1
|
Bayraktar G, Bartolini M, Bolognesi ML, Erdoğan MA, Armağan G, Bayır E, Şendemir A, Bagetta D, Alcaro S, Alptüzün V. Novel multifunctional tacrine-donepezil hybrids against Alzheimer's disease: Design synthesis and bioactivity studies. Arch Pharm (Weinheim) 2024; 357:e2300575. [PMID: 38593283 DOI: 10.1002/ardp.202300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
A series of tacrine-donepezil hybrids were synthesized as potential multifunctional anti-Alzheimer's disease (AD) compounds. For this purpose, tacrine and the benzylpiperidine moiety of donepezil were fused with a hydrazone group to achieve a small library of tacrine-donepezil hybrids. In agreement with the design, all compounds showed inhibitory activity toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values in the low micromolar range. Kinetic studies on the most potent cholinesterase (ChE) inhibitors within the series showed a mixed-type inhibition mechanism on both enzymes. Also, the docking studies indicated that the compounds inhibit ChEs by dual binding site (DBS) interactions. Notably, tacrine-donepezil hybrids also exhibited significant neuroprotection against H2O2-induced cell death in a differentiated human neuroblastoma (SH-SY5Y) cell line at concentrations close to their IC50 values on ChEs and showed high to medium blood-brain barrier (BBB) permeability on human cerebral microvascular endothelial cells (HBEC-5i). Besides, the compounds do not cause remarkable toxicity in a human hepatocellular carcinoma cell line (HepG2) and SH-SY5Y cells. Additionally, the compounds were predicted to also have good bioavailability. Among the tested compounds, H4, H16, H17, and H24 stand out with their biological profile. Taken together, the proposed novel tacrine-donepezil scaffold represents a promising starting point for the development of novel anti-ChE multifunctional agents against AD.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Mumin Alper Erdoğan
- Department of Physiology, Katip Celebi University School of Medicine, Izmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ece Bayır
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Catanzaro, Italy
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Vaaland Holmgard IC, González-Bakker A, Poeta E, Puerta A, Fernandes MX, Monti B, Fernández-Bolaños JG, Padrón JM, López Ó, Lindbäck E. Coumarin-azasugar-benzyl conjugates as non-neurotoxic dual inhibitors of butyrylcholinesterase and cancer cell growth. Org Biomol Chem 2024; 22:3425-3438. [PMID: 38590227 DOI: 10.1039/d4ob00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 μM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.
Collapse
Affiliation(s)
- I Caroline Vaaland Holmgard
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
3
|
Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease. Molecules 2024; 29:1782. [PMID: 38675602 PMCID: PMC11051924 DOI: 10.3390/molecules29081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 μM) with pyrimidone compound 5 (GSK-3β: IC50 = 3 μM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3β (GSK-3β). The optimal compound 18a possessed potent dual AChE/GSK-3β inhibition (AChE: IC50 = 0.047 ± 0.002 μM, GSK-3β: IC50 = 0.930 ± 0.080 μM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 μM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Xiuyuan Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Shuai Qin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Beiyu Zhang
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Xinnan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Zheying Zhu
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| |
Collapse
|
4
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
5
|
Barbosa FAR, Canto RFS, Teixeira KF, de Souza AS, de Oliveira AS, Braga AL. Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:689-700. [PMID: 35209817 DOI: 10.2174/0929867329666220224161454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation. OBJECTIVE In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ. METHODS We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Rômulo F S Canto
- Department of Pharmacosciences, Foundation Federal University of Health Sciences of Porto Alegre, Porto Alegre-RS, Brazil
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Anacleto S de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
6
|
