1
|
Rotariu S, Zalcman G, Badreddine N, Appaix F, Sarno S, Bureau I, Fino E. Somatostatin interneurons select dorsomedial striatal representations of the initial motor learning phase. Cell Rep 2025; 44:115670. [PMID: 40333184 DOI: 10.1016/j.celrep.2025.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/24/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
The dorsomedial striatum (DMS) is an associative node involved in the initial formation of motor sequences and the adaptation of ongoing actions. During early associative or motor learning tasks, DMS shows a global reduction of activity, eventually refining a subset of active neurons whose number correlates with animal performance. Understanding how this representation emerges is crucial to deciphering the plasticity mechanisms underlying early phases of learning. Here, we propose that local inhibitory interneurons shape early DMS representation and influence task performance. We report that the selective manipulation of somatostatin (SOM)-positive interneurons disrupts DMS activity reorganization and modulates early-learning performance. This effect is cell specific, as manipulation of parvalbumin-positive interneurons has no effect. We also identify the high plasticity of SOM-mediated feedforward inhibition as a critical modulator of striatal projection neuron firing activity. Hence, SOM interneurons are key DMS circuit organizers and set the pace of early learning.
Collapse
Affiliation(s)
- Sanziana Rotariu
- Aix-Marseille University, INSERM U1249, INMED, Marseille, France
| | - Gisela Zalcman
- University Grenoble Alpes, INSERM U1216, CNRS, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Florence Appaix
- University Grenoble Alpes, INSERM U1216, CNRS, Grenoble Institut Neurosciences, Grenoble, France; University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Stefania Sarno
- Aix-Marseille University, INSERM U1249, INMED, Marseille, France; Turing Center for Living Systems, Marseille, France
| | - Ingrid Bureau
- Aix-Marseille University, INSERM U1249, INMED, Marseille, France
| | - Elodie Fino
- Aix-Marseille University, INSERM U1249, INMED, Marseille, France.
| |
Collapse
|
2
|
Huang M, Xu L, Del Alamo JA, Li J, Yildiz B. Nonlinear Ion Dynamics Enable Spike Timing Dependent Plasticity of Electrochemical Ionic Synapses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418484. [PMID: 39887477 DOI: 10.1002/adma.202418484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Programmable synaptic devices that can achieve timing-dependent weight updates are key components to implementing energy-efficient spiking neural networks (SNNs). Electrochemical ionic synapses (EIS) enable the programming of weight updates with very low energy consumption and low variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear dynamics of ions and charge transfer reactions in solids, are leveraged to implement various forms of spike-timing-dependent plasticity (STDP). In particular, protons are used as the working ion. Different forms of the STDP function are deterministically predicted and emulated by a linear superposition of appropriately designed pre- and post-synaptic neuron signals. Heterogeneous STDP is also demonstrated within the array to capture different learning rules in the same system. STDP timescales are controllable, ranging from milliseconds to nanoseconds. The STDP resulting from EIS has lower variability than other hardware STDP implementations, due to the deterministic and uniform insertion of charge in the tunable channel material. The results indicate that the ion and charge transfer dynamics in EIS can enable bio-plausible synapses for SNN hardware with high energy efficiency, reliability, and throughput.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Longlong Xu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús A Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Ursino M, Pelle S, Nekka F, Robaey P, Schirru M. Valence-dependent dopaminergic modulation during reversal learning in Parkinson's disease: A neurocomputational approach. Neurobiol Learn Mem 2024; 215:107985. [PMID: 39270814 DOI: 10.1016/j.nlm.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Reinforcement learning, crucial for behavior in dynamic environments, is driven by rewards and punishments, modulated by dopamine (DA) changes. This study explores the dopaminergic system's influence on learning, particularly in Parkinson's disease (PD), where medication leads to impaired adaptability. Highlighting the role of tonic DA in signaling the valence of actions, this research investigates how DA affects response vigor and decision-making in PD. DA not only influences reward and punishment learning but also indicates the cognitive effort level and risk propensity in actions, which are essential for understanding and managing PD symptoms. In this work, we adapt our existing neurocomputational model of basal ganglia (BG) to simulate two reversal learning tasks proposed by Cools et al. We first optimized a Hebb rule for both probabilistic and deterministic reversal learning, conducted a sensitivity analysis (SA) on parameters related to DA effect, and compared performances between three groups: PD-ON, PD-OFF, and control subjects. In our deterministic task simulation, we explored switch error rates after unexpected task switches and found a U-shaped relationship between tonic DA levels and switch error frequency. Through SA, we classify these three groups. Then, assuming that the valence of the stimulus affects the tonic levels of DA, we were able to reproduce the results by Cools et al. As for the probabilistic task simulation, our results are in line with clinical data, showing similar trends with PD-ON, characterized by higher tonic DA levels that are correlated with increased difficulty in both acquisition and reversal tasks. Our study proposes a new hypothesis: valence, signaled by tonic DA levels, influences learning in PD, confirming the uncorrelation between phasic and tonic DA changes. This hypothesis challenges existing paradigms and opens new avenues for understanding cognitive processes in PD, particularly in reversal learning tasks.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy.
