1
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
2
|
Rashki A, Mumtaz F, Jazayeri F, Shadboorestan A, Esmaeili J, Ejtemaei Mehr S, Ghahremani MH, Dehpour AR. Cyclosporin A attenuating morphine tolerance through inhibiting NO/ERK signaling pathway in human glioblastoma cell line: the involvement of calcineurin. EXCLI JOURNAL 2018; 17:1137-1151. [PMID: 30713473 PMCID: PMC6341459 DOI: 10.17179/excli2018-1693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide (NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated (2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway.
Collapse
Affiliation(s)
- Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazayeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lu A, Lei H, Li L, Lai L, Liang W, Xu S. Role of mitochondrial Ca2+uniporter in remifentanil-induced postoperative allodynia. Eur J Neurosci 2018; 47:305-313. [PMID: 29363836 DOI: 10.1111/ejn.13842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Aizhu Lu
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
- University of Ottawa Heart Institute & Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - Hongyi Lei
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Le Li
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Luying Lai
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| | - Wenbin Liang
- University of Ottawa Heart Institute & Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - Shiyuan Xu
- Department of Anesthesiology; Zhujiang Hospital; Southern Medical University; No.253 Gongye Ave Guangzhou Guangdong China
| |
Collapse
|
4
|
Komatsu T. [Study of Supplementary Analgesics Capable of Reducing the Dosage of Morphine]. YAKUGAKU ZASSHI 2016; 136:329-35. [PMID: 26831810 DOI: 10.1248/yakushi.15-00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morphine with its potent analgesic property has been widely used for the treatment of various types of pain. However, the intrathecal (i.t.) administration of morphine at doses far higher than those required for antinociception exhibited nociceptive-related behaviors consisting of scratching, biting and licking, hyperalgesia, and allodynia in mice. Morphine-3-glucuronide (M3G), one of the major metabolites of morphine, has been found to evoke nociceptive behaviors similar to those after high-dose i.t. morphine. It is plausible that M3G may be responsible for nociception seen after high-dose i.t. morphine treatment. This article reviews the potential mechanism of spinally mediated nociceptive behaviors evoked by i.t. M3G in mice. We discuss the possible presynaptic release of nociceptive neurotransmitters/neuromodulators such as substance P, glutamate, dynorphin, and Leu-enkephalin in the primary afferent fibers following i.t. M3G administration. It is possible to speculate that i.t. M3G could indirectly activate NK1, NMDA, and δ2-opioid receptors that lead to the release of nitric oxide (NO) in the dorsal spinal cord. The major function of NO is the production of cGMP and the activation of protein kinase G (PKG). The NO-cGMP-PKG pathway plays an important role in M3G-induced nociceptive behavior. The phosphorylation of extracellular signal-related kinase (ERK) in the dorsal spinal cord was also evoked via the NO-cGMP-PKG pathway through the activation of δ2-opioid, NK1, and NMDA receptors, contributing to M3G-induced nociceptive behaviors. The demonstration of a neural mechanism underlying M3G-induced nociception provides a pharmacological basis for improved pain management with morphine at high doses.
Collapse
|
5
|
Deng L, Zhang L, Zhao H, Song F, Chen G, Zhu H. The role of p38MAPK activation in spinal dorsal horn in remifentanil-induced postoperative hyperalgesia in rats. Neurol Res 2016; 38:929-36. [PMID: 27687719 DOI: 10.1080/01616412.2016.1219078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Remifentanil may induce hyperalgesia. Recent studies implicate a close relationship between post-surgical hyperalgesia and phosphorylation and activation of p38 mitogen-activated protein kinase (p38MAPK) in the spinal microglia. This study aimed to investigate whether the combination of post-surgical and remifentanil-induced hyperalgesia worsens post-operative pain and whether phosphorylated p38MAPK (phospho-p38MAPK) in the spinal dorsal horn in rats is involved in remifentanil-induced postoperative hyperalgesia. METHODS Sprague-Dawley rats were randomly divided into six groups: control, incision only, remifentanil only, remifentanil + incision, remifentanil + incision + SB203580, and remifentanil + incision + DMSO. The p38MAPK inhibitor SB203580 and DMSO were injected intrathecally. A right plantar surgical incision was performed in the incision groups, and remifentanil was infused for 60 min in the remifentanil groups. Mechanical paw withdrawal threshold (PWT) and thermal paw withdrawal latency (PWL) of the bilateral hind paws were measured and the number of phospho-p38MAPK-positive cells in rat spinal dorsal horn sections was counted. RESULTS Intravenous remifentanil infusion decreased bilateral plantar PWL values from 1 h to 3 days after surgery, however there was no additive effect with incision-induced values. There was a significant increase in the number of dorsal horn phospho-p38MAPK-positive cells in the remifentanil + incision group compared to the incision group, but no increase in the number of these cells when remifentanil was given alone. Intrathecal pretreatment with SB203580 attenuated remifentanil + incision-induced postoperative hyperalgesia and significantly reduced activation of phospho-p38MAPK in spinal dorsal horn. CONCLUSIONS Incision-induced and remifentanil-induced increases in hyperalgesia were not additive when incision and remifentanil were used together. Data on phospho-38MAPK activation in remifenanil-induced hyperalgesia were contradictory and need further clarification.
