1
|
Biondi B, Formaggio F, Toniolo C, Peggion C, Crisma M. Isolated α-turns in peptides: a selected literature survey. J Pept Sci 2023:e3476. [PMID: 36603599 DOI: 10.1002/psc.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ωi + 1 ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides. Among linear and cyclic peptides featuring the all-trans disposition of the ω torsion angles, only one third of the α-turns display φ,ψ values not too far from those characterizing regular α-helices. In general, our findings, taken together, suggest that a significant conformational diversity is compatible with the formation of an intramolecularly H-bonded C13 -member pseudocycle (α-turn) in linear and cyclic peptides.
Collapse
Affiliation(s)
- Barbara Biondi
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy
| | - Fernando Formaggio
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Claudio Toniolo
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Cristina Peggion
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Marco Crisma
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy
| |
Collapse
|
2
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
3
|
Mir FM, Crisma M, Toniolo C, Lubell WD. Isolated α-turn and incipient γ-helix. Chem Sci 2019; 10:6908-6914. [PMID: 31391913 PMCID: PMC6640192 DOI: 10.1039/c9sc01683j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The unique abilities of homo-oligo-adamantyl peptides to adopt α- and γ-turn conformations are demonstrated by X-ray diffraction, and NMR and FT-IR absorption spectroscopies. Assembled by an Ugi multiple component reaction strategy, N α-formyl-adamantyl tripeptide iso-propyl and tert-butyl amides are respectively found to adopt an isolated α-turn and an incipient γ-helix conformation by X-ray diffraction crystallography. The shortest example of a single α-turn with ideal geometry is observed in the crystalline state. In solution both peptides predominantly assume γ-helical structures.
Collapse
Affiliation(s)
- Fatemeh M Mir
- Département de Chimie , Université de Montréal , C. P. 6128, Succursale Centre-Ville , Montréal , Québec , Canada H3C 3J7 .
| | - Marco Crisma
- Department of Chemistry , University of Padova and Institute of Biomolecular Chemistry , Padova Unit , CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemistry , University of Padova and Institute of Biomolecular Chemistry , Padova Unit , CNR , 35131 Padova , Italy
| | - William D Lubell
- Département de Chimie , Université de Montréal , C. P. 6128, Succursale Centre-Ville , Montréal , Québec , Canada H3C 3J7 .
| |
Collapse
|
4
|
Boghosian JD, Luethy A, Cotten JF. Intravenous and Intratracheal Thyrotropin Releasing Hormone and Its Analog Taltirelin Reverse Opioid-Induced Respiratory Depression in Isoflurane Anesthetized Rats. J Pharmacol Exp Ther 2018; 366:105-112. [PMID: 29674333 PMCID: PMC5987997 DOI: 10.1124/jpet.118.248377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023] Open
Abstract
Thyrotropin releasing hormone (TRH) is a tripeptide hormone and a neurotransmitter widely expressed in the central nervous system that regulates thyroid function and maintains physiologic homeostasis. Following injection in rodents, TRH has multiple effects including increased blood pressure and breathing. We tested the hypothesis that TRH and its long-acting analog, taltirelin, will reverse morphine-induced respiratory depression in anesthetized rats following intravenous or intratracheal (IT) administration. TRH (1 mg/kg plus 5 mg/kg/h, i.v.) and talitrelin (1 mg/kg, i.v.), when administered to rats pretreated with morphine (5 mg/kg, i.v.), increased ventilation from 50% ± 6% to 131% ± 7% and 45% ± 6% to 168% ± 13%, respectively (percent baseline; n = 4 ± S.E.M.), primarily through increased breathing rates (from 76% ± 9% to 260% ± 14% and 66% ± 8% to 318% ± 37%, respectively). By arterial blood gas analysis, morphine caused a hypoxemic respiratory acidosis with decreased oxygen and increased carbon dioxide pressures. TRH decreased morphine effects on arterial carbon dioxide pressure, but failed to impact oxygenation; taltirelin reversed morphine effects on both arterial carbon dioxide and oxygen. Both TRH and talirelin increased mean arterial blood pressure in morphine-treated rats (from 68% ± 5% to 126% ± 12% and 64% ± 7% to 116% ± 8%, respectively; n = 3 to 4). TRH, when initiated prior to morphine (15 mg/kg, i.v.), prevented morphine-induced changes in ventilation; and TRH (2 mg/kg, i.v.) rescued all four rats treated with a lethal dose of morphine (5 mg/kg/min, until apnea). Similar to intravenous administration, both TRH (5 mg/kg, IT) and taltirelin (2 mg/kg, IT) reversed morphine effects on ventilation. TRH or taltirelin may have clinical utility as an intravenous or inhaled agent to antagonize opioid-induced cardiorespiratory depression.