Kılıçaslan D, Kurt AH, Köse M, Çeşme M, Güngör Ö, Oztabag CK, Doganer A. A Novel Donepezil–Caffeic Acid Hybrid: Synthesis, Biological Evaluation, and Molecular Docking Studies. BIOCHEMISTRY (MOSCOW) 2023; 88:50-63. [PMID: 37068881 DOI: 10.1134/s0006297923010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Derya Kılıçaslan
- Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Bolu Abant Izzet Baysal University, Institute of Health Sciences, Bolu, Turkey
| | - Adem Doganer
- Department Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
7
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
8
|
Dileep KV, Ihara K, Mishima-Tsumagari C, Kukimoto-Niino M, Yonemochi M, Hanada K, Shirouzu M, Zhang KYJ. Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int J Biol Macromol 2022; 210:172-181. [PMID: 35526766 DOI: 10.1016/j.ijbiomac.2022.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the most common, progressive neurodegenerative disorders affecting the aged populations. Though various disease pathologies have been suggested for AD, the impairment of the cholinergic system is one of the critical factors for the disease progression. Restoration of the cholinergic transmission through acetylcholinesterase (AChE) inhibitors is a promising disease modifying therapy. Being the first marketed drug for AD, tacrine reversibly inhibits AChE and thereby slows the breakdown of the chemical messenger acetylcholine (ACh) in the brain. However, the atomic level of interactions of tacrine towards human AChE (hAChE) is unknown for years. Hence, in the current study, we report the X-ray structure of hAChE-tacrine complex at 2.85 Å resolution. The conformational heterogeneity of tacrine within the electron density was addressed with the help of molecular mechanics assisted methods and the low-energy ligand configuration is reported, which provides a mechanistic explanation for the high binding affinity of tacrine towards AChE. Additionally, structural comparison of reported hAChE structures sheds light on the conformational selection and induced fit effects of various active site residues upon binding to different ligands and provides insight for future drug design campaigns against AD where AChE is a drug target.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
9
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
10
|
Oliveira de Santana QL, Santos Evangelista TC, Imhof P, Ferreira SB, Fernández-Bolaños JG, Sydnes MO, Lopéz Ó, Lindbäck E. Tacrine-sugar mimetic conjugates as enhanced cholinesterase inhibitors. Org Biomol Chem 2021; 19:2322-2337. [PMID: 33645607 DOI: 10.1039/d0ob02588g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have used the Cu(i)-catalyzed azide-alkyne Huisgen cycloaddition reaction to obtain two families of bivalent heterodimers where tacrine is connected to an azasugar or iminosugar, respectively, via linkers of variable length. The heterodimers were investigated as cholinesterase inhibitors and it was found that their activity increased with the length of the linker. Two of the heterodimers were significantly stronger acetylcholinesterase inhibitors than the monomeric tacrine. Molecular modelling indicated that the longer heterodimers fitted better into the active gorge of acetylcholinesterase than the shorter counterparts and the former provided more efficient simultaneous interaction with the tryptophan residues in the catalytic anionic binding site (CAS) and the peripheral anionic binding site (PAS).
Collapse
Affiliation(s)
- Quelli Larissa Oliveira de Santana
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway. and Department of Organic Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, UFRJ, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Tereza C Santos Evangelista
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway. and Department of Organic Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, UFRJ, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Petra Imhof
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg Computer Chemistry Center, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, UFRJ, 21949-900 Rio de Janeiro, RJ, Brazil
| | - José G Fernández-Bolaños
- Orgánica, Facultad de Química, Universidad de Sevilla, c/Profesor García González 1, 41012, Seville, Spain
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway.
| | - Óscar Lopéz
- Orgánica, Facultad de Química, Universidad de Sevilla, c/Profesor García González 1, 41012, Seville, Spain
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway.
