1
|
Xia M, Xia Y, Sun Y, Wang J, Lu J, Wang X, Xia D, Xu X, Sun B. Gut microbiome is associated with personality traits of free-ranging Tibetan macaques ( Macaca thibetana). Front Microbiol 2024; 15:1381372. [PMID: 38711972 PMCID: PMC11070476 DOI: 10.3389/fmicb.2024.1381372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Recent studies have emphasized that there is a strong link between the gut microbiome and the brain that affects social behavior and personality in animals. However, the interface between personality and the gut microbiome in wild primates remains poorly understood. Here, we used high-throughput sequencing and ethological methods in primate behavioral ecology to investigate the relationship between gut microbiome and personality in Tibetan macaques (Macaca thibetana). The behavioral assessment results indicated three personality dimensions including socialization, shyness, and anxiety. There was significant variation in alpha diversity only for shyness, with a significantly lower alpha diversity indices (including Shannon, Chao1, and PD) for bold individuals than for shy individuals. Using regression models to control for possible confounding factors, we found that the relative abundance of three genera, Akkermansia, Dialister, and Asteroleplasma, was significantly and positively correlated with the sociability scores in the macaques. In addition, Oscillospiraceae exhibited a positive correlation with scores for Shy Dimension. Furthermore, we found that the predicted functional genes for propionate and pyruvate, porphyrin and chlorophyll metabolic pathways related to animal behavior, were significant enriched in shyness group. We propose that the gut microbiome may play an important role in the formation of personality of Tibetan macaques.
Collapse
Affiliation(s)
- Mengyi Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yingna Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yu Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jingjing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jiakai Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Dongpo Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaojuan Xu
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
2
|
Tang Z, Li Y, Jiang Y, Cheng J, Xu S, Zhang J. Cellular metabolomics reveals glutamate and pyrimidine metabolism pathway alterations induced by BDE-47 in human neuroblastoma SK-N-SH cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109427. [PMID: 31302334 DOI: 10.1016/j.ecoenv.2019.109427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as potential neurotoxicants in environment may possess hazards to human health. Previous studies have reported that PBDEs exposure could induce oxidative stress and disturb mitochondrial functions in mammalian cells. However, the toxicological mechanism remains to be clarified. In this work, the neurotoxic effect and underlying mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by using human neuroblastoma SK-N-SH cells as an effective model. A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach combined with cell viability assay was applied to elucidate the metabolic perturbations and relevant toxicological pathways upon BDE-47 exposure. Our results shown that the SK-N-SH cell viability decreased in a dose-dependent manner after exposure to BDE-47 at 24 h within the concentration range of 5-250 μM, and an IC50 value of 88.8 μM was obtained. Based on the dose-response curve and cell morphological observation, the 5 and 10 μM BDE-47 doses (equal to IC5 and IC10, respectively) were used for metabolomics study to capture the sensitive metabolic response following BDE-47 exposure. After BDE-47 treatment, nine metabolites were identified as potential biomarkers, and the most disturbed metabolic pathways were mainly involved in alanine, aspartate and glutamate metabolism, glutathione metabolism, tyrosine and phenylalanine metabolism, and pyrimidine metabolism, which imply that metabolic changes related to neurotransmitters, oxidative stress, and nucleotide-mediated signal transduction systems were the sensitive pathways mostly influenced. Our findings reported here may provide potential neurotoxic effect biomarkers and prompt deep understanding of the molecular and metabolic mechanisms triggered by BDE-47 exposure.