| | - Silvana Pelle
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy.
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Centre de recherches mathématiques, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Quebec H3G 1Y6, Canada.
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| | - Miriam Schirru
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Campus of Cesena, I 47521 Cesena, Italy; Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
| |
Collapse
|
4
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
5
|
Sanabria BD, Baskar SS, Yonk AJ, Linares-Garcia I, Abraira VE, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. eNeuro 2024; 11:ENEURO.0503-23.2023. [PMID: 38164611 PMCID: PMC10849041 DOI: 10.1523/eneuro.0503-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.
Collapse
Affiliation(s)
- Branden D Sanabria
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Sindhuja S Baskar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Iván Linares-Garcia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| |
Collapse
|
6
|
Sanabria BD, Baskar SS, Yonk AJ, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531405. [PMID: 36945420 PMCID: PMC10028946 DOI: 10.1101/2023.03.06.531405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and is considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in the strength of their connections with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS, and as a result exert an opposing influence on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution onto striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1, and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex-vivo patch-clamp electrophysiology. We found that SPNs are less innervated by S1 compared to M1, but FSIs receive a similar number of inputs from both M1 and S1. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPNs and FSIs. Notably, clusters of inputs were prevalent in SPNs but not FSIs. Our results suggest that SPNs have stronger functional connectivity to M1 compared to S1 due to a higher density of synaptic inputs. The clustering of M1 and S1 inputs onto SPNs but not FSIs suggest that cortical inputs are integrated through cell-type specific mechanisms and more generally have implications for how sensorimotor integration is performed in the striatum. Significance Statement The dorsolateral striatum (DLS) is a key brain area involved in sensorimotor integration due to its dense innervation by the primary motor (M1) and sensory cortex (S1). However, the quantity and anatomical distribution of these inputs to the striatal cell population has not been well characterized. In this study we demonstrate that corticostriatal projections from M1 and S1 differentially innervate spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS. S1 inputs innervate SPNs less than M1 and are likely to form synaptic clusters in SPNs but not in FSIs. These findings suggest that sensorimotor integration is partly achieved by differences in the synaptic organization of corticostriatal inputs to local striatal microcircuits.
Collapse
|
7
|
Tokarska A, Silberberg G. GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Rep 2022; 39:110842. [PMID: 35613598 DOI: 10.1016/j.celrep.2022.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.
Collapse
Affiliation(s)
- Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
8
|
Badreddine N, Zalcman G, Appaix F, Becq G, Tremblay N, Saudou F, Achard S, Fino E. Spatiotemporal reorganization of corticostriatal networks encodes motor skill learning. Cell Rep 2022; 39:110623. [PMID: 35385722 DOI: 10.1016/j.celrep.2022.110623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Motor skill learning requires the activity of the dorsal striatum, with a differential global implication of the dorsomedial and dorsolateral territories. We investigate here whether and how specific striatal neurons encode the acquisition and consolidation of a motor skill. Using ex vivo two-photon calcium imaging after rotarod training, we report that highly active (HA) striatal populations arise from distinct spatiotemporal reorganization in the dorsomedial (DMS) and dorsolateral (DLS) striatum networks and are correlated with learning performance. The DMS overall activity decreases in early training, with few and sparsely distributed HA cells, while the DLS shows a progressive and long-lasting formation of HA cell clusters. These reorganizations result from reinforcement of synaptic connections to the DMS and anatomical rearrangements to the DLS. Targeted silencing of DMS or DLS HA cells with the cFos-TRAP strategy strongly impairs individual performance. Our data reveal that discrete domains of striatal populations encode acquisition and long-lasting retention of a motor skill.