| |
Collapse
|
11
|
Mitić M, Lazarević-Pašti T. Does the application of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease lead to depression? Expert Opin Drug Metab Toxicol 2021; 17:841-856. [PMID: 33999717 DOI: 10.1080/17425255.2021.1931681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Alzheimer's disease and depression are health conditions affecting millions of people around the world. Both are strongly related to the level of the neurotransmitter acetylcholine. Since cholinergic deficit is characteristic of Alzheimer's disease, acetylcholinesterase inhibitors are applied as relevant drugs for the treatment of this disease, elevating the level of acetylcholine. On the other hand, a high level of acetylcholine is found to be associated with the symptoms of clinical depression.Areas covered: This article aims to discuss if acetylcholinesterase inhibitors used as anti-Alzheimer's drugs could be the cause of the symptoms of clinical depression often linked to this neurological disorder. Emphasis will be put on drugs currently in use and on newly investigated natural products, which can inhibit AChE activity.Expert opinion: Currently, it is not proven that the patient treated for Alzheimer's disease is prone to increased risk for depression due to the acetylcholinesterase inhibition, but there are strong indications. The level of acetylcholine is not the only factor in highly complicated diseases like AD and depression. Still, it needs to be considered isolated, keeping in mind the nature of presently available therapy, especially during a rational drug design process.
Collapse
Affiliation(s)
- Miloš Mitić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
13
|
Antioxidant and Neuroprotective Activity of Extra Virgin Olive Oil Extracts Obtained from Quercetano Cultivar Trees Grown in Different Areas of the Tuscany Region (Italy). Antioxidants (Basel) 2021; 10:antiox10030421. [PMID: 33801925 PMCID: PMC8000409 DOI: 10.3390/antiox10030421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.
Collapse
|
14
|
Scheiner M, Sink A, Spatz P, Endres E, Decker M. Photopharmacology on Acetylcholinesterase: Novel Photoswitchable Inhibitors with Improved Pharmacological Profiles. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matthias Scheiner
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Sink
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Philipp Spatz
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Erik Endres
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie Institut für Pharmazie und Lebensmittelchemie Julius-Maximilians Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
15
|
Siddu A, David LS, Lauinger N, Chen X, Saint-Pierre M, Alpaugh M, Durcan T, Cicchetti F. Beneficial effects of cysteamine in Thy1-α-Syn mice and induced pluripotent stem cells with a SNCA gene triplication. Neurobiol Dis 2020; 145:105042. [PMID: 32798729 DOI: 10.1016/j.nbd.2020.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/29/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022] Open
Abstract
A number of publications have reported that cysteamine has significant therapeutic effects on several aspects of Parkinson's disease (PD)-related pathology but none of these studies have evaluated its impact on pathological forms of α-Synuclein (α-Syn), one of the main hallmarks of PD. We therefore tested the efficacy of cysteamine on the Thy1-α-Syn mouse model which over-expresses full-length human wild-type α-Syn. Two-month (early stage disease) and 6-month old (late stage disease) mice and littermate controls were treated daily with cysteamine (20 mg/kg, i.p.) to assess the protective and restorative properties of this compound. After 6 weeks of treatment, animals were tested using a battery of motor tests. Cysteamine-treated transgenic mice displayed significant improvements in motor performance as compared to saline-treated transgenic littermates. Post-mortem readouts revealed a reduction in fibrillation, phosphorylation and total levels of overexpresed human α-Syn. To determine if such outcomes extended to human cells, the benefits of cysteamine were additionally tested using 6-hydroxydopamine (6-OHDA) treated neurons differentiated from induced pluripotent stem cells (iPSCs) derived from a PD patient harbouring a triplication of the SNCA gene. SNCA neurons treated with cysteamine exhibited significantly more intact/healthy neurites than cells treated with 6-OHDA alone. Additionally, SNCA neurons treated with cysteamine in the absence of 6-OHDA showed a trend towards lower total α-Syn levels. Overall, our in vivo and in vitro findings suggest that cysteamine can act as a disease-modifying molecule by enhancing -the survival of dopaminergic neurons and reducing pathological forms of α-Syn.
