1
|
Babii Y, Pałucha-Poniewiera A, Gołembiowska K, Bysiek A, Szpręgiel I, Pilc A. Coadministration of scopolamine and mGlu2 receptor negative allosteric modulator VU6001966 as a potential therapeutic approach for depression: Rat frontal cortex neurochemistry and behavior. Pharmacol Biochem Behav 2025; 250:173996. [PMID: 40057282 DOI: 10.1016/j.pbb.2025.173996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Clinical studies provide evidence that scopolamine, a nonselective antagonist of muscarinic cholinergic receptors, exerts rapid and prolonged antidepressant effects. However, its use as a psychiatric drug has been limited due to its significant adverse effects. A therapeutic option that could help reduce the adverse effects of scopolamine is its coadministration at lower doses with other substances with similar antidepressant properties. To address this issue, we have investigated the effect of a single acute coadministration of scopolamine and a negative allosteric modulator of the mGlu2 receptor VU6001966 on rat behavior using a forced swim test (FST) and locomotor activity test. The effect of given compounds on the extracellular levels of neurotransmitters in the rat frontal cortex (FCX) was examined using microdialysis in freely moving rats. Both scopolamine and VU6001966 induced dose-dependent antidepressant-like effects in the FST test without affecting locomotor activity. Furthermore, VU6001966 enhanced extracellular dopamine and serotonin levels while lowering glutamate, without affecting GABA level. Both scopolamine alone or in combination with VU6001966 increased dopamine, serotonin, and glutamate levels in the FCX, without affecting GABA levels. Our results suggest that coadministration of scopolamine with mGlu2 NAM might be a promising alternative to using scopolamine alone in depression therapy, potentially allowing for a lower therapeutically effective dose. The common mechanism underlying the observed behavioral effects of the tested drugs may be associated with the modulation of the serotoninergic, glutamatergic, and dopaminergic systems.
Collapse
Affiliation(s)
- Yana Babii
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Krystyna Gołembiowska
- Department of Pharmacology, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Agnieszka Bysiek
- Department of Pharmacology, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Izabela Szpręgiel
- Department of Pharmacology, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Stachowicz K. Interactions between metabotropic glutamate and CB1 receptors: implications for mood, cognition, and synaptic signaling based on data from mGluR and CB1R-targeting drugs. Pharmacol Rep 2024; 76:1286-1296. [PMID: 38941064 PMCID: PMC11582162 DOI: 10.1007/s43440-024-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are part of the G protein-coupled receptors (GPCRs) family. They are coupled to Gαq (group I) or Gi/o (groups II and III) proteins, which result in the generation of diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) or the inhibition of adenylyl cyclase, respectively. mGluRs have been implicated in anxiety, depression, learning, and synaptic plasticity. Similarly, CB1 cannabinoid receptors (CB1Rs), also GPCRs, play roles in cognitive function and mood regulation through Gαi/o-mediated inhibition of adenylyl cyclase. Both mGluRs and CB1Rs exhibit surface labeling and undergo endocytosis. Given the similar cellular distribution and mechanisms of action, this review complies with fundamental data on the potential interactions and mutual regulation of mGluRs and CB1Rs in the context of depression, anxiety, and cognition, providing pioneering insights into their interplay.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
Alonso de Diego SA, Linares ML, García Molina A, de Lucas AI, Del Cerro A, Alonso JM, Ver Donck L, Cid JM, Trabanco AA, Van Gool M. Discovery of 6,7-Dihydropyrazolo[1,5- a]pyrazin-4(5 H)-one Derivatives as mGluR 2 Negative Allosteric Modulators with In Vivo Activity in a Rodent's Model of Cognition. J Med Chem 2024; 67:15569-15585. [PMID: 39208150 DOI: 10.1021/acs.jmedchem.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Allosteric modulators of the metabotropic group II receptors, mGluR2 and mGluR3, have been widely explored due to their ability to modulate cognitive and neurological functions in mood disorders, although none have been approved yet. In our search for new and selective mGluR2 negative allosteric modulators (NAMs), series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one derivatives were identified from our published series of 1,3,5-trisubstituted pyrazoles. SAR evolution of the initial hit resulted in 100-fold improvement in the mGluR2 NAM potency and subsequent selection of compound 11 based on its overall profile, including selectivity and ADMET properties. Further pharmacokinetic-pharmacodynamic (PK-PD) relationship built showed that compound 11 occupied the mGluR2 receptor in a dose-dependent manner. Additionally, the compound revealed in vivo activity in V-maze as a model of cognition from a dose of 0.32 mg/kg. Compound 11 was selected to be evaluated further.
Collapse
Affiliation(s)
- Sergio A Alonso de Diego
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - María Lourdes Linares
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Aránzazu García Molina
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Ana Isabel de Lucas
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Alcira Del Cerro
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Luc Ver Donck
- Neuroscience Discovery, Janssen Pharmaceutica NV, a Johnson and Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jose María Cid
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Andrés A Trabanco
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Michiel Van Gool
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| |
Collapse
|
4
|
Martone A, Possidente C, Fanelli G, Fabbri C, Serretti A. Genetic factors and symptom dimensions associated with antidepressant treatment outcomes: clues for new potential therapeutic targets? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01873-1. [PMID: 39191930 DOI: 10.1007/s00406-024-01873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Treatment response and resistance in major depressive disorder (MDD) show a significant genetic component, but previous studies had limited power also due to MDD heterogeneity. This literature review focuses on the genetic factors associated with treatment outcomes in MDD, exploring their overlap with those associated with clinically relevant symptom dimensions. We searched PubMed for: (1) genome-wide association studies (GWASs) or whole exome sequencing studies (WESs) that investigated efficacy outcomes in MDD; (2) studies examining the association between MDD treatment outcomes and specific depressive symptom dimensions; and (3) GWASs of the identified symptom dimensions. We identified 13 GWASs and one WES of treatment outcomes in MDD, reporting several significant loci, genes, and gene sets involved in gene expression, immune system regulation, synaptic transmission and plasticity, neurogenesis and differentiation. Nine symptom dimensions were associated with poor treatment outcomes and studied by previous GWASs (anxiety, neuroticism, anhedonia, cognitive functioning, melancholia, suicide attempt, psychosis, sleep, sociability). Four genes were associated with both treatment outcomes and these symptom dimensions: CGREF1 (anxiety); MCHR1 (neuroticism); FTO and NRXN3 (sleep). Other overlapping signals were found when considering genes suggestively associated with treatment outcomes. Genetic studies of treatment outcomes showed convergence at the level of biological processes, despite no replication at gene or variant level. The genetic signals overlapping with symptom dimensions of interest may point to shared biological mechanisms and potential targets for new treatments tailored to the individual patient's clinical profile.