Collapse
Affiliation(s)
- Liqin Deng
- a Department of Anesthesiology , General Hospital of Ningxia Medical University , Yinchuan City , China
| | - Lihua Zhang
- b Department of Anesthesiology , Beijing Fengtai Hospital of Integrated Traditional and Western Medicine , Beijing , China
| | - Haiying Zhao
- c Graduate School of Ningxia Medical University , Yinchuan City , China
| | - Fengxiang Song
- c Graduate School of Ningxia Medical University , Yinchuan City , China
| | - Gang Chen
- c Graduate School of Ningxia Medical University , Yinchuan City , China
| | - Hanyue Zhu
- c Graduate School of Ningxia Medical University , Yinchuan City , China
| |
Collapse
|
6
|
Komatsu T, Katsuyama S, Nagase H, Mizoguchi H, Sakurada C, Tsuzuki M, Sakurada S, Sakurada T. Intrathecal morphine-3-glucuronide-induced nociceptive behavior via Delta-2 opioid receptors in the spinal cord. Pharmacol Biochem Behav 2016; 140:68-74. [DOI: 10.1016/j.pbb.2015.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
|
7
|
Rojewska E, Popiolek-Barczyk K, Kolosowska N, Piotrowska A, Zychowska M, Makuch W, Przewlocka B, Mika J. PD98059 Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy. PLoS One 2015; 10:e0138583. [PMID: 26426693 PMCID: PMC4591269 DOI: 10.1371/journal.pone.0138583] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain treatment remains challenging due to ineffective therapy and resistance to opioid analgesia. Mitogen-activated protein kinase kinase (MAPKK) have been identified as the crucial regulators of pro- and antinociceptive factors. We used PD98059, an inhibitor of the MAPKK family members MEK1/2. The aim of study was to examine the influence of single and/or repeated PD98059 on nociception and opioid effectiveness in neuropathy. Moreover, we examined how PD98059 influences selected members of cellular pathways and cytokines. The PD98059 (2.5 mcg) was intrathecally preemptively administered before chronic constriction injury (CCI), and then once daily for 7 days. Additionally, at day 7 after CCI the PD98059-treated rats received a single injection of opioids. Using Western blot and qRT-PCR techniques in PD98059-treated rats we analyzed the mRNA and/or protein level of p38, ERK1/2, JNK, NF-kappaB, IL-1beta, IL-6, iNOS and IL-10 in the lumbar spinal cord. Our results indicate that PD98059 has an analgesic effects and potentiates morphine and/or buprenorphine analgesia. Parallel we observed that PD98059 inhibit upregulation of the CCI-elevated p38, ERK1/2, JNK and NF-kappaB protein levels. Moreover, PD98059 also prevented increase of pro- (IL-1beta, IL-6, and iNOS) but enhances anti-nociceptive (IL-10) factors. Summing up, PD98059 diminished pain and increased the effectiveness of opioids in neuropathy. The inhibition of MEKs might inactivate a variety of cell signaling pathways that are implicated in nociception.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | - Natalia Kolosowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail:
| |
Collapse
|
8
|
Lu Y, Hu J, Zhang Y, Dong CS, Wong GTC. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J Surg Res 2014; 193:43-51. [PMID: 25214258 DOI: 10.1016/j.jss.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/22/2014] [Accepted: 08/08/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Remote intrathecal morphine preconditioning (RMPC) induces cardioprotection, but the underlying mechanisms of this effect is unknown. The aim of this study was to investigate the role of spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G (NO/cGMP/PKG) signal pathway in the cardioprotection of RMPC in rats. MATERIALS AND METHODS Anesthetized, open chest, male Sprague-Dawley rats were assigned to one of eight treatment groups 3 d after intrathecal catheter placement. Before ischemia and reperfusion, RMPC received intrathecal morphine (3 μg/kg) by three cycles of 5-min