Collapse
Affiliation(s)
- James D Boghosian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| |
Collapse
|
5
|
Effect of L-pGlu-(1-benzyl)-l-His-l-Pro-NH 2 against in-vitro and in-vivo models of cerebral ischemia and associated neurological disorders. Biomed Pharmacother 2016; 84:1256-1265. [PMID: 27810782 DOI: 10.1016/j.biopha.2016.10.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/28/2023] Open
Abstract
Central nervous system plays a vital role in regulation of most of biological functions which are abnormally affected in various disorders including cerebral ischemia, Alzheimer's and Parkinson's (AD and PD) worldwide. Cerebral stroke is an extremely fatal and one of the least comprehensible neurological disorders due to limited availability of prospective clinical approaches and therapeutics. Since, some endogenous peptides like thyrotropin-releasing hormone have shown substantial neuroprotective potential, hence present study evaluates the newer thyrotropin-releasing hormone (TRH) analogue L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 for its neuroprotective effects against oxygen glucose deprivation (OGD), glutamate and H2O2 induced injury in pheochromocytoma cell lines (PC-12 cells) and in-vivo ischemic injury in mice. Additionally, the treatment was further analyzed with respect to models of AD and PD in mice. Cerebral ischemia was induced by clamping both bilateral common carotid arteries for ten minutes. Treatment was administered to the mice five minute after restoration of blood supply to brain. Consequential changes in neurobehavioural, biochemical and histological parameters were assessed after a week. L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 showed significant reduction in glutamate, H2O2 and OGD -induced cell death in concentration and time dependent manner. Moreover, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 resulted in a substantial reduction in CA1 (Cornus Ammonis 1) hippocampal neuronal cell death, inflammatory cytokines, TNF-α, IL-6 and oxidative stress in hippocampus. In addition, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 was found to be protective in two acute models of AD and PD as well these findings demonstrate the neuroprotective potential of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 in cerebral ischemia and other diseases, which may be mediated through reduction of excitotoxicity, oxidative stress and inflammation.
Collapse
|
6
|
TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology 2015; 97:346-56. [DOI: 10.1016/j.neuropharm.2015.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
|
7
|
Alvarez‐Salas E, Alcántara‐Alonso V, Matamoros‐Trejo G, Vargas MA, Morales‐Mulia M, Gortari P. Mediobasal hypothalamic and adenohypophyseal TRH‐degrading enzyme (PPII) is down‐regulated by zinc deficiency. Int J Dev Neurosci 2015; 46:115-24. [DOI: 10.1016/j.ijdevneu.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Elena Alvarez‐Salas
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Viridiana Alcántara‐Alonso
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Gilberto Matamoros‐Trejo
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Miguel Angel Vargas
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMor 62271Mexico
| | - Marcela Morales‐Mulia
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Patricia Gortari
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| |
Collapse
|
8
|
Meena CL, Ingole S, Rajpoot S, Thakur A, Nandeker PP, Sangamwar AT, Sharma SS, Jain R. Discovery of a low affinity thyrotropin-releasing hormone (TRH)-like peptide that exhibits potent inhibition of scopolamine-induced memory impairment in mice. RSC Adv 2015; 5:56872-56884. [PMID: 26191403 PMCID: PMC4501038 DOI: 10.1039/c5ra06935a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TRH-like peptides were synthesized in which the critical N-terminus residue L-pGlu was replaced with various heteroaromatic rings, and the central residue histidine with 1-alkyl-L-histidines. All synthesized TRH-like peptides were evaluated in vitro as agonists in HEK mTRH-R1 and HEK mTRH-R2 cell lines, an expressing receptor binding assay (IC50), and cell signaling assay (EC50). The analeptic potential of the synthesized peptides was evaluated in vivo by using the antagonism of a pentobarbital-induced sleeping time. The peptides 6a, 6c and 6e were found to activate TRH-R2 with potencies (EC50) of 0.002 μM, 0.28 μM and 0.049 μM, respectively. In contrast, for signaling activation of TRH-R1, the same peptides required higher concentration of 0.414 μM, 50 μM and 19.1 μM, respectively in the FLIPR assay. The results showed that these peptides were 207, 178 and 389-fold selective towards TRH-R2 receptor subtype. In the antagonism of a pentobarbital-induced sleeping time assay, peptide 6c showed a 58.5% reduction in sleeping time. The peptide 6c exhibited high stability in rat blood plasma, a superior effect on the scopolamine-induced cognition impairment mice model, safe effects on the cardiovascular system, and general behavior using a functional observation battery (FOB).