Collapse
Affiliation(s)
- Alfonso Martone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy.
| | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
5
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
De Gasperi R, Gama Sosa MA, Perez Garcia G, Perez GM, Pryor D, Morrison CLA, Lind R, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Zhu CW, Ahlers ST, Cook DG, Elder GA. Metabotropic Glutamate Receptor 2 Expression Is Chronically Elevated in Male Rats With Post-Traumatic Stress Disorder Related Behavioral Traits Following Repetitive Low-Level Blast Exposure. J Neurotrauma 2024; 41:714-733. [PMID: 37917117 PMCID: PMC10902502 DOI: 10.1089/neu.2023.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Chenel L-A. Morrison
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Northeast Regional Alliance Health Careers Opportunity Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Lind
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Pharmacology, and Psychiatry, University of Washington, Seattle, Washington, USA
- Department of Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
7
|
Tsugiyama LE, Macedo Moraes RC, Cavalcante Moraes YA, Francis-Oliveira J. Promising new pharmacological targets for depression: The search for efficacy. Drug Discov Today 2023; 28:103804. [PMID: 37865307 DOI: 10.1016/j.drudis.2023.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Pharmacological treatment of major depressive disorder (MDD) still relies on the use of serotonergic drugs, despite their limited efficacy. A few mechanistically new drugs have been developed in recent years, but many fail in clinical trials. Several hypotheses have been proposed to explain MDD pathophysiology, indicating that physiological processes such as neuroplasticity, circadian rhythms, and metabolism are potential targets. Here, we review the current state of pharmacological treatments for MDD, as well as the preclinical and clinical evidence for an antidepressant effect of molecules that target non-serotonergic systems. We offer some insights into the challenges facing the development of new antidepressant drugs, and the prospect of finding more effectiveness for each target discussed.
Collapse
Affiliation(s)
- Lucila Emiko Tsugiyama
- Kansai Medical University, Graduate School of Medicine, iPS Cell Applied Medicine, Hirakata, Osaka, Japan
| | - Ruan Carlos Macedo Moraes
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil
| | | | - Jose Francis-Oliveira
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Chruścicka-Smaga B, Machaczka A, Szewczyk B, Pilc A. Interaction of hallucinogenic rapid-acting antidepressants with mGlu2/3 receptor ligands as a window for more effective therapies. Pharmacol Rep 2023; 75:1341-1349. [PMID: 37932583 PMCID: PMC10660980 DOI: 10.1007/s43440-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.
Collapse
Affiliation(s)
- Barbara Chruścicka-Smaga
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
9
|
Pilc A, Chaki S. Role of mGlu receptors in psychiatric disorders - Recent advances. Pharmacol Biochem Behav 2023; 232:173639. [PMID: 37734493 DOI: 10.1016/j.pbb.2023.173639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Andrzej Pilc
- Maj Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Japan.
| |
Collapse
|
10
|
Chaki S, Watanabe M. mGlu2/3 receptor antagonists for depression: overview of underlying mechanisms and clinical development. Eur Arch Psychiatry Clin Neurosci 2023; 273:1451-1462. [PMID: 36715750 DOI: 10.1007/s00406-023-01561-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Triggered by the ground-breaking finding that ketamine exerts robust and rapid-acting antidepressant effects in patients with treatment-resistant depression, glutamatergic systems have attracted attention as targets for the development of novel antidepressants. Among glutamatergic systems, group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and mGlu3 receptors, are of interest because of their modulatory roles in glutamatergic transmission. Accumulating evidence has indicated that mGlu2/3 receptor antagonists have antidepressant-like effects in rodent models that mirror those of ketamine and that mGlu2/3 receptor antagonists also share underlying mechanisms with ketamine that are responsible for these antidepressant-like actions. Importantly, contrary to their antidepressant-like profile, preclinical studies have revealed that mGlu2/3 receptor antagonists are devoid of ketamine-like adverse effects, such as psychotomimetic-like behavior, abuse potential and neurotoxicity. Despite some discouraging results for an mGlu2/3 receptor antagonist decoglurant (classified as a negative allosteric modulator [NAM]) in patients with major depressive disorder, clinical trials of two mGlu2/3 receptor antagonists, a phase 2 trial of TS-161 (an orthosteric antagonist) and a phase 1 trial of DSP-3456 (a NAM), are presently on-going. mGlu2/3 receptors still hold promise for the development of safer and more efficacious antidepressants.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc, 350 Mt. Kemble Avenue, Morristown, NJ, 07960, USA
| |
Collapse
|
11
|
White SW, Squires GD, Smith SJ, Wright GM, Sufka KJ, Rimoldi JM, Gadepalli RS. Anxiolytic-like effects of an mGluR 5 antagonist and a mGluR 2/3 agonist, and antidepressant-like effects of an mGluR 7 agonist in the chick social separation stress test, a dual-drug screening model of treatment-resistant depression. Pharmacol Biochem Behav 2023:173588. [PMID: 37348610 DOI: 10.1016/j.pbb.2023.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Modulation of glutamate receptors has demonstrated anxiolytic and/or antidepressant effects in rodent stress models. The chick social-separation stress paradigm exposes socially raised aves to an isolation stressor which elicits distress vocalizations (DVocs) in an attempt to re-establish contact. The model presents a state of panic during the first 5 min followed by a state of behavioral despair during the last 60 to 90 min. Making it useful as a dual anxiolytic/antidepressant screening assay. Further research has identified the Black Australorp strain as a stress-vulnerable, treatment-resistant, and ketamine-sensitive genetic line. Utilizing this genetic line, we sought to evaluate modulation of glutamatergic receptors for potential anxiolytic and/or antidepressant effects. Separate dose-response studies were conducted for the following drugs: the AMPA PAM LY392098, the mGluR 5 antagonist MPEP, the mGluR 2/3 agonist LY404039, the mGluR 2/3 antagonist LY341495, and the mGluR 7 agonist AMN082. The norepinephrine α2 agonist clonidine and the NMDA antagonist ketamine were included as comparison for anxiolytic (anti-panic) and antidepressant effects, respectively. As in previous studies, clonidine reduced DVoc rates during the first 5 min (attenuation of panic) and ketamine elevated DVoc rates (attenuation of behavioral despair) during the last 60 min of isolation. The mGluR 2/3 agonist LY404039 and the mGluR 5 antagonist MPEP decreased DVoc rates during the first 5 min of isolation indicative of anxiolytic effects like that of clonidine while the mGluR 7 agonist AMN082 elevated DVoc rates in the later hour of isolation, representative of antidepressant effects like that of ketamine. Collectively, these findings suggest that certain glutamate targets may be clinically useful in treating panic disorder and/or treatment-resistant depression.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, United States of America.
| | - Gwendolyn D Squires
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Sequioa J Smith
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Gwendolyn M Wright
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - John M Rimoldi
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| |
Collapse
|
12
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, Gould TD. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J Neurosci 2023; 43:1038-1050. [PMID: 36596696 PMCID: PMC9908316 DOI: 10.1523/jneurosci.1316-22.2022] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Biology, University of Cyprus, Nicosia 2109, Cyprus
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201
| |
Collapse
|
14
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
15
|
Chaki S, Watanabe M. Antidepressants in the post-ketamine Era: Pharmacological approaches targeting the glutamatergic system. Neuropharmacology 2023; 223:109348. [PMID: 36423706 DOI: 10.1016/j.neuropharm.2022.109348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The efficacy of currently available medications for depression is unsatisfactory, and that has spurred the development of novel antidepressants based on a hypothesis other than the monoamine hypothesis. Recent studies have revealed the importance of the glutamatergic system as a drug target for depression, and the validity of this hypothesis has been underpinned by the discovery of the antidepressant effects of ketamine, leading to the market launch of Spravato® nasal spray which delivers (S)-ketamine (esketamine). However, both ketamine and esketamine have unwanted adverse effects that hinder their routine use in daily practice. Extensive studies have elucidated the mechanisms underlying the antidepressant effects of ketamine, and that has encouraged numerous drug discovery activities to search for agents that retain a ketamine-like antidepressant profile but with lesser adverse effect liabilities. The discovery activities have included attempts to identify 1) the active substance(s) in the circulation after ketamine administration and 2) agents that act on the proposed mechanisms of action of ketamine. Clinical trials of agents discovered in the course of these activities are underway, and in 2022, AUVELITY™ (AXS-05; dextromethorphan with bupropion) was approved by the United States Food and Drug Administration. Drug development of post-ketamine agents should provide novel antidepressants that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA.
| |
Collapse
|
16
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
17
|
Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants? Cell Mol Neurobiol 2022:10.1007/s10571-022-01310-8. [DOI: 10.1007/s10571-022-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
AbstractDepression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mechanisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in the treatment of depression.