Collapse
Affiliation(s)
- Nagham Badreddine
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Gisela Zalcman
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Florence Appaix
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Guillaume Becq
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
| | - Nicolas Tremblay
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
| | - Frédéric Saudou
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sophie Achard
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Elodie Fino
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
9
|
Oberto VJ, Boucly CJ, Gao H, Todorova R, Zugaro MB, Wiener SI. Distributed cell assemblies spanning prefrontal cortex and striatum. Curr Biol 2021; 32:1-13.e6. [PMID: 34699783 DOI: 10.1016/j.cub.2021.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Highly synchronous neuronal assembly activity is deemed essential for cognitive brain function. In theory, such synchrony could coordinate multiple brain areas performing complementary processes. However, cell assemblies have been observed only in single structures, typically cortical areas, and little is known about their synchrony with downstream subcortical structures, such as the striatum. Here, we demonstrate distributed cell assemblies activated at high synchrony (∼10 ms) spanning prefrontal cortex and striatum. In addition to including neurons at different brain hierarchical levels, surprisingly, they synchronized functionally distinct limbic and associative sub-regions. These assembly activations occurred when members shifted their firing phase relative to ongoing 4 Hz and theta rhythms, in association with high gamma oscillations. This suggests that these rhythms could mediate the emergence of cross-structural assemblies. To test for the role of assemblies in behavior, we trained the rats to perform a task requiring cognitive flexibility, alternating between two different rules in a T-maze. Overall, assembly activations were correlated with task-relevant parameters, including impending choice, reward, rule, or rule order. Moreover, these behavioral correlates were more robustly expressed by assemblies than by their individual member neurons. Finally, to verify whether assemblies can be endogenously generated, we found that they were indeed spontaneously reactivated during sleep and quiet immobility. Thus, cell assemblies are a more general coding mechanism than previously envisioned, linking distributed neocortical and subcortical areas at high synchrony.
Collapse
Affiliation(s)
- Virginie J Oberto
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Céline J Boucly
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - HongYing Gao
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralitsa Todorova
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Michaël B Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Sidney I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
10
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Valtcheva S, Venance L. Control of Long-Term Plasticity by Glutamate Transporters. Front Synaptic Neurosci 2019; 11:10. [PMID: 31024287 PMCID: PMC6465798 DOI: 10.3389/fnsyn.2019.00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Activity-dependent long-term changes in synaptic strength constitute key elements for learning and memory formation. Long-term plasticity can be induced in vivo and ex vivo by various physiologically relevant activity patterns. Depending on their temporal statistics, such patterns can induce long-lasting changes in the synaptic weight by potentiating or depressing synaptic transmission. At excitatory synapses, glutamate uptake operated by excitatory amino acid transporters (EAATs) has a critical role in regulating the strength and the extent of receptor activation by afferent activity. EAATs tightly control synaptic transmission and glutamate spillover. EAATs activity can, therefore, determine the polarity and magnitude of long-term plasticity by regulating the spatiotemporal profile of the glutamate transients and thus, the glutamate access to pre- and postsynaptic receptors. Here, we summarize compelling evidence that EAATs regulate various forms of long-term synaptic plasticity and the consequences of such regulation for behavioral output. We speculate that experience-dependent plasticity of EAATs levels can determine the sensitivity of synapses to frequency- or time-dependent plasticity paradigms. We propose that EAATs contribute to the gating of relevant inputs eligible to induce long-term plasticity and thereby select the operating learning rules that match the physiological function of the synapse adapted to the behavioral context.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| |
Collapse
|
12
|
Tonna M, Marchesi C, Parmigiani S. The biological origins of rituals: An interdisciplinary perspective. Neurosci Biobehav Rev 2019; 98:95-106. [DOI: 10.1016/j.neubiorev.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
|
13
|
Barbaresi P, Mensà E, Sagrati A, Graciotti L. Postnatal development of the distribution of nitric oxide-producing neurons in the rat corpus callosum. Neurosci Res 2019; 151:15-30. [PMID: 30796928 DOI: 10.1016/j.neures.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022]
Abstract
The postnatal development of nitric oxide (NO)-producing intracallosal neurons was studied in rats by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry from postnatal day 0 (P0) to P30. NADPH-d-positive neurons (NADPH-d+Ns) were detected already at P0, mainly in the rostral region of the corpus callosum (cc). Their location and the intensity of staining allowed them to be classified as type I NO-producing neurons. At P0, tufts of intensely labeled fibers, probably corresponding to the callosal septa described in the monkey and human cc, entered the ventral cc region and reached its dorsal portion. From P5, cell bodies and dendrites were often associated to blood vessels. The number of intracallosal NADPH-d+Ns rose in the first postnatal days to peak at P5, it declined until P10, and then remained almost constant until P30. Their size increased from P0 to P30, dramatically so (>65%) from P0 to P15. From P10 onward their distribution was adult-like, i.e. NADPH-d+Ns were more numerous in the lateral and intermediate portions of the cc and diminished close to the midline. In conjunction with previous data, these findings indicate that intracallosal NADPH-d+Ns could have a role in callosal axon guidance, myelination, refinement processes, and callosal blood flow regulation.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy.