Collapse
Affiliation(s)
- Alberto Siddu
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Linda Suzanne David
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Nadine Lauinger
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Xiuqing Chen
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Thomas Durcan
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
16
|
Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochem Pharmacol 2020; 177:114010. [PMID: 32360492 DOI: 10.1016/j.bcp.2020.114010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cholinergic dysfunction, provoking memory loss and cognitive dysfunction in elderly patients. The cholinergic hypothesis provided over the years with molecular targets for developing palliative treatments for AD, acting on the cholinergic system, namely, acetylcholinesterase and α7 nicotinic acetylcholine receptor (α7 nAChR). In our synthetic work, we used "click-chemistry" to synthesize two Multi Target Directed Ligands (MTDLs) MB105 and MB118 carrying tacrine and quinuclidine scaffolds which are known for their anticholinesterase and α7 nAChR agonist activities, respectively. Both, MB105 and MB118, inhibit human acetylcholinesterase and human butyrylcholinesterase in the nanomolar range. Electrophysiological recordings on Xenopus laevis oocytes expressing human α7 nAChR showed that MB105 and MB118 acted as partial agonists of the referred nicotinic receptor, albeit, with different potencies despite their similar structure. The different substitution at C-3 on the 2,3-disubstituted quinuclidine scaffold may account for the significantly lower potency of MB118 compared to MB105. Electrophysiological recordings also showed that the tacrine precursor MB320 behaved as a competitive antagonist of human α7 nAChR, in the micromolar range, while the quinuclidine synthetic precursor MB099 acted as a partial agonist. Taken all together, MB105 behaved as a partial agonist of α7 nAChR at concentrations where it completely inhibited human acetylcholinesterase activity paving the way for the design of novel MTDLs for palliative treatment of AD.
Collapse
|
18
|
Gülcan HO, Orhan IE. The Main Targets Involved in Neuroprotection for the Treatment of Alzheimer’s Disease and Parkinson Disease. Curr Pharm Des 2020; 26:509-516. [DOI: 10.2174/1381612826666200131103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/21/2019] [Indexed: 01/28/2023]
Abstract
With respect to the total cure failure of current drugs used in the treatment of neurodegenerative diseases,
alternative strategies are followed. Particularly, neuroprotection approaches are questioned. Metal chelation,
antioxidant towards oxidative stress, modulation of the amyloidogenic pathway, MAO-B inhibition, and
NMDA receptor antagonism is more or less typical examples. Some of the representative drug candidates with
promising neuroprotective features are assessed in clinical trials. Although initial attempts were found hopeful,
none of the candidates have been found successful in each required clinical trials, particularly depending on the
failures in terms of cognitive enhancement and slowing the progressive characteristics of neurodegenerative diseases.
Today, neuroprotection is evaluated using multi-target ligand-based drug design studies. Within this study,
the clinical outcomes of these studies, the rationale behind the design of the molecules are reviewed concomitant
to the representative drug candidates of each group.
Collapse
Affiliation(s)
- Hayrettin O. Gülcan
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, TR. North Cyprus, via Mersin 10, Turkey
| | - Ilkay E. Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
19
|
Sharma P, Tripathi MK, Shrivastava SK. Cholinesterase as a Target for Drug Development in Alzheimer's Disease. Methods Mol Biol 2020; 2089:257-286. [PMID: 31773661 DOI: 10.1007/978-1-0716-0163-1_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an enormous healthcare challenge, and 50 million people are currently suffering from it. There are several pathophysiological mechanisms involved, but cholinesterase inhibitors remained the major target from the last 2-3 decades. Among four available therapeutics (donepezil, rivastigmine, galantamine, and memantine), three of them are cholinesterase inhibitors. Herein, we describe the role of acetylcholine sterase (AChE) and related hypothesis in AD along with the pharmacological and chemical aspects of the available cholinesterase inhibitors. This chapter discusses the development of several congeners and hybrids of available cholinesterase inhibitors along with their binding patterns in enzyme active sites.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Manish Kumar Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