Collapse
|
18
|
Ibi D. Role of interaction of mGlu2 and 5-HT 2A receptors in antipsychotic effects. Pharmacol Biochem Behav 2022; 221:173474. [PMID: 36244526 DOI: 10.1016/j.pbb.2022.173474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The serotonergic and glutamatergic neurotransmitter systems have been implicated in the pathophysiology of schizophrenia, and increasing evidence shows that they interact functionally. Of note, the Gq/11-coupled serotonin 5-HT2A (5-HT2A) and the Gi/o-coupled metabotropic glutamate type 2 (mGlu2) receptors have been demonstrated to assemble into a functional heteromeric complex that modulates the function of each individual receptor. For conformation of the heteromeric complex, corresponding transmembrane-4 segment of 5-HT2A and mGlu2 are required. The 5-HT2A/mGlu2 heteromeric complex is necessary for the activation of Gq/11 proteins and for the subsequent increase in the levels of the intracellular messenger Ca2+. Furthermore, signaling via the heteromeric complex is dysregulated in the post-mortem brains of patients with schizophrenia, and could be linked to altered cortical function. From a behavioral perspective, this complex contributes to the hallucinatory and antipsychotic behaviors associated with 5-HT2A and mGlu2/3 agonists, respectively. Synaptic and epigenetic mechanisms have also been found to be significantly associated with the mGlu2/5-HT2A heteromeric complex. This review summarizes the role of crosstalk between mGlu2 and 5-HT2A in the mechanism of antipsychotic effects and introduces recent key advancements on this topic.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
19
|
Dogra S, Putnam J, Conn PJ. Metabotropic glutamate receptor 3 as a potential therapeutic target for psychiatric and neurological disorders. Pharmacol Biochem Behav 2022; 221:173493. [PMID: 36402243 PMCID: PMC9729465 DOI: 10.1016/j.pbb.2022.173493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS) and abnormalities in the glutamatergic system underlie various CNS disorders. As metabotropic glutamate receptor 3 (mGlu3 receptor) regulates glutamatergic transmission in various brain areas, emerging literature suggests that targeting mGlu3 receptors can be a novel approach to the treatment of psychiatric and neurological disorders. For example, mGlu3 receptor negative allosteric modulators (NAMs) induce rapid antidepressant-like effects in both acute and chronic stress models. Activation of mGlu3 receptors can enhance cognition in the rodents modeling schizophrenia-like pathophysiology. The mGlu3 receptors expressed in the astrocytes induce neuroprotective effects. Although polymorphisms in GRM3 have been shown to be associated with addiction, there is not significant evidence about the efficacy of mGlu3 receptor ligands in rodent models of addiction. Collectively, drugs targeting mGlu3 receptors may provide an alternative approach to fill the unmet clinical need for safer and more efficacious therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jason Putnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Li SH, Abd-Elrahman KS, Ferguson SS. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther 2022; 239:108275. [DOI: 10.1016/j.pharmthera.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
|
21
|
Pilc A, Machaczka A, Kawalec P, Smith JL, Witkin JM. Where do we go next in antidepressant drug discovery? A new generation of antidepressants: a pivotal role of AMPA receptor potentiation and mGlu2/3 receptor antagonism. Expert Opin Drug Discov 2022; 17:1131-1146. [PMID: 35934973 DOI: 10.1080/17460441.2022.2111415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Major depressive disorder remains a prevalent world-wide health problem. Currently available antidepressant medications take weeks of dosing, do not produce antidepressant response in all patients, and have undesirable ancillary effects. AREAS COVERED The present opinion piece focuses on the major inroads to the creation of new antidepressants. These include N-methyl-D-aspartate (NMDA) receptor antagonists and related compounds like ketamine, psychedelic drugs like psilocybin, and muscarinic receptor antagonists like scopolamine. The preclinical and clinical pharmacological profile of these new-age antidepressant drugs is discussed. EXPERT OPINION Preclinical and clinical data have accumulated to predict a next generation of antidepressant medicines. In contrast to the current standard of care antidepressant drugs, these compounds differ in that they demonstrate rapid activity, often after a single dose, and effects that outlive their presence in brain. These compounds also can provide efficacy for treatment-resistant depressed patients. The mechanism of action of these compounds suggests a strong glutamatergic component that involves the facilitation of AMPA receptor function. Antagonism of mGlu2/3 receptors is also relevant to the antidepressant pharmacology of this new class of drugs. Based upon the ongoing efforts to develop these new-age antidepressants, new drug approvals are predicted in the near future.
Collapse
Affiliation(s)
- Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paweł Kawalec
- Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
22
|
Pałucha-Poniewiera A. The role of mGlu 2/3 receptor antagonists in the enhancement of the antidepressant-like effect of ketamine. Pharmacol Biochem Behav 2022; 220:173454. [PMID: 36038006 DOI: 10.1016/j.pbb.2022.173454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
MGlu2/3 receptor antagonists produce antidepressant-like effects in animal models of depression. A number of mechanisms responsible for these actions are convergent to the mechanism of the fast antidepressant-like effect of ketamine. Furthermore, the data indicate that ketamine effect is related to the action of mGlu2 receptors and may be reduced by their agonists. The above facts became the basis for the hypothesis that the antidepressant effect of low doses of ketamine might be enhanced by coadministration of a mGlu2 receptor antagonist. This strategy was aimed not only at enhancing the therapeutic effect of ketamine but also at reducing the risk of undesirable effects by lowering its therapeutic dose. It is known that ketamine, effective in relieving depressive symptoms in patients suffering from treatment-resistant depression (TRD), is burdened with a number of side effects, which may be particularly dangerous in psychiatric patients. Data have confirmed that subeffective doses of ketamine and its enantiomer, (R)-ketamine, coadministered with an mGlu2/3 receptor antagonist, induce antidepressant-like effects in the screening tests and in the chronic-stress-induced model of depression. At the same time, these drug combinations did not cause undesirable effects characteristic of higher doses of ketamine and (S)-ketamine, including those related to psychostimulatory effects. Further research is required to prove whether this strategy will also be effective in depressive patients.
Collapse
Affiliation(s)
- Agnieszka Pałucha-Poniewiera
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
23
|
Witkin JM, Pandey KP, Smith JL. Clinical investigations of compounds targeting metabotropic glutamate receptors. Pharmacol Biochem Behav 2022; 219:173446. [PMID: 35987339 DOI: 10.1016/j.pbb.2022.173446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | - Kamal P Pandey
- Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
24
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.