| | - Emanuela Mensà
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy; Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Andrea Sagrati
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| |
Collapse
|
14
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
15
|
Tepper JM, Koós T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M. Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Front Neuroanat 2018; 12:91. [PMID: 30467465 PMCID: PMC6235948 DOI: 10.3389/fnana.2018.00091] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Our original review, “Heterogeneity and Diversity of Striatal GABAergic Interneurons,” to which this is an invited update, was published in December, 2010 in Frontiers is Neuroanatomy. In that article, we reviewed several decades’ worth of anatomical and electrophysiological data on striatal parvalbumin (PV)-, neuropeptide Y (NPY)- and calretinin(CR)-expressing GABAergic interneurons from many laboratories including our own. In addition, we reported on a recently discovered novel tyrosine hydroxylase (TH) expressing GABAergic interneuron class first revealed in transgenic TH EGFP reporter mouse line. In this review, we report on further advances in the understanding of the functional properties of previously reported striatal GABAergic interneurons and their synaptic connections. With the application of new transgenic fluorescent reporter and Cre-driver/reporter lines, plus optogenetic, chemogenetic and viral transduction methods, several additional subtypes of novel striatal GABAergic interneurons have been discovered, as well as the synaptic networks in which they are embedded. These findings make it clear that previous hypotheses in which striatal GABAergic interneurons modulate and/or control the firing of spiny neurons principally by simple feedforward and/or feedback inhibition are at best incomplete. A more accurate picture is one in which there are highly selective and specific afferent inputs, synaptic connections between different interneuron subtypes and spiny neurons and among different GABAergic interneurons that result in the formation of functional networks and ensembles of spiny neurons.
Collapse
Affiliation(s)
- James M Tepper
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Tibor Koós
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Osvaldo Ibanez-Sandoval
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Fatuel Tecuapetla
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Thomas W Faust
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Maxime Assous
- Center For Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
16
|
Perrin E, Venance L. Bridging the gap between striatal plasticity and learning. Curr Opin Neurobiol 2018; 54:104-112. [PMID: 30321866 DOI: 10.1016/j.conb.2018.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
The striatum, the main input nucleus of the basal ganglia, controls goal-directed behavior and procedural learning. Striatal projection neurons integrate glutamatergic inputs from cortex and thalamus together with neuromodulatory systems, and are subjected to plasticity. Striatal projection neurons exhibit bidirectional plasticity (LTP and LTD) when exposed to Hebbian paradigms. Importantly, correlative and even causal links between procedural learning and striatal plasticity have recently been shown. This short review summarizes the current view on striatal plasticity (with a focus on spike-timing-dependent plasticity), recent studies aiming at bridging in vivo skill acquisition and striatal plasticity, the temporal credit-assignment problem, and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Elodie Perrin
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, 75005 Paris, France; Université Pierre et Marie Curie, ED 158, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, 75005 Paris, France; Université Pierre et Marie Curie, ED 158, Paris, France.
| |
Collapse
|
17
|
Fino E, Vandecasteele M, Perez S, Saudou F, Venance L. Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun 2018; 9:3339. [PMID: 30131490 PMCID: PMC6104028 DOI: 10.1038/s41467-018-05847-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Striatum processes a wide range of functions including goal-directed behavior and habit formation, respectively encoded by the dorsomedial striatum (DMS) and dorsolateral striatum (DLS). GABAergic feedforward inhibition is known to control the integration of cortical information by striatal projection neurons (SPNs). Here we questioned whether this control is specific between distinct striatal functional territories. Using opto-activation and opto-inhibition of identified GABAergic interneurons, we found that different circuits are engaged in DLS and DMS, both ex vivo and in vivo: while parvalbumin interneurons efficiently control SPNs in DLS, somatostatin interneurons control SPNs in DMS. Moreover, both parvalbumin and somatostatin interneurons use a dual hyperpolarizing/depolarizing effect to control cortical input integration depending on SPN activity state: GABAergic interneurons potently inhibit spiking SPNs while in resting SPNs, they favor cortical activity summation via a depolarizing effect. Our findings establish that striatal GABAergic interneurons exert efficient territory-specific and state-dependent control of SPN activity and functional output.