20
|
Paul BD, Snyder SH. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front Neurol 2019; 10:1315. [PMID: 31920936 PMCID: PMC6920251 DOI: 10.3389/fneur.2019.01315] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Current medications for neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and Schizophrenia mainly target disease symptoms. Thus, there is an urgent need to develop novel therapeutics that can delay, halt or reverse disease progression. AD, HD, PD, and schizophrenia are characterized by elevated oxidative and nitrosative stress, which play a central role in pathogenesis. Clinical trials utilizing antioxidants to counter disease progression have largely been unsuccessful. Most antioxidants are relatively non-specific and do not adequately target neuroprotective pathways. Accordingly, a search for agents that restore redox balance as well as halt or reverse neuronal loss is underway. The small molecules, cysteamine, the decarboxylated derivative of the amino acid cysteine, and cystamine, the oxidized form of cysteamine, respectively, mitigate oxidative stress and inflammation and upregulate neuroprotective pathways involving brain-derived neurotrophic factor (BDNF) and Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Cysteamine can traverse the blood brain barrier, a desirable characteristic of drugs targeting neurodegeneration. This review addresses recent developments in the use of these aminothiols to counter neurodegeneration and neuropsychiatric deficits.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Scheiner M, Dolles D, Gunesch S, Hoffmann M, Nabissi M, Marinelli O, Naldi M, Bartolini M, Petralla S, Poeta E, Monti B, Falkeis C, Vieth M, Hübner H, Gmeiner P, Maitra R, Maurice T, Decker M. Dual-Acting Cholinesterase-Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo. J Med Chem 2019; 62:9078-9102. [PMID: 31609608 PMCID: PMC7640639 DOI: 10.1021/acs.jmedchem.9b00623] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCB2R) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of β-amyloid (Aβ), and Aβ self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCB1R and hCB2R. To ensure that the hybrids retained their agonist character, the expression of cAMP-regulated genes was quantified, and potency and efficacy were determined. Additionally, the effects of the hybrids on microglia activation and neuroprotection on HT-22 cells were investigated. The most promising in vitro hybrids showed pronounced neuroprotection in an Alzheimer's mouse model at low dosage (0.1 mg/kg, i.p.), lacking hepatotoxicity even at high dose (3 mg/kg, i.p.).
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Christina Falkeis
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Michael Vieth
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR-S1198, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
22
|
Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules 2019; 9:biom9080379. [PMID: 31430943 PMCID: PMC6723352 DOI: 10.3390/biom9080379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/23/2023] Open
Abstract
Tacrine was the first drug to be approved for Alzheimer’s disease (AD) treatment, acting as a cholinesterase inhibitor. The neuropathological hallmarks of AD are amyloid-rich senile plaques, neurofibrillary tangles, and neuronal degeneration. The portfolio of currently approved drugs for AD includes acetylcholinesterase inhibitors (AChEIs) and N-methyl-d-aspartate (NMDA) receptor antagonist. Squaric acid is a versatile structural scaffold capable to be easily transformed into amide-bearing compounds that feature both hydrogen bond donor and acceptor groups with the possibility to create multiple interactions with complementary sites. Considering the relatively simple synthesis approach and other interesting properties (rigidity, aromatic character, H-bond formation) of squaramide motif, we combined this scaffold with different tacrine-based derivatives. In this study, we developed 21 novel dimers amalgamating squaric acid with either tacrine, 6-chlorotacrine or 7-methoxytacrine representing various AChEIs. All new derivatives were evaluated for their anti-cholinesterase activities, cytotoxicity using HepG2 cell line and screened to predict their ability to cross the blood-brain barrier. In this contribution, we also report in silico studies of the most potent AChE and BChE inhibitors in the active site of these enzymes.