Collapse
Affiliation(s)
- Chhuttan L. Meena
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Shubdha Ingole
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Satyendra Rajpoot
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Avinash Thakur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Prajwal P. Nandeker
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Abhay T. Sangamwar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| |
Collapse
|
9
|
First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology 2014; 89:193-203. [PMID: 25281210 DOI: 10.1016/j.neuropharm.2014.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Abstract
JAK4D, a first-in-class thyrotropin-releasing hormone (TRH)-based compound, is a prospective therapeutic candidate offering a multifaceted approach to treating neurodegeneration and other CNS conditions. The purpose of these studies was to determine the ability of JAK4D to bind to TRH receptors in human brain and to evaluate its neuropharmacological effects in neurodegenerative animal models. Additionally, JAK4D brain permeation was examined in mouse, and initial toxicology was assessed in vivo and in vitro. We report that JAK4D bound selectively with nanomolar affinity to native TRH receptors in human hippocampal tissue and showed for the first time that these receptors are pharmacologically distinct from TRH receptors in human pituitary, thus revealing a new TRH receptor subtype which represents a promising neurotherapeutic target in human brain. Systemic administration of JAK4D elicited statistically significant and clinically-relevant neuroprotective effects in three established neurodegenerative animal models: JAK4D reduced cognitive deficits when administered post-insult in a kainate (KA)-induced rat model of neurodegeneration; it protected against free radical release and neuronal damage evoked by intrastriatal microdialysis of KA in rat; and it reduced motor decline, weight loss, and lumbar spinal cord neuronal loss in G93A-SOD1 transgenic Amyotrophic Lateral Sclerosis mice. Ability to cross the blood-brain barrier and a clean initial toxicology profile were also shown. In light of these findings, JAK4D is an important tool for investigating the hitherto-unidentified central TRH receptor subtype reported herein and an attractive therapeutic candidate for neurodegenerative disorders.
Collapse
|
10
|
Lehrer S. Inhaled thyrotropin-releasing hormone for treatment of neuropsychiatric disorders. J Clin Psychopharmacol 2014; 34:288-90. [PMID: 24135844 DOI: 10.1097/jcp.0b013e3182a96e2b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Prokai-Tatrai K, Nguyen V, Szarka S, Konya K, Prokai L. Design and exploratory neuropharmacological evaluation of novel thyrotropin-releasing hormone analogs and their brain-targeting bioprecursor prodrugs. Pharmaceutics 2013; 5:318-28. [PMID: 24058724 PMCID: PMC3777413 DOI: 10.3390/pharmaceutics5020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efforts to take advantage of the beneficial activities of thyrotropin-releasing hormone (TRH) in the brain are hampered by its poor metabolic stability and lack of adequate central nervous system bioavailability. We report here novel and metabolically stable analogs that we derived from TRH by replacing its amino-terminal pyroglutamyl (pGlu) residue with pyridinium-containing moieties. Exploratory studies have shown that the resultant compounds were successfully delivered into the mouse brain after systemic administration via their bioprecursor prodrugs, where they manifested neuropharmacological responses characteristic of the endogenous parent peptide. On the other hand, the loss of potency compared to TRH in a model testing antidepressant-like effect with a simultaneous preservation of analeptic activity has been observed, when pGlu was replaced with trigonelloyl residue. This finding may indicate an opportunity for designing TRH analogs with potential selectivity towards cholinergic effects.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA; E-Mails: (V.N.); (S.S.); (L.P.)