Collapse
Affiliation(s)
- Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunxiu Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Cholanians AB, Phan AV, Lau SS, Monks TJ. Concurrent Inhibition of Vesicular Monoamine Transporter 2 Does Not Protect Against 3,4-Methylenedioxymethamphetamine (Ecstasy) Induced Neurotoxicity. Toxicol Sci 2019; 170:157-166. [PMID: 30923810 DOI: 10.1093/toxsci/kfz085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3, 4-Methylenedioxymethamphetamine (MDMA) is a hallucinogenic amphetamine derivative. The acute effects of MDMA are hyperthermia, hyperactivity, and behavioral changes, followed by long-term serotonergic neurotoxicity in rats and primates. However, the underlying mechanisms of MDMA neurotoxicity remain elusive. We reported that pretreatment of rats with Ro 4-1284, a reversible inhibitor of the vesicular monoamine transporter 2 (VMAT2), reduced MDMA-induced hyperactivity in rats, abolished the hyperthermic response, and the long-term neurotoxicity. Current studies focused on the effects of co- and/or postinhibition of VMAT2 on the acute and chronic effects of MDMA and on the dose-response relationship between MDMA-induced elevations in body temperature and subsequent reductions in indolamine concentrations. Sprague Dawley rats were treated with MDMA (20, 25, or 27.5 mg/kg sc), and either co- and/or posttreatment with the VMAT2 inhibitor (10 mg/kg ip). Rats simultaneously treated with Ro 4-1284 and MDMA exhibited a more rapid increase in body temperature compared to just MDMA. However, the duration of the elevated body temperature was significantly shortened (approximately 3 h vs approximately 8 h, respectively). A similar body temperature response was observed in rats posttreated (7 h after MDMA) with Ro 4-1284. Despite decreases in the area under the curve (Δtemp X time) of body temperature caused by Ro 4-1284, there were no significant differences in the degree of indolamine depletion between any of the MDMA-treated groups. The results suggest that the neuroprotective effects of VMAT2 inhibition is likely due to the indirect monoamine depleting effects of the Ro 4-1284 pretreatment, rather than by the direct inhibition of VMAT2 function.
Collapse
Affiliation(s)
- Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Andy V Phan
- Department of Radiation Oncology, School of Medicine, University of Colorado Denver, Denver, Colorado 80045
| | - Serrine S Lau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
4
|
Feio-Azevedo R, Costa VM, Barbosa DJ, Teixeira-Gomes A, Pita I, Gomes S, Pereira FC, Duarte-Araújo M, Duarte JA, Marques F, Fernandes E, Bastos ML, Carvalho F, Capela JP. Aged rats are more vulnerable than adolescents to “ecstasy”-induced toxicity. Arch Toxicol 2018; 92:2275-2295. [DOI: 10.1007/s00204-018-2226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
|
5
|
Shi H, Hou C, Gu L, Xing H, Zhang M, Zhao L, Bi K, Chen X. Investigation of the protective effect of Paeonia lactiflora on Semen Strychni-induced neurotoxicity based on monitoring nine potential neurotoxicity biomarkers in rat serum and brain tissue. Metab Brain Dis 2017; 32:133-145. [PMID: 27521025 DOI: 10.1007/s11011-016-9894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Semen Strychni has been widely used as a traditional Chinese herb medicine, but its clinical use was limited for its potential neurotoxicity and nephrotoxicity. This study aimed to investigate S. Strychni-induced neurotoxicity and the neuro-protective effect of Paeonia lactiflora based on monitoring nine potential neurotoxicity biomarkers in rat serum and brain tissue. A sensitive liquid chromatography-tandem mass spectrometry method was developed and validated to monitor serotonin, tryptophan, dopamine, tyrosine and glutamate in serum and five brain regions (prefrontal cortex, hippocampus, striatum, cerebellum and hypothalamus). Analytes were separated on a CAPCELL CORE PC column (150 mm × 2 mm, 2.7 μm) with a gradient program of acetonitrile-water (0.2 % formic acid) and a total runtime of 7.5 min. In addition, enzyme-linked immunosorbent assay was conducted to determine four kinds of protein (tryptophan hydroxylase, tyrosine hydroxylase, endogenous brain-derived neurotrophic factor and nerve growth factor). Results demonstrated that the administration of S. Strychni could cause certain endogenous substances disorder. These analytes were found significantly changed (p < 0.05) in serum (except glutamate) and in certain tested brain regions in S. Strychni extract group. Pretreatment of P. lactiflora could significantly reverse the S. Strychni-induced neurotoxicity and normalize the levels of such endogenous substances. The study could be further used in predicting and monitoring neurotoxicity caused by other reasons, and it was expected to be useful for improving clinical use of S. Strychni through pretreatment with P. lactiflora.