Collapse
|
23
|
Di Paolo ML, Cozza G, Milelli A, Zonta F, Sarno S, Minniti E, Ursini F, Rosini M, Minarini A. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J 2019; 286:4995-5015. [PMID: 31291696 DOI: 10.1111/febs.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/02/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
The two human monoamine oxidase isoforms (namely MAO A and MAO B) are enzymes involved in the catabolism of monoamines, including neurotransmitters, and for this reason are well-known and attractive pharmacological targets in neuropsychiatric and neurodegenerative diseases, for which novel pharmacological approaches are necessary. Benextramine is a tetraamine disulfide mainly known as irreversible α-adrenergic antagonist, but able to hit additional targets involved in neurodegeneration. As the molecular structures of monoamine oxidases contain nine cysteine residues, the aim of this study was to evaluate benextramine and eleven structurally related polyamine disulfides as potential MAO inhibitors. Most of the compounds were found to induce irreversible inactivation of MAOs with inactivation potency depending on both the polyamine structure and the enzyme isoform. The more effective compounds generally showed preference for MAO B. Structure-activity relationships studies revealed the key role played by the disulfide core of these molecules in the inactivation mechanism. Docking experiments pointed to Cys323, in MAO A, and Cys172, in MAO B, as target of this type of inhibitors thus suggesting that their covalent binding inside the MAO active site sterically impedes the entrance of substrate towards the FAD cofactor. The effectiveness of benextramine in inactivating MAOs was demonstrated in SH-SY5Y neuroblastoma cell line. These results demonstrated for the first time that benextramine and its derivatives can inactivate human MAOs exploiting a mechanism different from that of the classical MAO inhibitors and could be a starting point for the development of pharmacological tools in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Italy.,Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", Roma, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences, University of Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Italy
| | - Elirosa Minniti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| |
Collapse
|
24
|
Przybyłowska M, Inkielewicz-Stepniak I, Kowalski S, Dzierzbicka K, Demkowicz S, Daśko M. Synthesis and Cholinesterase Inhibitory Activity of N-Phosphorylated/ N-Tiophosphorylated Tacrine. Med Chem 2019; 16:947-957. [PMID: 31309898 DOI: 10.2174/1573406415666190716115524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is progressive and irreversible neurodegenerative disorder. Current pharmacotherapy is not able to stop progression of the disease and can only improve cognitive functions. Therefore, new drugs are being sought that will slow down the development of the disease. OBJECTIVE Novel phosphorus and thiophosphorus tacrine derivatives 7-14 were designed, synthesized and their biological activity and molecular modeling was investigated as a new potential anti- Alzheimer's disease (AD) agents. METHODS 9-Chlorotacrine was treated with propane-1,3-diamine in the presence of sodium iodide to yield N1-(1,2,3,4-tetrahydroacridin-9-yl)propane-1,3-diamine 6. Finally, it was treated with corresponding acid ester or thioester to give phosphorus or thiophosphorus tacrine derivative 7-14. All of the obtained final structures were characterized by 1H NMR, 13C NMR, 31P NMR and MS. RESULTS The results of the docking studies showed that the newly designed phosphorus and thiophosphorus tacrine analogs, theoretically possess AChE and BChE-binding ability. Kinetic study showed that 8 and 12 in the series proved to be more potent electric eel AChE (eeAChE) and human (hAChE) inhibitors than tacrine, where 8 inhibited eeAChE three times more than the referenced drug. The highest BChE inhibition revealed 11 and 13. The most active compounds against eeAChE, hAChE and BChE showed mixed type of inhibition. CONCLUSION All new synthesized compound exhibited lower toxicity against neuroblastoma.cell line (SH-SY5Y) in comparison with tacrine. Two analogues in the series, 7 and 9, demonstrated lack of cytotoxicity against hepatocellular cells (hepG2).