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-817-735-0617; Fax: +1-817-735-2118
| | - Vien Nguyen
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA; E-Mails: (V.N.); (S.S.); (L.P.)
| | - Szabolcs Szarka
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA; E-Mails: (V.N.); (S.S.); (L.P.)
| | - Krisztina Konya
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA; E-Mails: (V.N.); (S.S.); (L.P.)
| | - Laszlo Prokai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA; E-Mails: (V.N.); (S.S.); (L.P.)
| |
Collapse
|
12
|
Lazcano I, Uribe RM, Martínez-Chávez E, Vargas MA, Matziari M, Joseph-Bravo P, Charli JL. Pyroglutamyl peptidase II inhibition enhances the analeptic effect of thyrotropin-releasing hormone in the rat medial septum. J Pharmacol Exp Ther 2012; 342:222-31. [PMID: 22532627 DOI: 10.1124/jpet.112.192278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.
Collapse
Affiliation(s)
- Ivan Lazcano
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Chamilpa, Cuernavaca, Mor. 62210, México
| | | | | | | | | | | | | |
Collapse
|
13
|
Khomane KS, Meena CL, Jain R, Bansal AK. Novel thyrotropin-releasing hormone analogs: a patent review. Expert Opin Ther Pat 2012; 21:1673-91. [PMID: 22017410 DOI: 10.1517/13543776.2011.623127] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The potential therapeutic applications of thyrotropin-releasing hormone (TRH) have attracted attention, based on its broad-spectrum neuropharmacological action rather than its endocrine properties. These central nervous system (CNS)-mediated effects provide the rationale for use of TRH and its analogs in the treatment of brain and spinal injury, and CNS disorders like schizophrenia, Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis, Parkinson's disease, depression, shock and ischemia. AREAS COVERED This review summarizes the patent literature and advances in the discovery and development of novel TRH analogs over the past 20 years. It provides a comprehensive overview of the development of new TRH analogs, giving emphasis to their pharmaceutical profile. EXPERT OPINION The use of TRH in the treatment of various CNS disorders has been proven clinically. However, TRH itself is a poor drug candidate due to its short plasma half-life (5 min), poor biopharmaceutical properties (low intestinal and CNS permeability) and endocrine side effect. Nevertheless, researchers have come up with metabolically stable, more potent and selective TRH analogs and prodrugs. Taltirelin, one of the TRH analogs, has been approved under the trade name of Ceredist(®) in Japan for the treatment of spinocerebellar degeneration. Several other TRH analogs are in various stages of preclinical or clinical development.
Collapse
Affiliation(s)
- Kailas S Khomane
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Pharmaceutics, Mohali, Punjab, India
| | | | | | | |
Collapse
|
14
|
Rajput SK, Siddiqui MA, Kumar V, Meena CL, Pant AB, Jain R, Sharma SS. Protective effects of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin releasing hormone analog in in vitro and in vivo models of cerebral ischemia. Peptides 2011; 32:1225-31. [PMID: 21515320 DOI: 10.1016/j.peptides.2011.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022]
Abstract
In the present study, the newly synthesized TRH analog (L-pGlu-(2-propyl)-L-His-l-ProNH(2); NP-647) was evaluated for its effects in in vitro (oxygen glucose deprivation (OGD)-, glutamate- and H(2)O(2)-induced injury in PC-12 cells) and in vivo (transient global ischemia) models of cerebral ischemic injury. PC-12 cells were subjected to oxygen and glucose deprivation for 6h. Exposure of NP-647 was given before and during OGD. In glutamate and H(2)O(2) induced injury, exposure of NP-647 was given 1, 6 and 24h prior to exposure of glutamate and H(2)O(2) exposure. NP-647, per se found to be non-toxic in 1-100μM concentrations. NP-647 showed protection against OGD at the 1 and 10μM. The concentration-dependent protection was observed in H(2)O(2)- and glutamate-induced cellular injury. In in vivo studies, NP-647 treatment showed protection of hippocampal (CA1) neuronal damage in transient global ischemia in mice and subsequent improvement in memory retention was observed using passive avoidance retention test. Moreover, administration of NP-647 resulted in decrease in inflammatory cytokines TNF-α and IL-6 as well as lipid peroxidation. These results suggest potential of NP-647 in the treatment of cerebral ischemia and its neuroprotective effect may be attributed to reduction of excitotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Satyendra Kumar Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, (Mohali), Punjab 160 062, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
TRH-like peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) with neutral or acidic amino acid, like glutamic acid, phenylalanine, glutamine, tyrosine, leucin, valin, aspartic acid and asparagine. The presence of extrahypothalamic TRH-like peptides was reported in peripheral tissues including gastrointestinal tract, placenta, neural tissues, male reproductive system and certain endocrine tissues. Work deals with the biological function of TRH-like peptides in different parts of organisms where various mechanisms may serve for realisation of biological function of TRH-like peptides as negative feedback to the pituitary exerted by the TRH-like peptides, the role of pEEPam such as fertilization-promoting peptide, the mechanism influencing the proliferative ability of prostatic tissues, the neuroprotective and antidepressant function of TRH-like peptides in brain and the regulation of thyroid status by TRH-like peptides.