Collapse
Affiliation(s)
- Huiyan Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chenzhi Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meiyu Zhang
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Barros-Miñones L, Orejana L, Goñi-Allo B, Suquía V, Hervías I, Aguirre N, Puerta E. Modulation of the ASK1-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate. Br J Pharmacol 2015. [PMID: 23186227 DOI: 10.1111/bph.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE PD5 inhibitors have recently been reported to exert beneficial effects against ischaemia-reperfusion injury in several organs. However, there are few studies regarding their neuroprotective effects in brain ischaemia. The present study was designed to assess the effects of sildenafil against chemical hypoxia induced by malonate. Intrastriatal injection of malonate produces energy depletion and striatal lesions similar to that seen in cerebral ischaemia through mechanisms that involve generation of reactive oxygen species (ROS). EXPERIMENTAL APPROACH Volume lesion was analysed by cytochrome oxidase histochemistry. Generation of reactive species was determined by in situ visualization of superoxide production and nitrotyrosine measurement. Protein levels were determined by Western blot after subcellular fractionation. KEY RESULTS Sildenafil, given 30 min before malonate, significantly decreased the lesion volume in the rat. This protective effect cannot be attributed to any effect on ROS production but to the inhibition of downstream pathways. Thus, malonate induced the activation of apoptosis signal-regulating kinase-1 (ASK1) and two MAPK kinases, MKK3/6 and MKK7, which lead to an increased phosphorylation of JNK and p38 MAPK, effects that were blocked by sildenafil. Selective inhibitors of p38 and JNK (SB203580 or SP600125, respectively) were used in combination with malonate in order to evaluate the plausible implication of these pathways in the protection afforded by sildenafil. While inhibition of p38 provided a significant protection against malonate-induced neurotoxicity, inhibition of JNK did not. CONCLUSIONS AND IMPLICATIONS Sildenafil protects against the chemical hypoxia induced by malonate through the regulation of the ASK1-MKK3/6-p38/MAPK signalling pathway.
Collapse
Affiliation(s)
- L Barros-Miñones
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Herndon JM, Cholanians AB, Lizarraga LE, Lau SS, Monks TJ. Catechol-o-methyltransferase and 3,4-({+/-})-methylenedioxymethamphetamine toxicity. Toxicol Sci 2014; 139:162-73. [PMID: 24591155 DOI: 10.1093/toxsci/kfu035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolism of 3,4-(±)-methylenedioxymethamphetamine (MDMA) is necessary to elicit its neurotoxic effects. Perturbations in phase I and phase II hepatic enzymes can alter the neurotoxic profile of systemically administered MDMA. In particular, catechol-O-methyltransferase (COMT) plays a critical role in determining the fraction of MDMA that is converted to potentially neurotoxic metabolites. Thus, cytochrome P450 mediated demethylenation of MDMA, or its N-demethylated metabolite, 3,4-(±)-methylenedioxyamphetamine, give rise to the catechols, N-methyl-α-methyldopamine and α-methyldopamine, respectively. Methylation of these catechols by COMT limits their oxidation and conjugation to glutathione, a process that ultimately gives rise to neurotoxic metabolites. We therefore determined the effects of modulating COMT, a critical enzyme involved in determining the fraction of MDMA that is converted to potentially neurotoxic metabolites, on MDMA-induced toxicity. Pharmacological inhibition of COMT in the rat potentiated MDMA-induced serotonin deficits and exacerbated the acute MDMA-induced hyperthermic response. Using a genetic mouse model of COMT deficiency, in which mice lack a functional COMT gene, such mice displayed greater reductions in dopamine concentrations relative to their wild-type (WT) counterparts. Neither WT nor COMT deficient mice were susceptible to MDMA-induced decreases in serotonin concentrations. Interestingly, mice devoid of COMT were far more susceptible to the acute hyperthermic effects of MDMA, exhibiting greater increases in body temperature that ultimately resulted in death. Our findings support the view that COMT plays a pivotal role in determining the toxic response to MDMA.