Collapse
Affiliation(s)
- Elodie Fino
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France. .,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France. .,INSERM U1216, Grenoble, 38000, France. .,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, 38000, France.
| | - Marie Vandecasteele
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| | - Frédéric Saudou
- INSERM U1216, Grenoble, 38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, 38000, France.,CHU Grenoble Alpes, Grenoble, 38000, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| |
Collapse
|
18
|
Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron 2017; 93:1451-1463.e4. [PMID: 28334608 PMCID: PMC5386608 DOI: 10.1016/j.neuron.2017.02.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 01/13/2023]
Abstract
The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin L Shobe
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie C Chong
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 2016; 292:1462-1476. [PMID: 27998980 DOI: 10.1074/jbc.m116.752402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.
Collapse
Affiliation(s)
- Akinori Nishi
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan,
| | - Miriam Matamales
- Institut du Fer à Moulin, INSERM, UPMC UMR-S839, 75005 Paris, France
| | - Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Inserm U1191, UMR 5203 CNRS, Montpellier University, 34094 Montpellier, France, and
| | - Mahomi Kuroiwa
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yosuke Kitahara
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Heike Rebholz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| |
Collapse
|
20
|
Bakhurin KI, Mac V, Golshani P, Masmanidis SC. Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice. J Neurophysiol 2016; 115:1521-32. [PMID: 26763779 DOI: 10.1152/jn.01037.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.
Collapse
Affiliation(s)
- Konstantin I Bakhurin
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California
| | - Victor Mac
- Department of Neurobiology, University of California, Los Angeles, California
| | - Peyman Golshani
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Sotiris C Masmanidis
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, California; and
| |
Collapse
|
21
|
Abstract
Low-level perception results from neural-based computations, which build a multimodal skeleton of unconscious or self-generated inferences on our environment. This review identifies bottleneck issues concerning the role of early primary sensory cortical areas, mostly in rodent and higher mammals (cats and non-human primates), where perception substrates can be searched at multiple scales of neural integration. We discuss the limitation of purely bottom-up approaches for providing realistic models of early sensory processing and the need for identification of fast adaptive processes, operating within the time of a percept. Future progresses will depend on the careful use of comparative neuroscience (guiding the choices of experimental models and species adapted to the questions under study), on the definition of agreed-upon benchmarks for sensory stimulation, on the simultaneous acquisition of neural data at multiple spatio-temporal scales, and on the in vivo identification of key generic integration and plasticity algorithms validated experimentally and in simulations.
Collapse
|
22
|
Nagypál T, Gombkötő P, Barkóczi B, Benedek G, Nagy A. Activity of Caudate Nucleus Neurons in a Visual Fixation Paradigm in Behaving Cats. PLoS One 2015; 10:e0142526. [PMID: 26544604 PMCID: PMC4636356 DOI: 10.1371/journal.pone.0142526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing.
Collapse
Affiliation(s)
- Tamás Nagypál
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gombkötő
- Center for Molecular and Behavioral Neuroscience Rutgers University, Newark, New Jersey, United States of America
| | - Balázs Barkóczi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Benedek
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
23
|
Krstonošić B, Milošević NT, Marić DL, Babović SS. Quantitative analysis of spiny neurons in the adult human caudate nucleus: can it confirm the current qualitative cell classification? Acta Neurol Belg 2015; 115:273-80. [PMID: 25273896 DOI: 10.1007/s13760-014-0365-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
The caudate nucleus, as a part of the striatum (neostriatum or dorsal striatum), is involved in the control of cognitive, motor and limbic functions. The majority of the caudate nucleus cells are projection spiny neurons, whose activity is determined by excitatory inputs from the cortex, thalamus, globus pallidus and brainstem. A qualitative analysis of human caudate nucleus neurons involves the description of the structure and features of cells, and accordingly, their classification into an appropriate type. The aim of this study is to determine the justification of the current qualitative classification of spiny neurons in the precommissural head of the human caudate nucleus by quantifying morphological properties of neurons. After the qualitative analysis of microscopic images of the Golgi-impregnated caudate nucleus neurons, five morphological properties of cells were measured/quantified. In terms of the dendritic field area, caudate nucleus neurons were divided into two subgroups: small and large neurons. In our sample of 251 projection nerve cells, 58.17 % (146) were small and 41.83 % (105) were large neurons. These data show that suggested groups of spiny neurons in the human caudate nucleus differ in their morphology. Since the structure and function of cells are closely correlated, it is possible that these morphologically different types of neurons may represent different functional groups.