Collapse
|
25
|
Effects of Chronic LY341495 on Hippocampal mTORC1 Signaling in Mice with Chronic Unpredictable Stress-Induced Depression. Int J Mol Sci 2022; 23:ijms23126416. [PMID: 35742857 PMCID: PMC9224204 DOI: 10.3390/ijms23126416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
In several rodent models, acute administration of the metabotropic glutamate 2/3 (mGlu2/3) receptor antagonist LY341495 induced antidepressant-like effects via a mechanism of action similar to that of ketamine. However, the effects of chronic mGlu2/3 antagonism have not yet been explored. Therefore, we investigated the effects of chronic LY341495 treatment on the mechanistic target of rapamycin complex 1 (mTORC1) signaling and the levels of synaptic proteins in mice subjected to chronic unpredictable stress (CUS). LY341495 (1 mg/kg) was administered daily for 4 weeks to mice with and without CUS exposure. After the final treatment, the forced swimming test (FST) was used to assess antidepressant-like effects. The hippocampal levels of mTORC1-related proteins were derived by Western blotting. Chronic LY341495 treatment reversed the CUS-induced behavioral effects of FST. CUS significantly reduced the phosphorylation of mTORC1 and downstream effectors [eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP-1) and small ribosomal protein 6 (S6)], as well as the expression of synaptic proteins postsynaptic density-95 (PSD-95) and AMPA receptor subunit GluR1 (GluA1) in the hippocampus. However, chronic LY341495 treatment rescued these deficits. Our results suggest that the activation of hippocampal mTORC1 signaling is related to the antidepressant effect of chronic LY341495 treatment in an animal model of CUS-induced depression.
Collapse
|
26
|
Yavi M, Lee H, Henter ID, Park LT, Zarate CA. Ketamine treatment for depression: a review. DISCOVER MENTAL HEALTH 2022; 2:9. [PMID: 35509843 PMCID: PMC9010394 DOI: 10.1007/s44192-022-00012-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
This manuscript reviews the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic (R,S)-ketamine (hereafter referred to as ketamine) as well as its S-enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD). Initial studies found that a single subanesthetic-dose IV ketamine infusion rapidly (within one day) improved depressive symptoms in individuals with MDD and bipolar depression, with antidepressant effects lasting three to seven days. In 2019, esketamine received FDA approval as an adjunctive treatment for treatment-resistant depression (TRD) in adults. Esketamine was approved under a risk evaluation and mitigation strategy (REMS) that requires administration under medical supervision. Both ketamine and esketamine are currently viable treatment options for TRD that offer the possibility of rapid symptom improvement. The manuscript also reviews ketamine's use in other psychiatric diagnoses-including suicidality, obsessive-compulsive disorder, post-traumatic stress disorder, substance abuse, and social anxiety disorder-and its potential adverse effects. Despite limited data, side effects for antidepressant-dose ketamine-including dissociative symptoms, hypertension, and confusion/agitation-appear to be tolerable and limited to around the time of treatment. Relatively little is known about ketamine's longer-term effects, including increased risks of abuse and/or dependence. Attempts to prolong ketamine's effects with combined therapy or a repeat-dose strategy are also reviewed, as are current guidelines for its clinical use. In addition to presenting a novel and valuable treatment option, studying ketamine also has the potential to transform our understanding of the mechanisms underlying mood disorders and the development of novel therapeutics.
Collapse
Affiliation(s)
- Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Holim Lee
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Lawrence T. Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| |
Collapse
|
27
|
Tyler RE, Bluitt MN, Engers JL, Lindsley CW, Besheer J. The effects of predator odor (TMT) exposure and mGlu 3 NAM pretreatment on behavioral and NMDA receptor adaptations in the brain. Neuropharmacology 2022; 207:108943. [PMID: 35007623 PMCID: PMC8844221 DOI: 10.1016/j.neuropharm.2022.108943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
A stressor can trigger lasting adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that may activate the metabotropic glutamate receptor 3 (mGlu3) to produce stress adaptations. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after, rats underwent context re-exposure, elevated zero maze (ZM), and acoustic startle (ASR) behavioral tests, followed by RT-PCR gene expression in the insular cortex and bed nucleus of the stria terminalis (BNST) to evaluate lasting behavioral and molecular adaptations from the stressor. Rats displayed stress-reactive behaviors in response to TMT exposure that were not affected by VU6010572. Freezing and hyperactivity were observed during the context re-exposure, and mGlu3-NAM pretreatment during stressor prevented the context freezing response. TMT exposure did not affect ZM or ASR measures, but VU6010572 increased time spent in the open arms of the ZM and ASR habituation regardless of stressor treatment. In the insular cortex, TMT exposure increased expression of mGlu (Grm3, Grm5) and NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) receptor transcripts, and mGlu3-NAM pretreatment blocked GriN3B upregulation. In the BNST, TMT exposure increased expression of GriN2B and GriN3B in vehicle-treated rats, but decreased expression in the mGlu3-NAM group. Similar to the insular cortex, mGlu3-NAM reversed the stressor-induced upregulation of GriN3B in the BNST. mGlu3-NAM also upregulated GriN2A, GriN2B, GriN3B and Grm2 in the control group, but not the TMT group. Together, these data implicate mGlu3 receptor signaling in some lasting adaptations of predator odor stressor and anxiolytic-like effects.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Maya N Bluitt
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julie L Engers
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharmacol 2022; 197:114892. [PMID: 34968492 PMCID: PMC8883502 DOI: 10.1016/j.bcp.2021.114892] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Treating major depression is a medical need that remains unmet by monoaminergic therapeutic strategies that commonly fail to achieve symptom remission. A breakthrough in the treatment of depression was the discovery that the anesthetic (R,S)-ketamine (ketamine), when administered at sub-anesthetic doses, elicits rapid (sometimes within hours) antidepressant effects in humans that are otherwise resistant to monoaminergic-acting therapies. While this finding was revolutionary and led to the FDA approval of (S)-ketamine (esketamine) for use in adults with treatment-resistant depression and suicidal ideation, the mechanisms underlying how ketamine or esketamine elicit their effects are still under active investigation. An emerging view is that metabolism of ketamine may be a crucial step in its mechanism of action, as several metabolites of ketamine have neuroactive effects of their own and may be leveraged as therapeutics. For example, (2R,6R)-hydroxynorketamine (HNK), is readily observed in humans following ketamine treatment and has shown therapeutic potential in preclinical tests of antidepressant efficacy and synaptic potentiation while being devoid of the negative adverse effects of ketamine, including its dissociative properties and abuse potential. We discuss preclinical and clinical studies pertaining to how ketamine and its metabolites produce antidepressant effects. Specifically, we explore effects on glutamate neurotransmission through N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), synaptic structural changes via brain derived neurotrophic factor (BDNF) signaling, interactions with opioid receptors, and the enhancement of serotonin, norepinephrine, and dopamine signaling. Strategic targeting of these mechanisms may result in novel rapid-acting antidepressants with fewer undesirable side effects compared to ketamine.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Lace M Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Acher FC, Cabayé A, Eshak F, Goupil-Lamy A, Pin JP. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022; 204:108886. [PMID: 34813860 DOI: 10.1016/j.neuropharm.2021.108886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) have been discovered almost four decades ago. Since then, their pharmacology has been largely developed as well as their structural organization. Indeed mGluRs are attractive therapeutic targets for numerous psychiatric and neurological disorders because of their modulating role of synaptic transmission. The more recent drug discovery programs have mostly concentrated on allosteric modulators. However, orthosteric agonists and antagonists have remained unavoidable pharmacological tools as, although not expected, many of them can reach the brain, or can be modified to reach the brain. This review focuses on the most common orthosteric ligands as well as on the few allosteric modulators interacting with the glutamate binding domain. The 3D-structures of these ligands at their binding sites are reported. For most of them, X-Ray structures or docked homology models are available. Because of the high conservation of the binding site, subtype selective agonists were not easy to find. Yet, some were discovered when extending their chemical structures in order to reach selective sites of the receptors.