infusions interspersed with 5-min infusion free periods. Intrathecally administrated a nonspecific nitric oxide synthase (NOS) inhibitor Nω-Nitro-L-arginine methyl ester (30 nmol), a specific guanylate cyclase inhibitor oxadiazolo [4,3-a] quinoxalin-1-one (11 nmol) and PKG inhibitor KT-5823 (20 pmol) 10 min before RMPC was used to evaluate the role of NO/cGMP/PKG of spinal cord. Ischemia and reperfusion injury were then induced by 30 min of left coronary artery occlusion, followed by 120 min of reperfusion. Infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. The content of cyclic guanosine monophosphate in the thoracic spinal cord was determined by radioimmunity protocol; the contents of nitric oxide and activity of NOS in the thoracic spinal cord were determined by nitrate reductase reduction and colorimetric methods; the expression of neuronal NOS (nNOS) and PKG in the thoracic spinal cord were determined by immunohistochemical and Western blotting method; the expression of nNOS messenger RNA was determined by reverse transcription-polymerase chain reaction method. RESULTS RMPC group markedly reduced the infarct size compared with the control group. However, the cardioprotection of RMPC could be abolished by pretreatment with Nω-Nitro-L-arginine methyl ester, Oxadiazolo [4,3-a] quinoxalin-1-one, and KT-5823. RMPC enhanced nitric oxide , NOS, and cyclic guanosine monophosphate levels in the spinal cord. Meanwhile, RMPC increased PKG and nNOS protein or messenger RNA expression in the spinal cord. CONCLUSIONS Spinal cord NO/cGMP/PKG signaling pathway mediates RMPC-induced cardioprotective effect.
Collapse
Affiliation(s)
- Yao Lu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Anesthesiology, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Hu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Chun Shan Dong
- Department of Anesthesiology, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
9
|
Popiolek-Barczyk K, Makuch W, Rojewska E, Pilat D, Mika J. Inhibition of intracellular signaling pathways NF-κB and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacol Rep 2014; 66:845-51. [PMID: 25149989 DOI: 10.1016/j.pharep.2014.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuropathic pain is clinically challenging because it is resistant to alleviation by morphine. The nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways may be involved in the development of neuropathic pain. The aim of our study was to examine the influence of a chronic, intrathecal administration of parthenolide (PTL, inhibitor of NF-κB) and U0126 (inhibitor of MEK1/2) on nociception and morphine effectiveness in a rat model of neuropathy. METHODS The chronic constriction injury of the sciatic nerve in Wistar rats was performed. PTL and U0126 were injected chronic intrathecally and morphine was injected once at day 7. To evaluate allodynia and hyperalgesia, the von Frey and cold plate tests were used, respectively. The experiments were carried out according to IASP rules. Using qRT-PCR we analyzed mRNAs of μ-(mor), δ-(dor) and κ-(kor)-opioid receptors in the lumbar spinal cord after drugs administration. RESULTS The administration of PTL and U0126 decreased allodynia and hyperalgesia and significantly potentiated morphine effect. The mor, dor and kor mRNAs were down-regulated 7 days after injury in the ipsilateral spinal cord. The PTL and U0126 significantly up-regulated the mRNA levels of all opioid receptors. The levels of mor and dor mRNAs were much higher compared to those in naïve, but only the kor levels returned to control values. CONCLUSIONS These results indicate that the inhibition of the NF-κB pathway has better analgesic effects. Both inhibitors similarly potentiate morphine analgesia, which parallels the up-regulation of both mor and dor mRNAs expression spinal levels of the model of neuropathy.