Collapse
Affiliation(s)
- Bojana Krstonošić
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia,
| | | | | | | |
Collapse
|
24
|
Abstract
The basal ganglia are involved in sensorimotor functions and action selection, both of which require the integration of sensory information. In order to determine how such sensory inputs are integrated, we obtained whole-cell recordings in mouse dorsal striatum during presentation of tactile and visual stimuli. All recorded neurons responded to bilateral whisker stimulation, and a subpopulation also responded to visual stimulation. Neurons responding to both visual and tactile stimuli were located in dorsomedial striatum, whereas those responding only to whisker deflections were located dorsolaterally. Responses were mediated by overlapping excitation and inhibition, with excitation onset preceding that of inhibition by several milliseconds. Responses differed according to the type of neuron, with direct pathway MSNs having larger responses and longer latencies between ipsilateral and contralateral responses than indirect pathway MSNs. Our results suggest that striatum acts as a sensory “hub” with specialized functional roles for the different neuron types. Sensory integration in mouse striatum was studied using whole-cell in vivo recordings Neurons in dorsomedial striatum integrate tactile and visual sensory inputs Sensory responses are mediated by overlapping excitation and inhibition Bilateral sensory input is integrated differently by direct and indirect pathway MSNs
Collapse
Affiliation(s)
- Ramon Reig
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
25
|
Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014; 17:1022-30. [DOI: 10.1038/nn.3743] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
26
|
Liang J, Lindemeyer AK, Suryanarayanan A, Meyer EM, Marty VN, Ahmad SO, Shao XM, Olsen RW, Spigelman I. Plasticity of GABA(A) receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats. J Neurophysiol 2014; 112:39-50. [PMID: 24694935 DOI: 10.1152/jn.00565.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABA(A)Rs, which mediate the picrotoxin-sensitive tonic current (I(tonic)), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both I(tonic) and mIPSCs was decreased by CIE treatment. The average magnitude of I(tonic) was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABA(A)R subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission.
Collapse
Affiliation(s)
- Jing Liang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Asha Suryanarayanan
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Edward M Meyer
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Vincent N Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - S Omar Ahmad
- Doisy College of Health Sciences, Saint Louis University, St. Louis, Missouri; and
| | - Xuesi Max Shao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Igor Spigelman
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California;
| |
Collapse
|
27
|
Ma Y, Feng Q, OuYang L, Mu S, Liu B, Li Y, Chen S, Lei W. Morphological diversity of GABAergic and cholinergic interneurons in the striatal dorsolateral and ventromedial regions of rats. Cell Mol Neurobiol 2014; 34:351-9. [PMID: 24343377 PMCID: PMC11488910 DOI: 10.1007/s10571-013-0019-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
The striatum plays a fundamental role in sensorimotor and cognitive functions of the body, and different sub-regions control different physiological functions. The striatal interneurons play important roles in the striatal function, yet their specific functions are not clearly elucidated so far. The present study aimed to investigate the morphological properties of the GABAergic interneurons expressing neuropeptide Y (NPY), calretinin (Cr), and parvalbumin (Parv) as well as the cholinergic interneurons expressing choline acetyltransferase (ChAT) in the striatal dorsolateral (DL) and ventromedial (VM) regions of rats using immunohistochemistry and Western blot. The present results showed that the somatic size of Cr+ was the smallest, while ChAT+ was the largest among the four types of interneurons. There was no regional difference in neuronal somatic size of all types of interneurons. Cr+ and Parv+ neurons were differentially distributed in the striatum. Moreover, Parv+ had the longest primary dendrites in the DL region, while NPY+ had the longest ones in the VM region of striatum. But there was regional difference in the length of primary dendrites of Parv. The numbers of primary dendrites of Parv+ were the largest in both DL and VM regions of striatum. Both Cr+ and Parv+ primary dendrites displayed regional difference in the striatum. Western blot further confirmed the regional differences in the protein expression level of Cr and Parv. Hence, the present study indicates that GABAergic and cholinergic interneurons might be involved in different physiological functions based on their morphological and distributional diversity in different regions of the rat striatum.