Collapse
Affiliation(s)
- Francine C Acher
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France.
| | - Alexandre Cabayé
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France; BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Floriane Eshak
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| |
Collapse
|
30
|
Nicoletti F. Along the path paved by Watkins and Evans: metabotropic glutamate receptors, from the discovery to clinical applications. Neuropharmacology 2022; 208:108949. [PMID: 35033533 DOI: 10.1016/j.neuropharm.2022.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology Ad Pharmacology, University Sapienza of Rome, IRCCS Euromed, Pozzilli, Italy.
| |
Collapse
|
31
|
mGlu2/3 receptors within the ventral part of the lateral septal nuclei modulate stress resilience and vulnerability in mice. Brain Res 2022; 1779:147783. [DOI: 10.1016/j.brainres.2022.147783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
|
32
|
Dong C, Tian Z, Fujita Y, Fujita A, Hino N, Iijima M, Hashimoto K. Antidepressant-like actions of the mGlu2/3 receptor antagonist TP0178894 in the chronic social defeat stress model: Comparison with escitalopram. Pharmacol Biochem Behav 2021; 212:173316. [PMID: 34968554 DOI: 10.1016/j.pbb.2021.173316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
The metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists are reported to produce ketamine-like rapid-acting and sustained antidepressant-like effects in rodents. In this study, we compared the effects of single administration of the new mGlu2/3 receptor antagonist TP0178894 and the selective serotonin reuptake inhibitor (SSRI) escitalopram in the chronic social defeat stress (CSDS) model of depression, a model which has been shown to be resistant to treatment with a single dose of SSRI. In the tail suspension test and forced swimming test, high dose (3.0 mg/kg) of TP0178894 significantly attenuated the increased immobility time of these tests in CSDS susceptible mice, compared with vehicle-treated mice. In contrast, low doses (0.3 and 1.0 mg/kg) of TP0178894 and escitalopram (10 mg/kg) did not alter the increased immobility time of these two tests. In the sucrose preference test, TP0178894 (3.0 mg/kg) significantly improved the reduced sucrose preference of CSDS susceptible mice, three and seven days after a single dose. In addition, Western blot analyses showed that TP0178894 (3.0 mg/kg), but not low doses of TP0178894 and escitalopram, significantly attenuated the reduced expression of synaptic proteins [α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (GluA1) and postsynaptic density protein 95 (PSD-95)] in the prefrontal cortex from CSDS susceptible mice. This study suggests that TP0178894 shows rapid-acting and sustained antidepressant-like effects in CSDS model, as ketamine does.
Collapse
Affiliation(s)
- Chao Dong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Zheng Tian
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Atsuhiro Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Noriko Hino
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
33
|
Watanabe M, Marcy B, Hiroki A, Watase H, Kinoshita K, Iijima M, Marumo T, Zarate CA, Chaki S. Evaluation of the Safety, Tolerability, and Pharmacokinetic Profiles of TP0473292 (TS-161), A Prodrug of a Novel Orthosteric mGlu2/3 Receptor Antagonist TP0178894, in Healthy Subjects and Its Antidepressant-Like Effects in Rodents. Int J Neuropsychopharmacol 2021; 25:106-117. [PMID: 34534292 PMCID: PMC8832229 DOI: 10.1093/ijnp/pyab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TP0473292 (the active ingredient of TS-161) is a prodrug of a novel metabotropic glutamate (mGlu) 2/3 receptor antagonist being developed for the treatment of patients with depression. This study evaluated the safety, tolerability, and pharmacokinetics of orally administered TS-161 in healthy subjects. METHODS This was a first-in-human, phase 1, randomized, double-blind, placebo-controlled, single-ascending dose (15-400 mg TS-161) and 10-day multiple-ascending dose (50-150 mg TS-161) study in healthy subjects, conducted from June 2019 through February 2020. Plasma and urine concentrations of the prodrug and its metabolites, and cerebrospinal fluid (CSF) concentrations of the active metabolite TP0178894 were measured to evaluate the pharmacokinetic profiles after oral administration of TS-161. RESULTS Following single and multiple doses, TP0473292 was extensively converted into its active metabolite TP0178894. Plasma concentrations of TP0178894 reached peak (Cmax) within 5 hours post dose and declined with a t1/2 <13 hours. Plasma exposures of TP0178894 increased with increasing dose. TP0178894 penetrated into CSF and reached a Cmax of 9.892 ng/mL at a single dose of 100 mg, which was comparable with IC50 values of antagonist activity at mGlu2/3 receptors. The most frequently observed adverse events that showed exposure-related incidence during the study were nausea, vomiting, and dizziness. CONCLUSIONS The mGlu2/3 receptor antagonist prodrug TP0473292 is safe and well-tolerated, is orally bioavailable in humans with extensive conversion into the active metabolite TP0178894 with sufficient CSF penetration to exert the anticipated pharmacological effects, and is a promising candidate for further clinical development in treatment of patients with depression.
Collapse
Affiliation(s)
- Mai Watanabe
- Taisho Pharmaceutical R&D Inc., Morristown, New Jersey, USA,Correspondence: Mai Watanabe, MS, Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA ()
| | - Brian Marcy
- Taisho Pharmaceutical R&D Inc., Morristown, New Jersey, USA
| | | | | | | | | | | | - Carlos A Zarate
- National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
34
|
Pałucha-Poniewiera A, Podkowa K, Rafało-Ulińska A. The group II mGlu receptor antagonist LY341495 induces a rapid antidepressant-like effect and enhances the effect of ketamine in the chronic unpredictable mild stress model of depression in C57BL/6J mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110239. [PMID: 33400944 DOI: 10.1016/j.pnpbp.2020.110239] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Ketamine produces a rapid antidepressant effect, but its use can be associated with serious side effects. Hence, other therapeutic options that will allow us to obtain a quick and safe antidepressant effect by modulating glutamatergic transmission are needed. Antagonists of mGlu2/3 receptors, which share some mechanisms of action with ketamine, may be good candidates to obtain this effect. Here, we show that the metabotropic glutamate (mGlu) 2/3 receptor antagonist LY341495 induced a dose-dependent antidepressant-like effect in the chronic unpredictable mild stress (CUMS) model of depression in C57BL/6J mice after both single and subchronic (three-day) administration. Furthermore, a noneffective dose of LY341495 (0.3 mg/kg) given jointly with a noneffective dose of ketamine (3 mg/kg) reversed the CUMS-induced behavioral effects, indicating that coadministration of ketamine with an mGlu2/3 receptor antagonist might allow its therapeutically effective dose to be lowered. Western blot results indicate that mTOR pathway activation might be involved in the mechanism of action of this drug combination. Moreover, the combined doses of both substances did not produce undesirable behavioral effects characteristic of a higher dose of ketamine (10 mg/kg) commonly used in rodent studies to induce antidepressant effects. Coadministration of low doses of ketamine and LY341495 did not induce the hyperactivity typical of NMDA channel blockers, did not disturb short-term memory in the novel object recognition (NOR) test, and did not disturb motor coordination in the rotarod test. Our research not only confirmed the earlier data on the rapid antidepressant effect of mGlu2/3 receptor antagonists but also indicated that such compounds can safely lower the effective dose of ketamine.