Collapse
Affiliation(s)
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Dominika Pilat
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
10
|
Guo C, Liu N, Li X, Sun H, Hu B, Lu J, Guo Y, Liang C, Xu H, Wu H. Effect of acupotomy on nitric oxide synthase and beta-endorphin in third lumbar vertebrae transverse process syndrome model rats. J TRADIT CHIN MED 2014; 34:194-8. [DOI: 10.1016/s0254-6272(14)60078-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Spinal neuronal NOS activation mediates intrathecal fentanyl preconditioning induced remote cardioprotection in rats. Int Immunopharmacol 2014; 19:127-31. [PMID: 24462544 DOI: 10.1016/j.intimp.2014.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
Abstract
Fentanyl has been widely used in anesthesia and analgesia, especially for cardiovascular surgeries. The aim of the study was to evaluate whether remote intrathecal fentanyl preconditioning (RFPC) provides cardioprotection and the role of spinal nitric oxide synthase (NOS) system in this effect. Fentanyl (0.3μg/kg) was administered intrathecally during RFPC by 3 cycles of 5-minute infusions interspersed with 5-minute infusion free periods. A non-specific nitric oxide synthase (NOS) inhibitor NG-nitro l-arginine methyl ester (l-NAME, 30nmol) and a selective nNOS inhibitor 7-nitroindazole (7-NI, 100nmol) were administered intrathecally 10min before RFPC, and were used to evaluate the involvement of the NOS system of the spinal cord. RFPC group markedly reduced the infarct size compared with control. However, the cardioprotection of RFPC could be abolished by pretreatment with l-NAME and 7-NI. RFPC merely increased the expression of nNOS and did not affect iNOS and eNOS expression. l-NAME reversed nNOS expression up-regulation induced by RFPC treatment. The present study demonstrated that RFPC effectively induced cardioprotection through activating the nNOS in the spinal cord.
Collapse
|
12
|
Lipták N, Dochnal R, Csabafi K, Szakács J, Szabó G. Obestatin prevents analgesic tolerance to morphine and reverses the effects of mild morphine withdrawal in mice. ACTA ACUST UNITED AC 2013; 186:77-82. [DOI: 10.1016/j.regpep.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/26/2013] [Accepted: 07/13/2013] [Indexed: 01/04/2023]
|
13
|
Hervera A, Gou G, Leánez S, Pol O. Effects of treatment with a carbon monoxide-releasing molecule and a heme oxygenase 1 inducer in the antinociceptive effects of morphine in different models of acute and chronic pain in mice. Psychopharmacology (Berl) 2013; 228:463-77. [PMID: 23483201 DOI: 10.1007/s00213-013-3053-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE Treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer, CORM-2) or a classical heme oxygenase 1 inducer (cobalt protoporphyrin IX, CoPP) has potent anti-inflammatory effects, but the role played by these treatments in the antinociceptive effects of morphine during acute and chronic pain was not evaluated. OBJECTIVES In wild type (WT), neuronal (NOS1-KO), or inducible (NOS2-KO) nitric oxide synthases knockout mice, we evaluated the effects of CORM-2 and CoPP treatments in the antinociceptive actions of morphine and their interaction with nitric oxide during acute, visceral, and chronic inflammatory or neuropathic pain. METHODS Acute and visceral pain was assessed through formalin and acid acetic writhing tests. Chronic inflammatory pain induced by the intra-articular administration of complete Freund's adjuvant and neuropathic pain by partial ligation of sciatic nerve were evaluated by measuring allodynia and hyperalgesia using the von Frey filaments, plantar, or cold plate tests. RESULTS While nitric oxide, synthetized by NOS1 and/or NOS2, increased the local antinociceptive effects of morphine during acute and chronic pain, it decreased the inhibitory effects of morphine after visceral pain. Moreover, while CORM-2 or CoPP treatments did not alter or reduced the antinociceptive effects of morphine during acute and visceral pain, both treatments improved the local antiallodynic and antihyperalgesic effects of morphine after chronic inflammatory or neuropathic pain in WT, but not in KO mice. CONCLUSIONS CORM-2 and CoPP treatments improved the local antinociceptive effects of morphine during chronic inflammatory and neuropathic pain by interaction with nitric oxide synthetized by NOS1 and NOS2 isoforms.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Sepúlveda J, Ortega A, Roa J, Contreras E. Further studies on the effects of acamprosate on tolerance to the analgesic effects of morphine and NO synthesis in the brain. Health (London) 2013. [DOI: 10.4236/health.2013.511a1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ishida R, Nikai T, Hashimoto T, Tsumori T, Saito Y. Intravenous Infusion of Remifentanil Induces Transient Withdrawal Hyperalgesia Depending on Administration Duration in Rats. Anesth Analg 2012; 114:224-9. [DOI: 10.1213/ane.0b013e318237f678] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Inhibition of ERK phosphorylation by substance P N-terminal fragment decreases capsaicin-induced nociceptive response. Neuropharmacology 2011; 61:608-13. [PMID: 21601581 DOI: 10.1016/j.neuropharm.2011.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 04/09/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