Collapse
Affiliation(s)
- Joseph M Herndon
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | | | | | | | | |
Collapse
|
8
|
Barros-Miñones L, Martín-de-Saavedra D, Perez-Alvarez S, Orejana L, Suquía V, Goñi-Allo B, Hervias I, López MG, Jordan J, Aguirre N, Puerta E. Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta Mol Basis Dis 2013; 1832:705-17. [PMID: 23415811 DOI: 10.1016/j.bbadis.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors have recently been reported to exert beneficial effects against ischemia-reperfusion injury in several organs but their neuroprotective effects in brain stroke models are scarce. The present study was undertaken to assess the effects of sildenafil against cell death caused by intrastriatal injection of malonate, an inhibitor of succinate dehydrogenase; which produces both energy depletion and lesions similar to those seen in cerebral ischemia. Our data demonstrate that sildenafil (1.5mg/kg by mouth (p.o.)), given 30min before malonate (1.5μmol/2μL), significantly decreased the lesion volume caused by this toxin. This protective effect can be probably related to the inhibition of excitotoxic pathways. Thus, malonate induced the activation of the calcium-dependent protease, calpain and the cyclin-dependent kinase 5, cdk5; which resulted in the hyperphosphorylation of tau and the cleavage of the protective transcription factor, myocyte enhancer factor 2, MEF2. All these effects were also significantly reduced by sildenafil pre-treatment, suggesting that sildenafil protects against malonate-induced cell death through the regulation of the calpain/p25/cdk5 signaling pathway. Similar findings were obtained using inhibitors of calpain or cdk5, further supporting our contention. Sildenafil also increased MEF2 phosphorylation and Bcl-2/Bax and Bcl-xL/Bax ratios, effects that might as well contribute to prevent cell death. Finally, sildenafil neuroprotection was extended not only to rat hippocampal slices subjected to oxygen and glucose deprivation when added at the time of reoxygenation, but also, in vivo when administered after malonate injection. Thus, the therapeutic window for sildenafil against malonate-induced hypoxia was set at 3h.
Collapse
|
9
|
Green AR, King MV, Shortall SE, Fone KCF. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans. Br J Pharmacol 2012; 166:1523-36. [PMID: 22188379 PMCID: PMC3419898 DOI: 10.1111/j.1476-5381.2011.01819.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 11/28/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity.
Collapse
Affiliation(s)
- A R Green
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, UK.
| | | | | | | |
Collapse
|
10
|
Puerta E, Barros-Miñones L, Hervias I, Gomez-Rodriguez V, Orejana L, Pizarro N, de la Torre R, Jordán J, Aguirre N. Long-lasting neuroprotective effect of sildenafil against 3,4-methylenedioxymethamphetamine- induced 5-hydroxytryptamine deficits in the rat brain. J Neurosci Res 2011; 90:518-28. [PMID: 21948520 DOI: 10.1002/jnr.22759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 07/03/2011] [Indexed: 11/11/2022]
Abstract
Sildenafil, given shortly before 3,4-methylenedioxymethamphetamine (MDMA), affords protection against 5-hydroxytryptamine (5-HT) depletions caused by this amphetamine derivative by an acute preconditioning-like mechanism. Because acute and delayed preconditionings do not share the same mechanisms, we investigated whether sildenafil would also protect the 5-HT system of the rat if given 24 hr before MDMA. For this, MDMA (3 × 5 mg/kg i.p., every 2 hr) was administered to rats previously treated with sildenafil (8 mg/kg p.o.). One week later, 5-HT content and 5-HT transporter density were measured in the striatum, frontal cortex, and hippocampus of the rats. Our findings indicate that sildenafil afforded significant protection against MDMA-induced 5-HT deficits without altering the acute hyperthermic response to MDMA or its metabolic disposition. Sildenafil promoted ERK1/2 activation an effect that was paralleled by an increase in MnSOD expression that persisted 24 hr later. In addition, superoxide and superoxide-derived oxidants, shown by ethidium fluorescence, increased after the last MDMA injection, an effect that was prevented by sildenafil pretreatment. Similarly, MDMA increased nitrotyrosine concentration in the hippocampus, an effect not shown by sildenafil-pretreated rats. In conclusion, our data demonstrate that sildenafil produces a significant, long-lasting neuroprotective effect against MDMA-induced 5-HT deficits. This effect is apparently mediated by an increased expression of MnSOD and a subsequent reduced susceptibility to the oxidative stress caused by MDMA.