Collapse
Affiliation(s)
- Agnieszka Pałucha-Poniewiera
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Karolina Podkowa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| | - Anna Rafało-Ulińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
35
|
Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res 2021; 171:105761. [PMID: 34242798 DOI: 10.1016/j.phrs.2021.105761] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is severely prevalent, and conventional monoaminergic antidepressants gradually exhibit low therapeutic efficiency, especially for patients with treatment-resistant depression. A neuroplasticity hypothesis is an emerging advancement in the mechanism of depression, mainly expressed in the glutamate system, e.g., glutamate receptors and signaling. Dysfunctional glutamatergic neurotransmission is currently considered to be closely associated with the pathophysiology of MDD. Biological function, pharmacological action, and signal attributes in the glutamate system both regulate the neural process. Specific functional subunits could be therapeutic targets to explore the novel glutamatergic modulators, which have fast-acting, and relatively sustained antidepressant effects. Here, the present review summarizes the pathophysiology of MDD found in the glutamate system, exploring the role of glutamate receptors and their downstream effects. These convergent mechanisms have prompted the development of other modulators targeting on glutamate system, including N-methyl-d-aspartate receptor antagonists, selective GluN2B-specific antagonists, glycine binding site agents, and regulators of metabotropic glutamate receptors. Relevant researches underly the putative mechanisms of these drugs, which reverse the damage of depression by regulating glutamatergic neurotransmission. It also provides further insight into the mechanism of depression and exploring potential targets for novel agent development.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
36
|
Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders. Neuropharmacology 2021; 196:108687. [PMID: 34175327 DOI: 10.1016/j.neuropharm.2021.108687] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
The discovery of robust antidepressant effects of ketamine in refractory patients has led to increasing focus on agents targeting glutamatergic signaling as potential novel antidepressant strategy. Among the agents targeting the glutamatergic system, compounds acting at metabotropic glutamate (mGlu) receptors are among the most promising agents under studies for depressive disorders. Further, the receptor diversity, distinct distribution in the CNS, and ability to modulate the glutamatergic neurotransmission in the brain areas implicated in mood disorders make them an exciting target for stress-related disorders. In preclinical models, antidepressant and anxiolytic effects of mGlu5 negative allosteric modulators (NAMs) have been reported. Interestingly, mGlu2/3 receptor antagonists show fast and sustained antidepressant-like effects similar to that of ketamine in rodents. Excitingly, they can also induce antidepressant effects in the animal models of treatment-resistant depression and are devoid of the side-effects associated with ketamine. Unfortunately, clinical trials of both mGlu5 and mGlu2/3 receptor NAMs have been inconclusive, and additional trials using other compounds with suitable preclinical and clinical properties are needed. Although group III mGlu receptors have gained less attention, mGlu7 receptor ligands have been shown to induce antidepressant-like effects in rodents. Collectively, compounds targeting mGlu receptors provide an alternative approach to fill the outstanding clinical need for safer and more efficacious antidepressants. This article is part of the special Issue on "Glutamate Receptors - mGluRs".
Collapse
|
37
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
38
|
Wang X, Ali N, Lin CLG. Emerging role of glutamate in the pathophysiology and therapeutics of Gulf War illness. Life Sci 2021; 280:119609. [PMID: 33991547 DOI: 10.1016/j.lfs.2021.119609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Gulf War illness (GWI) is a chronic and multi-symptomatic disorder affecting veterans who served in the Gulf War. The commonly reported symptoms in GWI veterans include mood problems, cognitive impairment, muscle and joint pain, migraine/headache, chronic fatigue, gastrointestinal complaints, skin rashes, and respiratory problems. Neuroimaging studies have revealed significant brain structure alterations in GWI veterans, including subcortical atrophy, decreased volume of the hippocampus, reduced total grey and white matter, and increased brain white matter axial diffusivity. These brain changes may contribute to or increase the severities of the GWI-related symptoms. Epidemiological studies have revealed that neurotoxic exposures and stress may be significant contributors to the development of GWI. However, the mechanism underlying how the exposure and stress could contribute to the multi-symptomatic disorder of GWI remains unclear. We and others have demonstrated that rodent models exposed to GW-related agents and stress exhibited higher extracellular glutamate levels, as well as impaired structure and function of glutamatergic synapses. Restoration of the glutamatergic synapses ameliorated the GWI-related pathological and behavioral deficits. Moreover, recent studies showed that a low-glutamate diet reduced multiple symptoms in GWI veterans, suggesting an important role of the glutamatergic system in GWI. Currently, growing evidence has indicated that abnormal glutamate neurotransmission may contribute to the GWI symptoms. This review summarizes the potential roles of glutamate dyshomeostasis and dysfunction of the glutamatergic system in linking the initial cause to the multi-symptomatic outcomes in GWI and suggests the glutamatergic system as a therapeutic target for GWI.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noor Ali
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Qunies AM, Emmitte KA. Negative allosteric modulators of group II metabotropic glutamate receptors: A patent review (2015 - present). Expert Opin Ther Pat 2021; 31:687-708. [PMID: 33719801 DOI: 10.1080/13543776.2021.1903431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Group II metabotropic glutamate (mGlu) receptors have emerged as an attractive potential target for the development of novel CNS therapeutics in areas such as Alzheimer's disease (AD), anxiety, cognitive disorders, depression, and others. Several small molecules that act as negative allosteric modulators (NAMs) on these receptors have demonstrated efficacy and/or target engagement in animal models, and one molecule (decoglurant) has been advanced into clinical trials. AREAS COVERED This review summarizes patent applications published between January 2015 and November 2020. It is divided into three sections: (1) small molecule nonselective mGlu2/3 NAMs, (2) small molecule selective mGlu2 NAMs, and (3) small molecule selective mGlu3 NAMs. EXPERT OPINION Much progress has been made in the discovery of novel small molecule mGlu2 NAMs. Still, chemical diversity remains somewhat limited and room for expansion remains. Progress with mGlu3 NAMs has been more limited; however, some promising molecules have been disclosed. The process of elucidating the precise role of each receptor in the diseases associated with group II receptors has begun. Continued studies in animals with selective NAMs for both receptors will be critical in the coming years to inform researchers on the right compound profile and patient population for clinical development.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
40
|
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110041. [PMID: 32682872 PMCID: PMC7484229 DOI: 10.1016/j.pnpbp.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Depression is the most common psychiatric illness affecting numerous people world-wide. The currently available antidepressant treatment presents low response and remission rates. Thus, new effective antidepressants need to be developed or discovered. Aiming to give an overview of novel possible antidepressant drug targets, we summarized the molecular targets of antidepressants and the underlying neurobiology of depression. We have also addressed the multidimensional perspectives on the progress in the psychopharmacological treatment of depression and on the new potential approaches with effective drug discovery.
Collapse
Affiliation(s)
- Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Frizzo ME, Ohno Y. Perisynaptic astrocytes as a potential target for novel antidepressant drugs. J Pharmacol Sci 2020; 145:60-68. [PMID: 33357781 DOI: 10.1016/j.jphs.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that dysfunctions in glutamatergic signaling are associated with the pathophysiology of depression. Several molecules that act on glutamate binding sites, so-called glutamatergic modulators, are rapid-acting antidepressants that stimulate synaptogenesis. Their antidepressant response involves the elevation of both extracellular glutamate and brain-derived neurotrophic factor (BDNF) levels, as well as the postsynaptic activation of the mammalian target of rapamycin complex 1. The mechanisms involved in the antidepressant outcomes of glutamatergic modulators, including ketamine, suggest that astrocytes must be considered a cellular target for developing rapid-acting antidepressants. It is well known that extracellular glutamate levels and glutamate intrasynaptic time-coursing are maintained by perisynaptic astrocytes, where inwardly rectifying potassium channels 4.1 (Kir4.1 channels) regulate both potassium and glutamate uptake. In addition, ketamine reduces membrane expression of Kir4.1 channels, which raises extracellular potassium and glutamate levels, increasing postsynaptic neural activities. Furthermore, inhibition of Kir4.1 channels stimulates BDNF expression in astrocytes, which may enhance synaptic connectivity. In this review, we discuss glutamatergic modulators' actions in regulating extracellular glutamate and BDNF levels, and reinforce the importance of perisynaptic astrocytes for the development of novel antidepressant drugs.