Previous research has demonstrated that substance P N-terminal fragments produced by the action of several different enzymes in the spinal cord could reduce nociception when injected intrathecally (i.t.) into mice. The present study examined the possible involvement of spinal extracellular signal-regulated protein kinase (ERK), a mitogen-activated protein kinase (MAPK), in i.t. substance P (1-7)-induced antinociception as assayed by the capsaicin test. The i.t. injection of substance P (1-7) (20-80 nmol) into mice resulted in a dose-dependent attenuation of paw-licking/biting behavior induced by intraplantar injection of capsaicin, which was reversed by co-injection of [D-Pro(2), D-Phe(7)]substance P (1-7), a D-isomer and antagonist of substance P (1-7). In Western blot analysis, intraplantar injection of capsaicin (400 and 1600 ng/paw) produced an increase of ERK phosphorylation in the dorsal spinal cord, whereas expression of p38 and c-Jun N-terminal kinase (JNK) phosphorylation was unchanged by capsaicin treatment. In parallel to the behavioral results, i.t. substance P (1-7) inhibited capsaicin-induced ERK phosphorylation, which was reversed by [D-Pro(2), D-Phe(7)]substance P (1-7), a substance P (1-7) antagonist. Both nociceptive behavioral response and spinal ERK activation induced by intraplantar capsaicin were reduced by U0126, an upstream inhibitor of ERK phosphorylation. Taken together, these findings suggest that the activation of ERK, but not p38 and JNK MAPKs in the spinal cord, contributes to intraplantar capsaicin-induced nociception, and that blocking ERK activation via substance P (1-7) binding sites may provide significant antinociception at the spinal cord level.
Collapse
|
17
|
Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O. Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling. Mol Pain 2011; 7:25. [PMID: 21486477 PMCID: PMC3094254 DOI: 10.1186/1744-8069-7-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/12/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The local administration of μ-opioid receptor (MOR) agonists attenuates neuropathic pain but the precise mechanism implicated in this effect is not completely elucidated. We investigated if nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric oxide synthases could modulate the local antiallodynic effects of morphine through the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K+ (KATP) channels signaling pathway activation and affect the dorsal root ganglia MOR expression during neuropathic pain. RESULTS In wild type (WT) mice, the subplantar administration of morphine dose-dependently decreased the mechanical and thermal allodynia induced by the chronic constriction of the sciatic nerve (CCI), which effects were significantly diminished after their co-administration with different subanalgesic doses of a selective NOS1 (N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT), NOS2 (L-N(6)-(1-iminoethyl)-lysine; L-NIL), L-guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ), PKG ((Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs) inhibitor or a KATP channel blocker (glibenclamide). The evaluation of the expression of MOR in the dorsal root ganglia from sham-operated and sciatic nerve-injured WT, NOS1 knockout (KO) and NOS2-KO mice at 21 days after surgery demonstrated that, although the basal mRNA and protein levels of MOR were similar between WT and both NOS-KO animals, nerve injury only decreased their expression in WT mice. CONCLUSIONS These results suggest that the peripheral nitric oxide-cGMP-PKG-KATP signaling pathway activation participates in the local antiallodynic effects of morphine after sciatic nerve injury and that nitric oxide, synthesized by NOS1 and NOS2, is implicated in the dorsal root ganglia down-regulation of MOR during neuropathic pain.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Katsuyama S, Mizoguchi H, Komatsu T, Nagaoka K, Sakurada S, Sakurada T. The cannabinoid 1 receptor antagonist AM251 produces nocifensive behavior via activation of ERK signaling pathway. Neuropharmacology 2010; 59:534-41. [DOI: 10.1016/j.neuropharm.2010.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/06/2010] [Accepted: 07/14/2010] [Indexed: 11/29/2022]
|
19
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
20
|
