were associated with heightened activity in the S1HL and BLA. Using viral tracing and RNAscope in situ hybridization, we characterized the circuit architecture of S1HL glutamatergic projections to BLA cholecystokinin (CCK) neurons (S1HLGlu → BLACCK). In vivo fiber photometry calcium imaging revealed that both the S1HL BLA-projecting afferents and the BLA S1HL-innervating neurons exhibited hyperactivity in neuropathic pain-induced depressive states. Chemogenetic inhibition of the S1HL → BLA circuit could block neuropathic pain-induced depressive-like behaviors. In addition, specific knockdown of CCK expression in BLA S1HL-innervating neurons alleviated these depressive-like behaviors. Our findings demonstrated that the cortical-amygdala circuit S1HLGlu → BLACCK drove the transition from chronic pain to depression, thus suggesting a potential neural circuit basis for treating chronic pain-related depressive disorders.
Collapse
Affiliation(s)
- Guo Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, China
| | - Wentao Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yu Zhang
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Zuchao Gu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Miaomiao Xu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, 637000, Sichuan, China.
| |
Collapse
|
3
|
Yang J, Dong Y, Liu J, Peng Y, Wang D, Li L, Hu X, Li J, Wang L, Chu J, Ma J, Shi H, Shi SH. Primary ciliary protein kinase A activity in the prefrontal cortex modulates stress in mice. Neuron 2025; 113:1276-1289.e5. [PMID: 40056898 DOI: 10.1016/j.neuron.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
Primary cilia are cellular antennae emanating from vertebrate cell surfaces to sense and transduce extracellular signals intracellularly to regulate cell behavior and function. However, their signal sensing and physiological functions in neocortical neurons remain largely unclear. Here, we show that, in response to various animal stressors, primary cilia in the mouse prefrontal cortex (PFC) exhibit consistent axonemal elongation. Selective removal of excitatory neuron primary cilia in the prefrontal but not sensory cortex leads to a reduction in animal stress sensing and response. Treatment with corticosterone, the major stress hormone, elicits an increase in primary ciliary cyclic adenosine 3',5'-monphosphate (cAMP) level in PFC excitatory neurons and a decrease in neuronal excitability dependent on primary cilia. Suppression of primary ciliary protein kinase A (PKA) activity in PFC excitatory neurons reduces animal stress. These results suggest that excitatory neurons in the PFC are involved in sensing and regulating animal stress via primary ciliary cAMP/PKA signaling.
Collapse
Affiliation(s)
- Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yingjie Dong
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jie Liu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yuwei Peng
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Ding Wang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Lei Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Xiaoqing Hu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jinfeng Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Liang Wang
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jun Chu
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Hang Shi
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China; Chinese Institute for Brain Research, Beijing, P.R. China.
| |
Collapse
|
4
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Sarmiento-Riveros A, Aguilar-Cordero MJ, Barahona-Barahona JA, Galindo GE, Carvallo C, Crespo FA, Burgos H. Child and Adolescent Health Programs in Obesity and Depression: A Systematic Review and Meta-Analysis. Nutrients 2025; 17:1088. [PMID: 40292529 PMCID: PMC11944606 DOI: 10.3390/nu17061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 04/30/2025] Open
Abstract
Obesity and depression are public health issues of increasing concern worldwide. This study aims to evaluate programs that address obesity and their impact on depressive symptoms in children and adolescents. Obesity and depression share a bidirectional relationship, where each can serve as both a cause and a consequence of the other. METHODS A systematic review and meta-analysis were conducted following PRISMA criteria, with the registration recorded under PROSPERO code (CRD42024550644). The selected publications report on intervention programs for obesity and depression in children and adolescents aged 6 to 18 years. The selection was from databases including PUBMED, SCOPUS, LILACS, COCHRANE, WOS, SciELO, and ScienceDirect, using PICOS criteria to define inclusion. ROB-2 and ROBINS-1 were applied to assess bias. RESULTS Out of 3376 articles reviewed, eight met the inclusion criteria, some including several programs. These programs varied in duration and type, demonstrating changes in reducing Body Mass Index (BMI) and depressive symptoms. However, evidence supporting the effectiveness of programs that address both conditions is limited, particularly in developing countries. Additionally, the results exhibit high heterogeneity due to the diversity of evaluation criteria and methodological approaches, highlighting considerable risks of bias. CONCLUSIONS Intervention programs for obesity management show statistically significant effects on depressive symptoms, although there is heterogeneity in the designs for their standardization and long-term follow-up strategies; however, the evaluations consider DSM-5 and ICD-11 criteria, which contributes to homogeneity. It is vital to address these closely related issues from a multidimensional perspective, considering socio-emotional and psychological factors, and to promote early intervention to maximize effectiveness and enhance quality of life at various stages of development.