Collapse
Affiliation(s)
- Yuxin Ma
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qiqi Feng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Shuhua Mu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Bingbing Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Youlan Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
28
|
Learning-related translocation of δ-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions. J Neurosci 2013; 33:16060-71. [PMID: 24107940 DOI: 10.1523/jneurosci.1927-13.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability of animals to extract predictive information from the environment to inform their future actions is a critical component of decision-making. This phenomenon is studied in the laboratory using the pavlovian-instrumental transfer protocol in which a stimulus predicting a specific pavlovian outcome biases choice toward those actions earning the predicted outcome. It is well established that this transfer effect is mediated by corticolimbic afferents on the nucleus accumbens shell (NAc-S), and recent evidence suggests that δ-opioid receptors (DORs) play an essential role in this effect. In DOR-eGFP knock-in mice, we show a persistent, learning-related plasticity in the translocation of DORs to the somatic plasma membrane of cholinergic interneurons (CINs) in the NAc-S during the encoding of the specific stimulus-outcome associations essential for pavlovian-instrumental transfer. We found that increased membrane DOR expression reflected both stimulus-based predictions of reward and the degree to which these stimuli biased choice during the pavlovian-instrumental transfer test. Furthermore, this plasticity altered the firing pattern of CINs increasing the variance of action potential activity, an effect that was exaggerated by DOR stimulation. The relationship between the induction of membrane DOR expression in CINs and both pavlovian conditioning and pavlovian-instrumental transfer provides a highly specific function for DOR-related modulation in the NAc-S, and it is consistent with an emerging role for striatal CIN activity in the processing of predictive information. Therefore, our results reveal evidence of a long-term, experience-dependent plasticity in opioid receptor expression on striatal modulatory interneurons critical for the cognitive control of action.
Collapse
|
29
|
Abstract
In pyramidal cells, the induction of spike-dependent plasticity (STDP) follows a simple Hebbian rule in which the order of presynaptic and postsynaptic firing dictates the induction of LTP or LTD. In contrast, cortical fast spiking (FS) interneurons, which control the rate and timing of pyramidal cell firing, reportedly express timing-dependent LTD, but not timing-dependent LTP. Because a mismatch in STDP rules could impact the maintenance of the excitation/inhibition balance, we examined the neuromodulation of STDP in FS cells of mouse visual cortex. We found that stimulation of adrenergic receptors enables the induction of Hebbian bidirectional STDP in FS cells in a manner consistent with a pull-push mechanism previously characterized in pyramidal cells. However, in pyramidal cells, STDP induction depends on NMDA receptors, whereas in FS cells it depends on mGluR5 receptors. We propose that neuromodulators control the polarity of STDP in different synapses in the same manner, and independently of the induction mechanism, by acting downstream in the plasticity cascade. By doing so, neuromodulators may allow coordinated plastic changes in FS and pyramidal cells.
Collapse
|
30
|
Bertran-Gonzalez J, Chieng BC, Laurent V, Valjent E, Balleine BW. Striatal cholinergic interneurons display activity-related phosphorylation of ribosomal protein S6. PLoS One 2012; 7:e53195. [PMID: 23285266 PMCID: PMC3532298 DOI: 10.1371/journal.pone.0053195] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/27/2012] [Indexed: 01/10/2023] Open
Abstract
Cholinergic interneurons (CINs) provide the main source of acetylcholine to all striatal regions, and strongly modulate dopaminergic actions through complex regulation of pre- and post-synaptic acetylcholine receptors. Although striatal CINs have a well-defined electrophysiological profile, their biochemical properties are poorly understood, likely due to their low proportion within the striatum (2-3%). We report a strong and sustained phosphorylation of ribosomal protein S6 on its serine 240 and 244 residues (p-Ser²⁴⁰⁻²⁴⁴-S6rp), a protein integrant of the ribosomal machinery related to the mammalian target of the rapamycin complex 1 (mTORC1) pathway, which we found to be principally expressed in striatal CINs in basal conditions. We explored the functional relevance of this cellular event by pharmacologically inducing various sustained physiological activity states in CINs and assessing the effect on the levels of S6rp phosphorylation. Cell-attached electrophysiological recordings from CINs in a striatal slice preparation showed an inhibitory effect of tetrodotoxin (TTX) on action potential firing paralleled by a decrease in the p-Ser²⁴⁰⁻²⁴⁴-S6rp signal as detected by immunofluorescence after prolonged incubation. On the other hand, elevation in extracellular potassium concentration and the addition of apamin generated an increased firing rate and a burst-firing activity in CINs, respectively, and both stimulatory conditions significantly increased Ser²⁴⁰⁻²⁴⁴-S6rp phosphorylation above basal levels when incubated for one hour. Apamin generated a particularly large increase in phosphorylation that was sensitive to rapamycin. Taken together, our results demonstrate for the first time a link between the state of neuronal activity and a biochemical signaling event in striatal CINs, and suggest that immunofluorescence can be used to estimate the cellular activity of CINs under different pharmacological and/or behavioral conditions.