Collapse
Affiliation(s)
- R Bílek
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
16
|
Abstract
SummaryThe physiological role of thyreoliberin (TRH) is the preservation of homeostasis within four systems (i) the hypothalamic-hypophsysiotropic neuroendocrine system, (ii) the brain stem/midbrain/spinal cord system, (iii) the limbic/cortical system, and (iv) the chronobiological system. Thus TRH, via various cellular mechanisms, regulates a wide range of biological processes (arousal, sleep, learning, locomotive activity, mood) and possesses the potential for unique and widespread applications for treatment of human illnesses. Since the therapeutic potential of TRH is limited by its pharmacological profile (enzymatic instability, short half-life, undesirable effects), several synthetic analogues of TRH were constructed and studied in mono- or adjunct therapy of central nervous system (CNS) disturbances. The present article summarizes the current state of understanding of the physiological role of TRH and describes its putative role in clinical indications in CNS maladies with a focus on the action of TRH analogues.
Collapse
|
17
|
Pekary AE, Stevens SA, Blood JD, Sattin A. Rapid modulation of TRH and TRH-like peptide release in rat brain, pancreas, and testis by a GSK-3beta inhibitor. Peptides 2010; 31:1083-93. [PMID: 20338209 DOI: 10.1016/j.peptides.2010.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023]
Abstract
Antidepressants have been shown to be neuroprotective and able to reverse damage to glia and neurons. Thyrotropin-releasing hormone (TRH) is an endogenous antidepressant-like neuropeptide that reduces the expression of glycogen synthase kinase-3beta (GSK-3beta), an enzyme that hyperphosphorylates tau and is implicated in bipolar disorder, diabetes and Alzheimer's disease. In order to understand the potential role of GSK-3beta in the modulation of depression by TRH and TRH-like peptides and the therapeutic potential of GSK-3beta inhibitors for neuropsychiatric and metabolic diseases, young adult male Sprague-Dawley (SD) rats were (a) injected ip with 1.8mg/kg of GSK-3beta inhibitor VIII (GSKI) and sacrificed 0, 2, 4, 6, and 8h later or (b) injected with 0, 0.018, 0.18 or 1.8mg/kg GSKI and bled 4h later. Levels of TRH and TRH-like peptides were measured in various brain regions involved in mood regulation, pancreas and reproductive tissues. Large, 3-15-fold, increases of TRH and TRH-like peptide levels in cerebellum, for example, as well as other brain regions were noted at 2 and 4h. In contrast, a nearly complete loss of TRH and TRH-like peptides from testis within 2h and pancreas by 4h following GSKI injection was observed. We have previously reported similar acute effects of corticosterone in brain and peripheral tissues. Incubation of a decapsulated rat testis with either GSKI or corticosterone accelerated release of TRH, and TRH-like peptides. Glucocorticoids, via inhibition of GSK3-beta activity, may thus be involved in the inhibition of TRH and TRH-like peptide release in brain, thereby contributing to the depressogenic effect of this class of steroids. Corticosterone-induced acceleration of release of these peptides from testis may contribute to the decline in reproductive function and redirection of energy needed during life-threatening emergencies. These contrasting effects of glucocorticoid on peptide release appear to be mediated by GSK-3beta.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| | | | | | | |
Collapse
|
18
|
Nguyen V, Zharikova AD, Prokai-Tatrai K, Prokai L. [Glu2]TRH dose-dependently attenuates TRH-evoked analeptic effect in mice. Brain Res Bull 2010; 82:83-6. [PMID: 20188155 PMCID: PMC2867048 DOI: 10.1016/j.brainresbull.2010.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 02/05/2023]
Abstract
Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) and the structurally related [Glu(2)]TRH (pGlu-Glu-Pro-NH(2)) are endogenous peptides with a plethora of actions in the central nervous system. Many centrally-mediated effects of TRH are shared with those of [Glu(2)]TRH, although the involvement of different receptors is presumed. The analeptic action is the best-known TRH-related central nervous system effect. While [Glu(2)]TRH itself is analeptic, its co-administration with TRH into mice produced a dose-dependent attenuation of TRH-evoked reversal of barbiturate-induced sleeping time. This finding is in agreement with our previous observations that [Glu(2)]TRH significantly attenuates TRH-induced hippocampal extracellular acetylcholine release. Taken together, [Glu(2)]TRH may be considered as a negative modulator for the cholinergic effect of TRH in the mouse brain.