Collapse
Affiliation(s)
- Elena Puerta
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Methylenedioxymethamphetamine (MDMA, 'Ecstasy'): Neurodegeneration versus Neuromodulation. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058674 DOI: 10.3390/ph4070992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA) along with a lower binding of specific ligands to the 5-HT transporters (SERT). Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.
Collapse
|
12
|
Escubedo E, Abad S, Torres I, Camarasa J, Pubill D. Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity. Neurochem Int 2011; 58:92-101. [DOI: 10.1016/j.neuint.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/31/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
13
|
Kivell B, Day D, Bosch P, Schenk S, Miller J. MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation. Neuroscience 2010; 168:82-95. [PMID: 20298763 DOI: 10.1016/j.neuroscience.2010.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) causes long-term serotonin depletion and reduced serotonin transporter (SERT) function in humans and in animal models. Using quantitative Western blotting and real-time PCR, we have shown that total SERT protein in the striatum and nucleus accumbens and mRNA levels in the dorsal raphe nucleus were not significantly changed following MDMA exposure in rats (4 x 2 h i.p. injections, 10 mg/kg each). In mouse neuroblastoma (N(2)A) cells transiently expressing green fluorescent protein-tagged human SERT (GFP-hSERT), we have shown redistribution of SERT from the cell surface to intracellular vesicles on exposure to MDMA using cell surface biotinylation, total internal reflection fluorescence microscopy (TIRFM) and live-cell confocal microscopy. To investigate the mechanism responsible for SERT redistribution, we used specific antibodies to phospho-p38-mitogen activated protein kinase (p38 MAPK), a known signalling pathway involved in SERT membrane expression. We found that p38 MAPK activation was not involved in the MDMA-induced redistribution of SERT from the cell-surface to the cell interior. A loss of SERT from the cell surface on acute exposure to MDMA may contribute to the decreased SERT function seen in rats exposed to MDMA.
Collapse
Affiliation(s)
- B Kivell
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Rodsiri R, Green AR, Marsden CA, Fone KCF. Effect of acute brain tyrosine depletion on MDMA-induced changes in brain 5-HT. J Psychopharmacol 2010; 24:267-74. [PMID: 19965941 DOI: 10.1177/0269881109348163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism by which 3,4-methylenedioxymethamphetamine (MDMA) produces 5-hydroxytryptamine (5-HT, serotonin) neurotoxicity has been suggested to involve an acute release of tyrosine and its non-enzymatic conversion to dopamine. To determine whether brain tyrosine availability is important in MDMA-induced neurotoxicity, brain tyrosine was acutely depleted with a tyrosine-free amino acid mixture (1 g/kg intraperitoneal; twice 1 h apart) which was administered prior to an injection of MDMA (12.5 mg/kg intraperitoneal). A small increase in both the hippocampal and striatal tyrosine concentration occurred in control rats treated with MDMA. The tyrosine-free amino acid mixture significantly decreased tyrosine levels by more than 50% in both brain regions 2 h after injection of either MDMA or saline. MDMA significantly reduced brain 5-HT content 2 h later, but this was of a similar magnitude in control and tyrosine-depleted groups. The long-term neurotoxic 5-HT loss in the hippocampus induced two weeks after MDMA administration was unaltered by the tyrosine-free amino acid mixture. Striatal dopamine content was unaffected by acute MDMA in all groups, while the tyrosine-free amino acid mixture given with MDMA significantly decreased striatal dopamine content 2 weeks later. The tyrosine-free amino acid mixture given alone had no affect on rectal body temperature but attenuated the duration of MDMA-induced hyperthermia. The results confirmed the ability of systemic MDMA to acutely increase brain tyrosine content, but also indicated that a marked acute reduction of brain tyrosine does not directly affect either immediate 5-HT release (as measured by tissue depletion) or long-term hippocampal serotonergic neurotoxicity produced by MDMA.