Collapse
Affiliation(s)
- Jesus Bertran-Gonzalez
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia
| | - Billy C. Chieng
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia
| | - Vincent Laurent
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Inserm U661, CNRS UMR 5203, Montpellier, France
| | - Bernard W. Balleine
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
31
|
|
32
|
Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. ACTA ACUST UNITED AC 2012; 2:57-66. [PMID: 22905336 DOI: 10.1016/j.baga.2012.04.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's Disease (HD) is a fatally inherited neurodegenerative disorder caused by an expanded glutamine repeat in the N-terminal region of the huntingtin (HTT) protein. The result is a progressively worsening triad of cognitive, emotional, and motor alterations that typically begin in adulthood and end in death 10-20 years later. Autopsy of HD patients indicates massive cell loss in the striatum and its main source of input, the cerebral cortex. Further studies of HD patients and transgenic animal models of HD indicate that corticostriatal neuronal processing is altered long before neuronal death takes place. In fact, altered neuronal function appears to be the primary driver of the HD behavioral phenotype, and dysregulation of glutamate, the excitatory amino acid released by corticostriatal afferents, is believed to play a critical role. Although mutant HTT interferes with the operation of multiple proteins related to glutamate transmission, consistent evidence links the expression of mutant HTT with reduced activity of glutamate transporter 1 (rodent GLT1 or human EAAT2), the astrocytic protein responsible for the bulk of glutamate uptake. Here, we review corticostriatal dysfunction in HD and focus on GLT1 and its expression in astrocytes as a possible therapeutic target.
Collapse
|
33
|
Bosch C, Mailly P, Degos B, Deniau JM, Venance L. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice. Neuroscience 2012; 215:31-41. [DOI: 10.1016/j.neuroscience.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022]
|
34
|
Effects of alcohol on the membrane excitability and synaptic transmission of medium spiny neurons in the nucleus accumbens. Alcohol 2012; 46:317-27. [PMID: 22445807 DOI: 10.1016/j.alcohol.2011.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022]
Abstract
Chronic and excessive alcohol drinking lead to alcohol dependence and loss of control over alcohol consumption, with serious detrimental health consequences. Chronic alcohol exposure followed by protracted withdrawal causes profound alterations in the brain reward system that leads to marked changes in reinforcement mechanisms and motivational state. These long-lasting neuroadaptations are thought to contribute to the development of cravings and relapse. The nucleus accumbens (NAcc), a central component of the brain reward system, plays a critical role in alcohol-induced neuroadaptive changes underlying alcohol-seeking behaviors. Here we review the findings that chronic alcohol exposure produces long-lasting neuroadaptive changes in various ion channels that govern intrinsic membrane properties and neuronal excitability, as well as excitatory and inhibitory synaptic transmission in the NAcc that underlie alcohol-seeking behavior during protracted withdrawal.
Collapse
|
35
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
36
|
Neuronal images of the putamen in the adult human neostriatum: a revised classification supported by a qualitative and quantitative analysis. Anat Sci Int 2012; 87:115-25. [DOI: 10.1007/s12565-012-0131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022]
|
37
|
Surmeier DJ, Carrillo-Reid L, Bargas J. Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience 2011; 198:3-18. [PMID: 21906660 DOI: 10.1016/j.neuroscience.2011.08.051] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a great deal of progress toward understanding the role of the striatum and dopamine in action selection. The advent of new animal models and the development of optical techniques for imaging and stimulating select neuronal populations have provided the means by which identified synapses, cells, and circuits can be reliably studied. This review attempts to summarize some of the key advances in this broad area, focusing on dopaminergic modulation of intrinsic excitability and synaptic plasticity in canonical microcircuits in the striatum as well as recent work suggesting that there are neuronal assemblies within the striatum devoted to particular types of computation and possibly action selection.
Collapse
Affiliation(s)
- D J Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
38
|
|