Collapse
Affiliation(s)
- Vien Nguyen
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA, Tel.: 1-817-735-0629
| | - Alevtina D. Zharikova
- Departments of Pharmacodynamics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA, Tel.: 1-352-392-9854
| | - Katalin Prokai-Tatrai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA, Tel.: 1-817-735-0629
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA, Tel.: 1-817-735-0617
| | - Laszlo Prokai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA, Tel.: 1-817-735-0629
| |
Collapse
|
19
|
Neuropharmacological profile of l-pGlu-(1-benzyl)-l-His-l-ProNH2, a newer thyrotropin-releasing hormone analog: Effects on seizure models, sodium current, cerebral blood flow and behavioral parameters. Epilepsy Res 2009; 87:223-33. [DOI: 10.1016/j.eplepsyres.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
|
20
|
Rajput SK, Krishnamoorthy S, Pawar C, Kaur N, Monga V, Meena CL, Jain R, Sharma SS. Antiepileptic potential and behavioral profile of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin-releasing hormone analog. Epilepsy Behav 2009; 14:48-53. [PMID: 18952198 DOI: 10.1016/j.yebeh.2008.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/25/2008] [Accepted: 10/05/2008] [Indexed: 11/27/2022]
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs have a number of neurobiological functions and therapeutic uses in disorders of the central nervous system. In this study, the newly synthesized TRH analogs were evaluated for central nervous system activity in pentobarbital-induced sleeping in mice. The most potent TRH analog (L-pGlu-(2-propyl)-L-His-L-ProNH(2) coded as NP-647) was evaluated for its antiepileptic potential in various seizure models in mice in comparison with TRH. Intravenous pretreatment with NP-647 (10 and 20 micromol/kg body wt) significantly delayed the onset and reduced the frequency of convulsions in the pentylenetetrazole model, but not in the maximum electroshock seizure model. Also, it was found to be protective against picrotoxin- and kainic acid-induced seizures. However, NP-647 did not significantly affect theophylline-induced seizures. Further study of the effect of NP-647 on locomotor activity and a functional observational battery revealed that it did not significantly exhibit any undesirable effects as compared with vehicle and TRH. NP-647 did not significantly affect cerebral blood flow, whereas the native peptide TRH markedly increased cerebral blood flow. Furthermore, NP-647 exerted antiepileptic activity without significantly altering plasma thyroid-stimulating hormone levels and mean arterial blood pressure. This suggests that NP-647 is more selective for central nervous system activity and devoid of hormonal and cerebrovascular system effects. In contrast, TRH exhibited cardiac and endocrine effects as marked by significant elevation in mean arterial blood pressure and plasma thyroid-stimulating hormone levels. This study demonstrates that NP-647 has potential antiepileptic activity devoid of undesirable effects and, thus, can be exploited for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Satyendra Kumar Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cruz R, Vargas MA, Uribe RM, Pascual I, Lazcano I, Yiotakis A, Matziari M, Joseph-Bravo P, Charli JL. Anterior pituitary pyroglutamyl peptidase II activity controls TRH-induced prolactin release. Peptides 2008; 29:1953-64. [PMID: 18703099 DOI: 10.1016/j.peptides.2008.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.