Collapse
Affiliation(s)
- R Rodsiri
- School of Biomedical Sciences, Institute of Neuroscience, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
15
|
Felim A, Herrera G, Neudörffer A, Blanco M, O’Connor JE, Largeron M. Synthesis and in Vitro Cytotoxicity Profile of the R-Enantiomer of 3,4-Dihydroxymethamphetamine (R-(−)-HHMA): Comparison with Related Catecholamines. Chem Res Toxicol 2009; 23:211-9. [DOI: 10.1021/tx9003374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Felim
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| | - Guadalupe Herrera
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| | - Anne Neudörffer
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| | - Manuel Blanco
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| | - José-Enrique O’Connor
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| | - Martine Largeron
- UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d’Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l’Observatoire, 75270 Paris cedex 06, France, and Laboratorio de Citómica, Unidad Mixta de Investigación CIPF-UVEG, Centro de Investigación Principe Felipe, Avenida Autopista del Saler 16, 46012 Valencia, Spain
| |
Collapse
|
16
|
Perfetti X, O'Mathúna B, Pizarro N, Cuyàs E, Khymenets O, Almeida B, Pellegrini M, Pichini S, Lau SS, Monks TJ, Farré M, Pascual JA, Joglar J, de la Torre R. Neurotoxic thioether adducts of 3,4-methylenedioxymethamphetamine identified in human urine after ecstasy ingestion. Drug Metab Dispos 2009; 37:1448-55. [PMID: 19349378 PMCID: PMC2698942 DOI: 10.1124/dmd.108.026393] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 12/28/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely misused synthetic amphetamine derivative and a serotonergic neurotoxicant in animal models and possibly humans. The underlying mechanism of neurotoxicity involves the formation of reactive oxygen species although their source remains unclear. It has been postulated that MDMA-induced neurotoxicity is mediated via the formation of bioreactive metabolites. In particular, the primary catechol metabolites, 3,4-dihydroxymethamphetamine (HHMA) and 3,4-dihydroxyamphetamine (HHA), subsequently cause the formation of glutathione and N-acetylcysteine conjugates, which retain the ability to redox cycle and are serotonergic neurotoxicants in rats. Although the presence of such metabolites has been recently demonstrated in rat brain microdialysate, their formation in humans has not been reported. The present study describes the detection of 5-(N-acetylcystein-S-yl)-3,4-dihydroxymethamphetamine (N-Ac-5-Cys-HHMA) and 5-(N-acetylcystein-S-yl)-3,4-dihydroxyamphetamine (N-Ac-5-Cys-HHA) in human urine of 15 recreational users of MDMA (1.5 mg/kg) in a controlled setting. The results reveal that in the first 4 h after MDMA ingestion approximately 0.002% of the administered dose was recovered as thioether adducts. Genetic polymorphisms in CYP2D6 and catechol-O-methyltransferase expression, the combination of which are major determinants of steady-state levels of HHMA and 4-hydroxy-3-methoxyamphetamine, probably explain the interindividual variability seen in the recovery of N-Ac-5-Cys-HHMA and N-Ac-5-Cys-HHA. In summary, the formation of neurotoxic thioether adducts of MDMA has been demonstrated for the first time in humans. The findings lend weight to the hypothesis that the bioactivation of MDMA to neurotoxic metabolites is a relevant pathway to neurotoxicity in humans.
Collapse
Affiliation(s)
- Ximena Perfetti
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica-Hospital del Mar, Dr. Aiguader 88, Barcelona, Spain 08003
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F. Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Mol Neurobiol 2009; 39:210-71. [DOI: 10.1007/s12035-009-8064-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/27/2009] [Indexed: 11/29/2022]
|