Collapse
Affiliation(s)
- Ana Sarmiento-Riveros
- Facultad de Salud, Escuela de Enfermería, Universidad Santo Tomás, Santiago 8370003, Chile; (A.S.-R.); (J.A.B.-B.)
| | - María José Aguilar-Cordero
- CTS-367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18071 Granada, Spain;
| | - Juan A. Barahona-Barahona
- Facultad de Salud, Escuela de Enfermería, Universidad Santo Tomás, Santiago 8370003, Chile; (A.S.-R.); (J.A.B.-B.)
| | - Gabriel E. Galindo
- Centro de Investigación e Innovación en Gerontología Aplicada CIGAP, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile (C.C.)
| | - Claudia Carvallo
- Centro de Investigación e Innovación en Gerontología Aplicada CIGAP, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile (C.C.)
| | - Fernando A. Crespo
- Facultad de Economía y Negocios, Universidad Alberto Hurtado, Erasmo Escala 1835, Santiago 8340539, Chile;
| | - Héctor Burgos
- Facultad de Salud, Escuela de Enfermería, Universidad Santo Tomás, Santiago 8370003, Chile; (A.S.-R.); (J.A.B.-B.)
- Centro de Investigación e Innovación en Gerontología Aplicada CIGAP, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile (C.C.)
| |
Collapse
|
6
|
Wang X, Wu S, Zuo J, Li K, Chen Y, Fan Z, Wu Z, Yang JX, Song W, Cao JL, Cui M. Selective activation of SIGMAR1 in anterior cingulate cortex glutamatergic neurons facilitates comorbid pain in depression in male mice. Commun Biol 2025; 8:150. [PMID: 39890921 PMCID: PMC11785782 DOI: 10.1038/s42003-025-07590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Depression and comorbid pain are frequently encountered clinically, and the comorbidity complicates the overall medical management. However, the mechanism whereby depression triggers development of pain needs to be further elucidated. Here, by using the chronic restraint stress (CRS) mouse model of depression and comorbid pain, we showed that CRS hyperactivated the glutamatergic neurons in the anterior cingulate cortex (ACC), as well as increasing the dendrite complexity and number. Chemogenetic activation of these neurons can induce depression and pain, while chemogenetic blockade can reverse such depression-induced pain. Moreover, we utilized translating ribosome affinity purification (TRAP) in combination with c-Fos-tTA strategy and pharmacological approaches and identified SIGMAR1 as a potential therapeutic molecular target. These results revealed a previously unknown neural mechanism for depression and pain comorbidity and provided new mechanistic insights into the antidepressive and analgesic effects of the disease.
Collapse
Affiliation(s)
- Xianlei Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shulin Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junsheng Zuo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Keying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yutong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhijie Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Weiyi Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
7
|
Li YC, Zhang FC, Li D, Weng RX, Yu Y, Gao R, Xu GY. Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Neuron 2024; 112:3734-3749.e5. [PMID: 39326407 DOI: 10.1016/j.neuron.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Visceral and somatic pain serve as protective mechanisms against external threats. Accumulated evidence has confirmed that the paraventricular hypothalamus (PVH) plays an important role in the perception of visceral and somatic pain, whereas the exact neural pathways and molecules distinguishing them remain unclear. Here, we report distinct neuronal ensembles within the PVH dedicated to processing visceral and somatic pain signals. An essential discovery is the distinct expression of P2X3R and VIPR2 in visceral and somatic pain-activated PVH neuronal ensembles. Furthermore, visceral pain- and somatic pain-responsive PVH neuronal ensembles project to specific downstream regions, the ventral part of the lateral septal nucleus (LSV) and the caudal part of the zona incerta (ZIC), respectively. These findings unveil that the PVH acts as a pain sorting center that distinctly processes visceral and somatic pain, identifying potential molecular targets for specific pain processing and providing a new framework for comprehending how the brain processes nociceptive information.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China; Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Di Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Rui-Xia Weng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Yang Yu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, Jiangsu, P.R. China.
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China.
| |
Collapse
|
8
|
Wang CL, Cao DN, Wu N, Zhu YJ, Li J. The secondary visual cortex mediated the enhancement of associative learning on methamphetamine self-administration behaviors. Psychopharmacology (Berl) 2024; 241:1841-1855. [PMID: 38702472 DOI: 10.1007/s00213-024-06597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Methamphetamine addiction is a persistent and intractable pathological learning and memory, whereas no approved therapeutics is available. However, few attentions have been paid to how associative learning participates in the formation of intractable memory related to drug addiction OBJECTIVES AND METHODS: To investigate the role of associative learning in methamphetamine addiction and the underlying neurobiological mechanism, methamphetamine self-administration, oral sucrose self-administration, chemogenetic neuromanipulation, and fiber photometry in mice were performed in this study. RESULTS We reported that associative learning increased methamphetamine-induced self-administration, but not oral sucrose self-administration. In addition, the enhancement of methamphetamine-induced self-administration was independent of more methamphetamine consumption, and remained with higher drug-taking and motivation in the absence of visual cues, suggesting the direct effects of the associative learning that enhanced methamphetamine-induced self-administration. Moreover, chemogenetic inactivation of the secondary visual cortex (V2) reduced the enhancement of the drug-taking induced by associative learning but did not alter sucrose-taking. Further fiber photometry of V2 neurons demonstrated that methamphetamine-associative learning elicits V2 neuron excitation, and sucrose-associative learning elicits V2 neuron inhibition. CONCLUSIONS Therefore, this study reveals the neurobiological mechanism of V2 excitability underlying how associative learning participates in the formation of intractable memory related to drug addiction, and gives evidence to support V2 as a promising target for stimulation therapy for methamphetamine addiction.