Campillo A, González-Cuello A, Cabañero D, Garcia-Nogales P, Romero A, Milanés MV, Laorden ML, Puig MM. Increased spinal dynorphin levels and phospho-extracellular signal-regulated kinases 1 and 2 and c-Fos immunoreactivity after surgery under remifentanil anesthesia in mice. Mol Pharmacol 2010; 77:185-94. [PMID: 19917879 DOI: 10.1124/mol.109.059790] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
In humans, remifentanil anesthesia enhances nociceptive sensitization in the postoperative period. We hypothesized that activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the expression of c-Fos, prodynorphin (mRNA), and dynorphin in the spinal cord could participate in the molecular mechanisms underlying postoperative opioid-induced sensitization. In a mouse model of incisional pain, we evaluated thermal (Hargreaves test) and mechanical (von Frey) hyperalgesia during the first 21 postoperative days. Moreover, prodynorphin (mRNA, real-time polymerase chain reaction), dynorphin (enzymatic immunoassay), c-Fos expression, and ERK1/2 phosphorylation (both by immunohistochemistry) in the lumbar spinal cord were assessed. Surgery performed under remifentanil anesthesia induced a maximal decrease in nociceptive thresholds between 4 h and 2 days postoperatively (p < 0.001) that lasted 10 to 14 days compared with noninjured animals. In the same experimental conditions, a significant increase in prodynorphin mRNA expression (at 2 and 4 days) followed by a sustained increase of dynorphin (days 2 to 10) in the spinal cord was observed. We also identified an early expression of c-Fos immunoreactivity in the superficial laminae of the dorsal horn of the spinal cord (peak at 4 h; p < 0.001), together with a partial activation of ERK1/2 (4 h; p < 0.001). These findings suggest that activated ERK1/2 could induce c-Fos expression and trigger the transcription of prodynorphin in the spinal cord. This in turn would result in long-lasting increased levels of dynorphin that, in our model, could participate in the persistence of pain but not in the manifestation of first pain.
Collapse
Affiliation(s)
- Ana Campillo
- Department of Anesthesiology, Hospital Universitari del Mar, Universitat Autònoma de Barcelona, Passeig Marítim 25-29, E-08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 2009; 29:13377-88. [PMID: 19846725 DOI: 10.1523/jneurosci.1127-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury.
Collapse
|
22
|
Manzanedo C, Aguilar MA, Do Couto BR, Rodríguez-Arias M, Miñarro J. Involvement of nitric oxide synthesis in sensitization to the rewarding effects of morphine. Neurosci Lett 2009; 464:67-70. [DOI: 10.1016/j.neulet.2009.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 12/31/2022]
|
23
|
Komatsu T, Sakurada S, Kohno K, Shiohira H, Katsuyama S, Sakurada C, Tsuzuki M, Sakurada T. Spinal ERK activation via NO-cGMP pathway contributes to nociceptive behavior induced by morphine-3-glucuronide. Biochem Pharmacol 2009; 78:1026-34. [PMID: 19589334 DOI: 10.1016/j.bcp.2009.06.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Intrathecal (i.t.) injection of morphine-3-glucuronide (M3G), a major metabolite of morphine without analgesic actions, produces a severe hindlimb scratching followed by biting and licking in mice. The pain-related behavior evoked by M3G was inhibited dose-dependently by i.t. co-administration of tachykinin NK(1) receptor antagonists, sendide, [D-Phe(7), D-His(9)] substance P(6-11), CP-99994 or RP-67580 and i.t. pretreatment with antiserum against substance P. The competitive NMDA receptor antagonists, D-APV and CPP, the NMDA ion-channel blocker, MK-801 or the competitive antagonist of the polyamine recognition site of NMDA receptor ion-channel complex, ifenprodil, produced inhibitory effects on i.t. M3G-evoked nociceptive response. The NO-cGMP-PKG pathway, which involves the extracellular signal-regulated kinase (ERK), has been implicated as mediators of plasticity in several pain models. Here, we investigated whether M3G could influence the ERK activation in the NO-cGMP-PKG pathway. The i.t. injection of M3G evoked a definite activation of ERK in the lumbar dorsal spinal cord, which was prevented dose-dependently by U0126, a MAP kinase-ERK inhibitor. The selective nNOS inhibitor N(omega)-propyl-l-arginine, the selective iNOS inhibitor W1400, the soluble guanylate cyclase inhibitor ODQ and the PKG inhibitor KT-5823 inhibited dose-dependently the nociceptive response to i.t. M3G. In western blotting analysis, inhibiting M3G-induced nociceptive response using these inhibitors resulted in a significant blockade of ERK activation induced by M3G in the spinal cord. Taken together, these results suggest that activation of the spinal ERK signaling in the NO-cGMP-PKG pathway contributes to i.t. M3G-evoked nociceptive response.
