1
|
Brachtendorf S, Bornschein G, Schmidt H. Estimates of quantal synaptic parameters in light of more complex vesicle pool models. Front Cell Neurosci 2025; 19:1556360. [PMID: 40170993 PMCID: PMC11958965 DOI: 10.3389/fncel.2025.1556360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
The subdivision of synaptic vesicles (SVs) into discrete pools is a central concept of synaptic physiology. To better explain specific properties of transmission and plasticity, it was initially suggested that the readily releasable pool (RRP) of SVs is subdivided into two parallel pools that differ in their release probability. More recently, evidence was provided that sequential pools with a single RRP and a series-connected finite-size replenishment pool (RP) inserted between the reserve pool (RSP) and RRP equally well or even better account for most aspects of transmission and plasticity. It was further suggested that a fraction of the presynaptic release sites (N) are initially unoccupied by SVs, with vesicle replenishment occurring rapidly during activity. Furthermore, the number of release sites itself changes with rapid dynamics during activity. Experimentally, it is difficult to obtain insights into the organization of SV pools directly and the interpretation of the data typically requires complex modeling. In this study, we propose a framework that identifies specific signs of the presence of the series-connected RP without complex modeling, using a combination of two experimental electrophysiological standard methods, cumulative analysis (CumAna) and multiple probability fluctuation analysis (MPFA). CumAna uses cumulative EPSC amplitude plots recorded during trains of action potentials and estimates the pool of releasable SVs from the y-intercept (y(0)) of a linear fit to the amplitudes late in the train. MPFA estimates N (NMPFA) from a parabolic fit to a variance–mean plot of EPCS amplitudes recorded under conditions of different release probabilities. We show here, in particular, that if y(0) > NMPFA this is a strong indication for a series-connected RP. This is due to the fact that y(0) reports the sum of RRP and RP. Our analysis further suggests that this result is not affected by unoccupied release sites as such empty sites contribute to both estimates, y(0) and NMPFA. We discuss experimental findings and models in the recent literature in light of our theoretical considerations.
Collapse
Affiliation(s)
| | | | - Hartmut Schmidt
- Carl Ludwig Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Barlow ST, Levy AD, Contreras M, Anderson MC, Blanpied TA. Dissecting the functional heterogeneity of glutamatergic synapses with high-throughput optical physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.629904. [PMID: 39763981 PMCID: PMC11703220 DOI: 10.1101/2024.12.23.629904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Fluorescent reporters for glutamate release and postsynaptic Ca2+ signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutamate release activity at presynaptic boutons in cultured rat hippocampal neurons. Boutons exhibited remarkable functional heterogeneity and could be separated into multiple functional classes based on their iGluSnFR3 responses to single action potentials, paired stimuli, and synaptic parameters derived from mean-variance analysis. Finally, we developed a novel all-optical assay of pre- and postsynaptic glutamatergic synapse function. We deployed iGluSnFR3 with a red-shifted, postsynaptically-targeted Ca2+ sensor, enabling direct imaging and analysis of NMDA receptor-mediated synaptic transmission at large numbers of dendritic spines. This work enables direct observation of the flow of information at single synapses and should speed detailed investigations of synaptic functional heterogeneity.