Collapse
Affiliation(s)
- Cai-Ling Wang
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ying-Jie Zhu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
9
|
Zhang Y, Ma H, Bai Y, Hou X, Yang Y, Wang G, Li Y. Chronic Neuropathic Pain and Comorbid Depression Syndrome: From Neural Circuit Mechanisms to Treatment. ACS Chem Neurosci 2024; 15:2432-2444. [PMID: 38916052 DOI: 10.1021/acschemneuro.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Chronic neuropathic pain and comorbid depression syndrome (CDS) is a major worldwide health problem that affects the quality of life of patients and imposes a tremendous socioeconomic burden. More than half of patients with chronic neuropathic pain also suffer from moderate or severe depression. Due to the complex pathogenesis of CDS, there are no effective therapeutic drugs available. The lack of research on the neural circuit mechanisms of CDS limits the development of treatments. The purpose of this article is to provide an overview of the various circuits involved in CDS. Notably, activating some neural circuits can alleviate pain and/or depression, while activating other circuits can exacerbate these conditions. Moreover, we discuss current and emerging pharmacotherapies for CDS, such as ketamine. Understanding the circuit mechanisms of CDS may provide clues for the development of novel drug treatments for improved CDS management.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaojuan Hou
- Hebei North University, Zhangjiakou, 075000, China
| | - Yixin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| |
Collapse
|
10
|
Dong Y, Qin Q, Cui Y. Dynamic prefrontal inhibition code mediates reward devaluation. Neuron 2023; 111:3703-3705. [PMID: 38061329 DOI: 10.1016/j.neuron.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Repeated reward intake decreases its subjective pleasantness, which is a common phenomenon called reward devaluation. In this issue of Neuron, Yuan et al.1 unravel that blunted inhibitory response of anterior cingulate cortex (ACC) encodes this process, whose hypersensitization leads to anhedonia.
Collapse
Affiliation(s)
- Yiyan Dong
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qi Qin
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yihui Cui
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Jing X, Hong F, Xie Y, Xie Y, Shi F, Wang R, Wang L, Chen Z, Liu XA. Dose-dependent action of cordycepin on the microbiome-gut-brain-adipose axis in mice exposed to stress. Biomed Pharmacother 2023; 168:115796. [PMID: 38294969 DOI: 10.1016/j.biopha.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 02/02/2024] Open
Abstract
The high risk for anxiety and depression among individuals with stress has become a growing concern globally. Stress-related mental disorders are often accompanied by symptoms of metabolic dysfunction. Cordycepin is a Chinese herbal medicine commonly used for its metabolism-enhancing effects. We aimed to investigate the dose-dependent effects of cordycepin on psycho-metabolic disorders induced by stress. Our behavioral tests revealed that 12.5 mg/kg cordycepin by oral gavage significantly attenuated the anxiety- and depression-like behaviors induced by stress in mice. At 25 mg/kg, cordycepin restored the reduced weight and cell size of adipose tissues caused by stress. Besides ameliorating the metabolic dysbiosis of gut microbiota due to stress, cordycepin significantly reduced the elevated contents of 5-hydroxyindoleacetic acid in the serum and prefrontal cortex at 12.5 mg/kg and reversed the decrease in adipose induced by stress at 25 mg/kg. Correlation analyses further revealed that 12.5 mg/kg cordycepin reversed stress-induced changes in the intestinal microbiome of NK4A214_group and decreased serum Myristic acid and PC(15:0/18:1(11Z)) and cytokines, such as IFN-γ and IL-1β. 25 mg/kg cordycepin reversed stress-induced changes in the abundances of Prevoteaceae_UCG-001 and Desulfovibrio, increased serum L-alanine level, and decreased serum Inosine-5'-monophosphate level. Cordycepin thereby ameliorated the anxiety- and depression-like behaviors as well as disturbances in the adipose metabolism of mice exposed to stress. Overall, these findings offer evidence indicating that the prominent effects of cordycepin in the brain and adipose tissues are dose dependent, thus highlight the importance of evaluating the precise therapeutic effects of different cordycepin doses on psycho-metabolic diseases.
Collapse
Affiliation(s)
- Xiaoyuan Jing
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Feng Hong
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yinfang Xie
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yutong Xie
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Shi
- Shenzhen Chenlu Biotechnology Co., Ltd, Shenzhen, China
| | - Ruoxi Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|