Collapse
Affiliation(s)
- Takaaki Komatsu
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chang M, Li W, Peng YL, Gao YH, Yao J, Han RW, Wang R. Involvement of NMDA receptor in nociceptive effects elicited by intrathecal [Tyr6] gamma2-MSH(6-12), and the interaction with nociceptin/orphanin FQ in pain modulation in mice. Brain Res 2009; 1271:36-48. [PMID: 19332041 DOI: 10.1016/j.brainres.2009.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/21/2023]
Abstract
The mas-related genes (Mrgs, also known as sensory neuron-specific receptors, SNSRs) are specifically expressed in small diameter sensory neurons in the trigeminal and dorsal root ganglia, suggesting an important role of the receptors in pain transmission. The present study aimed to investigate the underlying mechanism of the nociceptive effects after activation of MrgC, and the interaction between MrgC and N/OFQ-NOP receptor system in modulation of nociception in mice. Intrathecal (i.t.) administration of [Tyr(6)] gamma2-MSH(6-12), the most potent agonist for MrgC receptor, produced a significant hyperalgesic response as assayed by tail withdrawal test and a series of characteristic nociceptive responses, including biting, licking and scratching, in a dose-dependent manner (0.01-10 pmol and 0.01-10 nmol, respectively) in mice. These pronociceptive effects induced by [Tyr(6)] gamma2-MSH(6-12) were inhibited dose-dependently by co-injection of competitive NMDA receptor antagonist D-APV, non-competitive NMDA receptor antagonist MK-801, and nitric oxide (NO) synthase inhibitor L-NAME. However, the tachykinin NK(1) receptor antagonist L-703,606, and tachykinin NK(2) receptor antagonist MEN-10,376, had no influence on pronociceptive effects elicited by [Tyr(6)] gamma2-MSH(6-12). In other groups, [Tyr(6)] gamma2-MSH(6-12)-induced nociceptive responses were bidirectionally regulated by the co-injection of N/OFQ. N/OFQ inhibited nociceptive responses at high doses (0.01-1 nmol), but potentiated the behaviors at low doses (1 fmol-3 pmol). Furthermore, both hyperalgesia and nociceptive responses were enhanced after the co-administration with NOP receptor antagonist [Nphe(1)]N/OFQ(1-13)-NH(2). These results suggest that intrathecal [Tyr(6)] gamma2-MSH(6-12)-induced pronociceptive effects may be mediated through NMDA receptor-NO system in the spinal cord, and demonstrate the interaction between MrgC and N/OFQ-NOP receptor system in pain transmission.