Collapse
Affiliation(s)
- Raymundo Cruz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Cuernavaca, Mor. 62271, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matziari M, Bauer K, Dive V, Yiotakis A. Synthesis of the Phosphinic Analogue of Thyrotropin Releasing Hormone. J Org Chem 2008; 73:8591-3. [DOI: 10.1021/jo8014215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magdalini Matziari
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Karl Bauer
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Vincent Dive
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Athanasios Yiotakis
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| |
Collapse
|
23
|
Pekary AE, Sattin A, Blood J, Furst S. TRH and TRH-like peptide expression in rat following episodic or continuous corticosterone. Psychoneuroendocrinology 2008; 33:1183-97. [PMID: 18657370 DOI: 10.1016/j.psyneuen.2008.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/04/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022]
Abstract
Sustained abnormalities of glucocorticoid levels have been associated with neuropsychiatric illnesses such as major depression, posttraumatic stress disorder (PTSD), panic disorder, and obsessive compulsive disorder. The pathophysiological effects of glucocorticoids may depend not only on the amount of glucocorticoid exposure but also on its temporal pattern, since it is well established that hormone receptors are down-regulated by continuously elevated cognate hormones. We have previously reported that TRH (pGlu-His-Pro-NH2) and TRH-like peptides (pGlu-X-Pro-NH2) have endogenous antidepressant-like properties and mediate or modulate the acute effects of a single i.p. injection of high dose corticosterone (CORT) in rats. For these reasons, two accepted methods for inducing chronic hyperglucocorticoidemia have been compared for their effects on brain and peripheral tissue levels of TRH and TRH-like peptides in male, 250 g, Sprague-Dawley rats: (1) the dosing effect of CORT hemisuccinate in drinking water, and (2) s.c. slow-release pellets. Overall, there were 93% more significant changes in TRH and TRH-like peptide levels in brain and 111% more in peripheral tissues of those rats ingesting various doses of CORT in drinking water compared to those with 1-3 s.c. pellets. We conclude that providing rats with CORT in drinking water is a convenient model for the pathophysiological effects of hyperglucocorticoidemia in rodents.
Collapse
|
24
|
|
25
|
Hogan N, O'Boyle KM, Hinkle PM, Kelly JA. A novel TRH analog, Glp-Asn-Pro-D-Tyr-D-TrpNH2, binds to [3H][3-Me-His2]TRH-labelled sites in rat hippocampus and cortex but not pituitary or heterologous cells expressing TRHR1 or TRHR2. Neurosci Lett 2007; 431:26-30. [PMID: 18069127 DOI: 10.1016/j.neulet.2007.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/01/2007] [Accepted: 11/07/2007] [Indexed: 11/28/2022]
Abstract
Glp-Asn-Pro-D-Tyr-D-TrpNH(2) is a novel synthetic peptide that mimics and amplifies central actions of thyrotropin-releasing hormone (TRH) in rat without releasing TSH. The aim of this study was to compare the binding properties of this pentapeptide and its all-L counterpart (Glp-Asn-Pro-Tyr-TrpNH(2)) to TRH receptors in native rat brain tissue and cells expressing the two TRH receptor subtypes identified in rat to date, namely TRHR1 and TRHR2. Radioligand binding studies were carried out using [(3)H][3-Me-His(2)]TRH to label receptors in hippocampal, cortical and pituitary tissue, GH4 pituitary cells, as well as CHO cells expressing TRHR1 and/or TRHR2. In situ hybridization studies suggest that cortex expresses primarily TRHR2 mRNA, hippocampus primarily TRHR1 mRNA and pituitary exclusively TRHR1 mRNA. Competition experiments showed [3-Me-His(2)]TRH potently displaced [(3)H][3-Me-His(2)]TRH binding from all tissues/cells investigated. Glp-Asn-Pro-D-Tyr-D-TrpNH(2) in concentrations up to 10(-5)M did not displace [(3)H][3-Me-His(2)]TRH binding to membranes derived from GH4 cells or CHO-TRHR1 cells, consistent with its lack of binding to pituitary membranes and TSH-releasing activity. Similar results were obtained for the corresponding all-L peptide. In contrast, both pentapeptides displaced binding from rat hippocampal membranes (pIC(50) Glp-Asn-Pro-D-Tyr-D-TrpNH(2): 7.7+/-0.2; pIC(50) Glp-Asn-Pro-Tyr-TrpNH(2): 6.6+/-0.2), analogous to cortical membranes (pIC(50) Glp-Asn-Pro-D-Tyr-D-TrpNH(2): 7.8+/-0.2; pIC(50) Glp-Asn-Pro-Tyr-TrpNH(2): 6.6+/-0.2). Neither peptide, however, displaced [(3)H][3-Me-His(2)]TRH binding to CHO-TRHR2. Thus, this study reveals for the first time significant differences in the binding properties of native and heterologously expressed TRH receptors. Also, the results raise the possibility that Glp-Asn-Pro-D-Tyr-D-TrpNH(2) is not displacing [(3)H][3-Me-His(2)]TRH from a known TRH receptor in rat cortex, but rather a hitherto unidentified TRH receptor.
Collapse
Affiliation(s)
- Nicola Hogan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|