Collapse
Affiliation(s)
- Samuel T Barlow
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Minerva Contreras
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael C Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Kim O, Okamoto Y, Kaufmann WA, Brose N, Shigemoto R, Jonas P. Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons. PLoS Biol 2024; 22:e3002879. [PMID: 39556620 PMCID: PMC11573138 DOI: 10.1371/journal.pbio.3002879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
It is widely believed that information storage in neuronal circuits involves nanoscopic structural changes at synapses, resulting in the formation of synaptic engrams. However, direct evidence for this hypothesis is lacking. To test this conjecture, we combined chemical potentiation, functional analysis by paired pre-postsynaptic recordings, and structural analysis by electron microscopy (EM) and freeze-fracture replica labeling (FRL) at the rodent hippocampal mossy fiber synapse, a key synapse in the trisynaptic circuit of the hippocampus. Biophysical analysis of synaptic transmission revealed that forskolin-induced chemical potentiation increased the readily releasable vesicle pool size and vesicular release probability by 146% and 49%, respectively. Structural analysis of mossy fiber synapses by EM and FRL demonstrated an increase in the number of vesicles close to the plasma membrane and the number of clusters of the priming protein Munc13-1, indicating an increase in the number of both docked and primed vesicles. Furthermore, FRL analysis revealed a significant reduction of the distance between Munc13-1 and CaV2.1 Ca2+ channels, suggesting reconfiguration of the channel-vesicle coupling nanotopography. Our results indicate that presynaptic plasticity is associated with structural reorganization of active zones. We propose that changes in potential nanoscopic organization at synaptic vesicle release sites may be correlates of learning and memory at a plastic central synapse.
Collapse
Affiliation(s)
- Olena Kim
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Yuji Okamoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Walter A. Kaufmann
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
4
|
Held RG, Liang J, Esquivies L, Khan YA, Wang C, Azubel M, Brunger AT. In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619226. [PMID: 39464045 PMCID: PMC11507944 DOI: 10.1101/2024.10.19.619226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Most synapses in the brain transmit information by the presynaptic release of vesicular glutamate, driving postsynaptic depolarization through AMPA-type glutamate receptors (AMPARs). The nanometer-scale topography of synaptic AMPARs regulates response amplitude by controlling the number of receptors activated by synaptic vesicle fusion. The mechanisms controlling AMPAR topography and their interactions with postsynaptic scaffolding proteins are unclear, as is the spatial relationship between AMPARs and synaptic vesicles. Here, we used cryo-electron tomography to map the molecular topography of AMPARs and visualize their in-situ structure. Clustered AMPARs form structured complexes with postsynaptic scaffolding proteins resolved by sub-tomogram averaging. Sub-synaptic topography mapping reveals the presence of AMPAR nanoclusters with exclusion zones beneath synaptic vesicles. Our molecular-resolution maps visualize the predominant information transfer path in the nervous system.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Yousuf A. Khan
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Maia Azubel
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
| |
Collapse
|
5
|
Midorikawa M, Sakamoto H, Nakamura Y, Hirose K, Miyata M. Developmental refinement of the active zone nanotopography and axon wiring at the somatosensory thalamus. Cell Rep 2024; 43:114770. [PMID: 39321021 DOI: 10.1016/j.celrep.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Functional refinement of neural circuits is a crucial developmental process in the brain. However, how synaptic maturation and axon wiring proceed cooperatively to establish reliable signal transmission is unclear. Here, we combined nanotopography of release machinery at the active zone (AZ), nanobiophysics of neurotransmitter release, and single-neuron reconstruction of axon arbors of lemniscal fibers (LFs) in the developing mouse somatosensory thalamus. With development, the cluster of Cav2.1 enlarges and translocates closer to vesicle release sites inside the bouton, and LFs drastically shrink their arbors and form larger boutons on the perisomatic region of target neurons. Experimentally constrained simulations show that the nanotopography of mature synapses enables not only rapid vesicular release but also reliable transmission following repetitive firing. Sensory deprivation impairs the developmental shift of molecular nanotopography and axon wiring. Thus, we uncovered the cooperative nanotopographical and morphological mechanisms underlying the developmental establishment of reliable synaptic transmission.
Collapse
Affiliation(s)
- Mitsuharu Midorikawa
- Division of Biofunction, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
6
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 PMCID: PMC11682530 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Brockhaus J, Kahl I, Ahmad M, Repetto D, Reissner C, Missler M. Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca 2+ Influx. Cells 2024; 13:981. [PMID: 38891114 PMCID: PMC11171642 DOI: 10.3390/cells13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Iris Kahl
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Mohiuddin Ahmad
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Heinke L. Tightening synaptic relations. Nat Rev Neurosci 2024; 25:141. [PMID: 38243081 DOI: 10.1038/s41583-024-00793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
|