Collapse
Affiliation(s)
- Min Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Komatsu T, Sakurada S, Katsuyama S, Sanai K, Sakurada T. Mechanism of allodynia evoked by intrathecal morphine-3-glucuronide in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:207-19. [PMID: 19607972 DOI: 10.1016/s0074-7742(09)85016-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Morphine-3-glucuronide (M3G), a main metabolite of morphine, has been proposed as a responsible factor when patients present with the neuroexcitatory side effects (allodynia, hyperalgesia, and myoclonus) observed following systemic administration of large doses of morphine. Indeed, both high-dose morphine (60 nmol/5 microl) and M3G (3 nmol/5 microl) elicit allodynia when administered intrathecally (i.t.) into mice. The allodynic behaviors are not opioid receptor mediated. This chapter reviews the potential mechanism of spinally mediated allodynia evoked by i.t. injection of M3G in mice. We discuss a possible presynaptic release of nociceptive neurotransmitters/neuromodulators such as substance P, glutamate, and dynorphin in the primary afferent fibers following i.t. M3G. It is possible to speculate that i.t. M3G injection could activate indirectly both NK(1) receptor and glutamate receptors that lead to the release of nitric oxide (NO) in the dorsal spinal cord. The NO plays an important role in M3G-induced allodynia. The phosphorylation of extracellular signal-regulated protein kinase (ERK) in the dorsal spinal cord evoked via NO/cGMP/PKG pathway contributes to i.t. M3G-induced allodynia. Furthermore, the increased release of NO observed after i.t. injection of M3G activates astrocytes and induces the release of the proinflammatory cytokine, interleukin-1beta. Taken together, these findings suggest that M3G may induce allodynia via activation of NO-ERK pathway, while maintenance of the allodynic response may be triggered by NO-activated astrocytes in the dorsal spinal cord. The demonstration of the cellular mechanisms of neuronal-glial interaction underlying M3G-induced allodynia provides a fruitful strategy for improved pain management with high doses of morphine.
Collapse
Affiliation(s)
- Takaaki Komatsu
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | |
Collapse
|
26
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD. Extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways involved in spinal cord stimulation (SCS)-induced vasodilation. Brain Res 2008; 1207:73-83. [PMID: 18374907 DOI: 10.1016/j.brainres.2007.12.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/14/2007] [Accepted: 12/30/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS SCS is used to improve peripheral circulation in selected patients with ischemia of the extremities. However the mechanisms are not fully understood. The present study investigated whether blockade of ERK and AKT activation modulated SCS-induced vasodilation. METHODS A unipolar ball electrode was placed on the left dorsal column at the lumbar 2-3 spinal segments in rats. Cutaneous blood flows from left and right hind foot pads were recorded with laser Doppler flow perfusion monitors. SCS was applied through a ball electrode at 60% or 90% of MT. U0126, an inhibitor of ERK kinase, or LY294002, an inhibitor of PI3K upstream of AKT, was applied to the lumbar 3-5 spinal segments (n=7, each group). RESULTS U0126 (100 nM, 5 microM and 250 microM) significantly attenuated SCS-induced vasodilation at 60% (100 nM: P<0.05; 5 microM and 250 microM: P<0.01, respectively) and 90% of MT (100 nM and 5 microM: P<0.05; 250 microM: P<0.01, respectively). LY294002 at 100 microM also attenuated SCS-induced vasodilation at 60% and 90% of MT (P<0.05). CONCLUSIONS These data suggest that ERK and AKT pathways are involved in SCS-induced vasodilation.
Collapse
Affiliation(s)
- Mingyuan Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tian YH, Lee KW, You IJ, Lee SY, Jang CG. 7-Nitroindazole, nitric oxide synthase inhibitor, attenuates physical dependence on butorphanol in rat. Synapse 2008; 62:582-9. [DOI: 10.1002/syn.20530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Liu ZW, Zhang T, Yang Z. Involvement of Nitric Oxide in Spatial Memory Deficits in Status Epilepticus Rats. Neurochem Res 2007; 32:1875-83. [PMID: 17549628 DOI: 10.1007/s11064-007-9374-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
Status epilepticus (SE) is associated with a significant risk of cognitive impairment, and the increase of nitric oxide (NO) releasing has been reported during SE. We investigated the effects of neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), on spatial performance of rats in the Morris water maze. Treatment with 7-NI, but not with AG, improved the performance of rats after SE not only in acquisition of the task but also in probe test. Furthermore, the level of SE-induced malondialdehyde (MDA), end product of lipid peroxidation, was significantly decreased only in animals receiving 7-NI injection. Taken together, the results of the present study provided evidence that the NO pathway contributed to oxidative stress after SE, and nNOS/NO pathway may underlie one of the potential mechanisms contributing to SE-induced spatial memory deficits.
Collapse
Affiliation(s)
- Zhao Wei Liu
- Key Lab of Bioactive Materials, Ministry of Education and College of Life Science, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|