Collapse
Affiliation(s)
- Marcos E Frizzo
- Department of Morphological Sciences, Federal University of Rio Grande Do Sul, Sarmento Leite Street, 500, CEP 90050-170, Porto Alegre, Brazil.
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan
| |
Collapse
|
42
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
43
|
Hanley N, Paulissen J, Eastwood BJ, Gilmour G, Loomis S, Wafford KA, McCarthy A. Pharmacological Modulation of Sleep Homeostasis in Rat: Novel Effects of an mGluR2/3 Antagonist. Sleep 2020; 42:5491801. [PMID: 31106825 DOI: 10.1093/sleep/zsz123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing vigilance without incurring the negative consequences of extended wakefulness such as daytime sleepiness and cognitive impairment is a major challenge in treating many sleep disorders. The present work compares two closely related mGluR2/3 antagonists LY3020371 and LY341495 with two well-known wake-promoting compounds caffeine and d-amphetamine. Sleep homeostasis properties were explored in male Wistar rats by manipulating levels of wakefulness via (1) physiological sleep restriction (SR), (2) pharmacological action, or (3) a combination of these. A two-phase nonlinear mixed-effects model combining a quadratic and exponential function at an empirically estimated join point allowed the quantification of wake-promoting properties and any subsequent sleep rebound. A simple response latency task (SRLT) following SR assessed functional capacity of sleep-restricted animals treated with our test compounds. Caffeine and d-amphetamine increased wakefulness with a subsequent full recovery of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and were unable to fully reverse SR-induced impairments in SRLT. In contrast, LY3020371 increased wakefulness with no subsequent elevation of NREM sleep, delta power, delta energy, or sleep bout length and count, yet REM sleep recovered above baseline levels. Prior sleep pressure obtained using an SR protocol had no impact on the wake-promoting effect of LY3020371 and NREM sleep rebound remained blocked. Furthermore, LY341495 increased functional capacity across SRLT measures following SR. These results establish the critical role of glutamate in sleep homeostasis and support the existence of independent mechanisms for NREM and REM sleep homeostasis.
Collapse
Affiliation(s)
- Nicola Hanley
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Jerome Paulissen
- Clinical Division, Syneos Health (previously INC Research/InVentiv Health), Ann Arbor, MI
| | - Brian J Eastwood
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Gary Gilmour
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Sally Loomis
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Keith A Wafford
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Andrew McCarthy
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| |
Collapse
|
44
|
Guo C, Wang C, He T, Yu B, Li M, Zhao C, Yuan Y, Chen H. The effect of mGlu2/3 receptors on synaptic activities to different types of GABAergic interneurons in the anterior cingulate cortex. Neuropharmacology 2020; 175:108180. [PMID: 32525061 DOI: 10.1016/j.neuropharm.2020.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 11/30/2022]
Abstract
Antagonists of the group II metabotropic glutamate (mGlu) 2/3 receptors have been shown to have a rapid antidepressant effect. GABAergic interneurons play a crucial role in major depressive disorder (MDD) and possibly mediate the rapid antidepressant effect. However, how mGlu2/3 receptors regulate synaptic activities to GABAergic interneurons is not fully understood. In the present work, we studied the effect of mGlu2/3 receptors on excitatory and inhibitory synaptic activities to somatostatin (SST)- and parvalbumin (PV)-expressing interneurons, two major types of GABAergic interneurons, in the anterior cingulate cortex (ACC) that is strongly indicated in MDD. We found that activation of mGlu2/3 receptors by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG-IV), an agonist of mGlu2/3 receptors, remarkably reduced the frequency, but not the amplitude, of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) and the amplitude of evoked EPSCs in both types. The reduction in the frequency of sEPSCs and the amplitude of evoked EPSCs was more pronounced in SST interneurons. DCG-IV, however, did not affect spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) and evoked IPSCs in both types. LY341495, an antagonist of mGlu2/3 receptors, enhanced the amplitude of evoked EPSCs without affecting sEPSCs and mEPSCs in both types. It also did not affect sIPSCs and evoked IPSCs except slightly increasing the frequency of mIPSCs in SST interneurons. Our results indicate that mGlu2/3 receptors primarily regulate excitatory synaptic activities to the two types of GABAergic interneurons in the ACC.
Collapse
Affiliation(s)
- Chen Guo
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, The Southwest University, Chongqing, China
| | - Chunlian Wang
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, The Southwest University, Chongqing, China
| | - Ting He
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, The Southwest University, Chongqing, China
| | - Baocong Yu
- Key Lab of Developmental Genes and Human Diseases of the Ministry of Education, Department of Histology and Embryology, The Southeast University, Nanjing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, The Southwest University, Chongqing, China
| | - Chunjie Zhao
- Key Lab of Developmental Genes and Human Diseases of the Ministry of Education, Department of Histology and Embryology, The Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic Medicine, Zhongda Hospital, The Southeast University, Nanjing, China
| | - Huanxin Chen
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, The Southwest University, Chongqing, China.
| |
Collapse
|
45
|
Chaki S. mGlu2/3 receptor as a novel target for rapid acting antidepressants. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:289-309. [PMID: 32616210 DOI: 10.1016/bs.apha.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given that ketamine, a noncompetitive N-methyl-d-aspartate receptor antagonist that exerts rapid antidepressant effects in patients with treatment-resistant depression, also has undesirable adverse effects, agents that can be used as alternatives to ketamine have been actively pursued. Group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and mGlu3 receptors, have emerged as one of the most promising targets in the development of ketamine-like antidepressants. Indeed, mGlu2/3 receptor antagonists have been demonstrated to exert rapid antidepressant effects in animal models and to be efficacious in animal models refractory to conventional antidepressants. Moreover, there are striking similarities between mGlu2/3 receptor antagonists and ketamine in terms of not only their antidepressant profiles, but also the underlying mechanisms of their antidepressant effects. Nonetheless, studies in rodents have shown that mGlu2/3 receptor antagonists do not cause ketamine-like adverse events, such as psychotomimetic-like behavior, abuse potential or neurotoxicity, supporting the usefulness of mGlu2/3 receptor antagonists as alternatives to ketamine. In this chapter, the past and recent research on the antidepressant effects of mGlu2/3 receptor antagonists will be reviewed. In particular, the potential of mGlu2/3 receptor antagonists as novel ketamine-like antidepressants will be emphasized.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
| |
Collapse
|
46
|
Sial OK, Parise EM, Parise LF, Gnecco T, Bolaños-Guzmán CA. Ketamine: The final frontier or another depressing end? Behav Brain Res 2020; 383:112508. [PMID: 32017978 PMCID: PMC7127859 DOI: 10.1016/j.bbr.2020.112508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Two decades ago, the observation of a rapid and sustained antidepressant response after ketamine administration provided an exciting new avenue in the search for more effective therapeutics for the treatment of clinical depression. Research elucidating the mechanism(s) underlying ketamine's antidepressant properties has led to the development of several hypotheses, including that of disinhibition of excitatory glutamate neurons via blockade of N-methyl-d-aspartate (NMDA) receptors. Although the prominent understanding has been that ketamine's mode of action is mediated solely via the NMDA receptor, this view has been challenged by reports implicating other glutamate receptors such as AMPA, and other neurotransmitter systems such as serotonin and opioids in the antidepressant response. The recent approval of esketamine (Spravato™) for the treatment of depression has sparked a resurgence of interest for a deeper understanding of the mechanism(s) underlying ketamine's actions and safe therapeutic use. This review aims to present our current knowledge on both NMDA and non-NMDA mechanisms implicated in ketamine's response, and addresses the controversy surrounding the antidepressant role and potency of its stereoisomers and metabolites. There is much that remains to be known about our understanding of ketamine's antidepressant properties; and although the arrival of esketamine has been received with great enthusiasm, it is now more important than ever that its mechanisms of action be fully delineated, and both the short- and long-term neurobiological/functional consequences of its treatment be thoroughly characterized.
Collapse
MESH Headings
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Treatment-Resistant/drug therapy
- Dopamine Plasma Membrane Transport Proteins/drug effects
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Humans
- Ketamine/pharmacology
- Ketamine/therapeutic use
- Norepinephrine Plasma Membrane Transport Proteins/drug effects
- Receptor, Muscarinic M1/drug effects
- Receptors, AMPA/drug effects
- Receptors, Dopamine D2/drug effects
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/drug effects
- Receptors, Serotonin, 5-HT3/drug effects
- Receptors, sigma/drug effects
- Serotonin Plasma Membrane Transport Proteins/drug effects
Collapse
Affiliation(s)
- Omar K Sial
- Texas A&M University: Department of Psychological and Brain Sciences, 4325 TAMU, College Station, TX, 77843, USA
| | - Eric M Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lyonna F Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Tamara Gnecco
- Texas A&M University: Department of Psychological and Brain Sciences, 4325 TAMU, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Texas A&M University: Department of Psychological and Brain Sciences, 4325 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
47
|
mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacol Biochem Behav 2020; 190:172854. [DOI: 10.1016/j.pbb.2020.172854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
|
48
|
Daniels S, Horman T, Lapointe T, Melanson B, Storace A, Kennedy SH, Frey BN, Rizvi SJ, Hassel S, Mueller DJ, Parikh SV, Lam RW, Blier P, Farzan F, Giacobbe P, Milev R, Placenza F, Soares CN, Turecki G, Uher R, Leri F. Reverse translation of major depressive disorder symptoms: A framework for the behavioural phenotyping of putative biomarkers. J Affect Disord 2020; 263:353-366. [PMID: 31969265 DOI: 10.1016/j.jad.2019.11.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reverse translating putative biomarkers of depression from patients to animals is complex because Major Depressive Disorder (MDD) is a highly heterogenous condition. This review proposes an approach to reverse translation based on relating relevant bio-behavioural functions in laboratory rodents to MDD symptoms. METHODS This systematic review outlines symptom clusters assessed by psychometric tests of MDD and antidepressant treatment response including the Montgomery-Åsberg Depression Rating Scale, the Hamilton Depression Rating Scale, and the Beck Depression Inventory. Symptoms were related to relevant behavioural assays in laboratory rodents. RESULTS The resulting battery of tests includes passive coping, anxiety-like behaviours, sleep, caloric intake, cognition, psychomotor functions, hedonic reactivity and aversive learning. These assays are discussed alongside relevant clinical symptoms of MDD, providing a framework through which reverse translation of a biomarker can be interpreted. LIMITATIONS Certain aspects of MDD may not be quantified by tests in laboratory rodents, and their biological significance may not always be of clinical relevance. CONCLUSIONS Using this reverse translation approach, it is possible to clarify the functional significance of a putative biomarker in rodents and hence translate its contribution to specific clinical symptoms, or clusters of symptoms.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Brett Melanson
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Alexandra Storace
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Sidney H Kennedy
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Sakina J Rizvi
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Daniel J Mueller
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Raymond W Lam
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Blier
- The Royal Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Faranak Farzan
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter Giacobbe
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | - Franca Placenza
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | | | - Rudolf Uher
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| |
Collapse
|
49
|
Seo MK, Hien LT, Park MK, Choi AJ, Seog DH, Kim SH, Park SW, Lee JG. AMPA receptor-mTORC1 signaling activation is required for neuroplastic effects of LY341495 in rat hippocampal neurons. Sci Rep 2020; 10:993. [PMID: 31969673 PMCID: PMC6976560 DOI: 10.1038/s41598-020-58017-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
The group II metabotropic glutamate 2/3 (mGlu2/3) receptor antagonist LY341495 produces antidepressant-like effects by acting on mammalian target of rapamycin complex 1 (mTORC1) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in rodent. We investigated whether LY341495 affects neuroplasticity via these mechanisms in rat primary hippocampal cultures under conditions of dexamethasone (DEX)-induced neurotoxicity. Ketamine was used for comparison. Hippocampal cultures were treated with LY341495 under conditions of DEX-induced toxicity. Changes in mTORC1-mediated proteins were determined by Western blotting analyses. Changes in dendritic outgrowth and spine density were evaluated via immunostaining. LY341495 significantly prevented DEX-induced decreases in the levels of mTORC1, 4E-BP1, and p70S6K phosphorylation as well as the levels of the synaptic proteins. These effects were blocked by pretreatment with the AMPA receptor inhibitor 2,3-dihydroxy-6-nitro-7sulfamoyl-benzo(f)quinoxaline (NBQX) and the mTORC1 inhibitor rapamycin. LY341495 significantly attenuated DEX-induced decreases in dendritic outgrowth and spine density. Pretreatment with rapamycin and NBQX blocked these effects of LY341495. Further analyses indicted that induction of BDNF expression produced by LY341495 was blocked by pretreatment with NBQX and rapamycin. LY341495 has neuroplastic effects by acting on AMPA receptor-mTORC1 signaling under neurotoxic conditions. Therefore, activation of AMPA receptor and mTORC1 signaling, which enhance neuroplasticity, may be novel targets for new antidepressants.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Le Thi Hien
- Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea
| | - Min Kyung Park
- Departement of Psychiatry, Dong-eui Hospital, Dongeui University, Busan, 47227, Republic of Korea
| | - Ah Jeong Choi
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Seong-Ho Kim
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea.,Department of Internal Medicine, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea. .,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, 47392, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea.
| |
Collapse
|
50
|
Joffe ME, Santiago CI, Oliver KH, Maksymetz J, Harris NA, Engers JL, Lindsley CW, Winder DG, Conn PJ. mGlu 2 and mGlu 3 Negative Allosteric Modulators Divergently Enhance Thalamocortical Transmission and Exert Rapid Antidepressant-like Effects. Neuron 2020; 105:46-59.e3. [PMID: 31735403 PMCID: PMC6952546 DOI: 10.1016/j.neuron.2019.09.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/14/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Non-selective antagonists of metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) exert rapid antidepressant-like effects by enhancing prefrontal cortex (PFC) glutamate transmission; however, the receptor subtype contributions and underlying mechanisms remain unclear. Here, we leveraged newly developed negative allosteric modulators (NAMs), transgenic mice, and viral-assisted optogenetics to test the hypothesis that selective inhibition of mGlu2 or mGlu3 potentiates PFC excitatory transmission and confers antidepressant efficacy in preclinical models. We found that systemic treatment with an mGlu2 or mGlu3 NAM rapidly activated biophysically unique PFC pyramidal cell ensembles. Mechanistic studies revealed that mGlu2 and mGlu3 NAMs enhance thalamocortical transmission and inhibit long-term depression by mechanistically distinct presynaptic and postsynaptic actions. Consistent with these actions, systemic treatment with either NAM decreased passive coping and reversed anhedonia in two independent chronic stress models, suggesting that both mGlu2 and mGlu3 NAMs induce antidepressant-like effects through related but divergent mechanisms of action.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA.
| | - Chiaki I Santiago
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA; Vanderbilt University, Nashville, TN 37232, USA
| | - Kendra H Oliver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA
| | - Nicholas A Harris
- Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie L Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA.
| |
Collapse
|