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | | | - Szymon Kowalski
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
25
|
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 2019; 27:895-930. [DOI: 10.1016/j.bmc.2019.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
26
|
Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Exp Mol Med 2019; 51:1-18. [PMID: 30755593 PMCID: PMC6372667 DOI: 10.1038/s12276-019-0205-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
We extracted 15 pterosin derivatives from Pteridium aquilinum that inhibited β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and cholinesterases involved in the pathogenesis of Alzheimer's disease (AD). (2R)-Pterosin B inhibited BACE1, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with an IC50 of 29.6, 16.2 and 48.1 µM, respectively. The Ki values and binding energies (kcal/mol) between pterosins and BACE1, AChE, and BChE corresponded to the respective IC50 values. (2R)-Pterosin B was a noncompetitive inhibitor against human BACE1 and BChE as well as a mixed-type inhibitor against AChE, binding to the active sites of the corresponding enzymes. Molecular docking simulation of mixed-type and noncompetitive inhibitors for BACE1, AChE, and BChE indicated novel binding site-directed inhibition of the enzymes by pterosins and the structure-activity relationship. (2R)-Pterosin B exhibited a strong BBB permeability with an effective permeability (Pe) of 60.3×10-6 cm/s on PAMPA-BBB. (2R)-Pterosin B and (2R,3 R)-pteroside C significantly decreased the secretion of Aβ peptides from neuroblastoma cells that overexpressed human β-amyloid precursor protein at 500 μM. Conclusively, our study suggested that several pterosins are potential scaffolds for multitarget-directed ligands (MTDLs) for AD therapeutics.
Collapse
|
27
|
Eslami M, Nezafat N, Negahdaripour M, Ghasemi Y. Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. J Biomol Struct Dyn 2019; 37:4825-4839. [DOI: 10.1080/07391102.2018.1564701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Intracellular distribution of new tacrine analogues as a potential cause of their cytotoxicity against human neuroblastoma cells SH-SY5Y. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Synthesis and activity towards Alzheimer's disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur J Med Chem 2018; 148:238-254. [PMID: 29466774 DOI: 10.1016/j.ejmech.2018.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
A series of novel tacrine-phenolic acid dihybrids and tacrine-phenolic acid-ligustrazine trihybrids were synthesized, characterized and screened as novel potential anti-Alzheimer drug candidates. These compounds showed potent inhibition activity towards cholinesterases (ChEs), among of them, 9i was the most potent one towards acetylcholinesterase (eeAChE, IC50 = 3.9 nM; hAChE, IC50 = 65.2 nM). 9i could also effectively block β-amyloid (Aβ) self-aggregation with an inhibition ratio of 47% at 20 μM. In addition, its strong anti-oxidation activity could protect PC12 cells from CoCl2-damage in the experimental condition while no neurotoxicity. Furthermore, its hepatotoxicity was lower than tacrine in vitro and in vivo. Kinetic and molecular modeling studies revealed that 9i worked in a mixed-type way, could interact simultaneously with catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Therefore, 9i was a promising multifunctional candidate for the treatment of AD.
Collapse
|
30
|
Chakraborty S, Rakshit J, Bandyopadhyay J, Basu S. Multi-functional neuroprotective activity of neohesperidin dihydrochalcone: a novel scaffold for Alzheimer's disease therapeutics identified via drug repurposing screening. NEW J CHEM 2018. [DOI: 10.1039/c8nj00853a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multi-target screening identifies neohesperidin dihydrochalcone for Alzheimer's disease therapeutics, which exhibits strong BACE1 and amyloid aggregation inhibition along with antioxidant activity.
Collapse
Affiliation(s)
| | - Jyotirmoy Rakshit
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| | - Jaya Bandyopadhyay
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| | - Soumalee Basu
- Department of Microbiology
- University of Calcutta
- Kolkata – 700 019
- India
| |
Collapse
|
31
|
Reddy EK, Remya C, Mantosh K, Sajith AM, Omkumar R, Sadasivan C, Anwar S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur J Med Chem 2017; 139:367-377. [DOI: 10.1016/j.ejmech.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023]
|
32
|
De Simone A, Bartolini M, Baschieri A, Apperley KYP, Chen HH, Guardigni M, Montanari S, Kobrlova T, Soukup O, Valgimigli L, Andrisano V, Keillor JW, Basso M, Milelli A. Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease. Eur J Med Chem 2017; 139:378-389. [PMID: 28810189 DOI: 10.1016/j.ejmech.2017.07.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 07/24/2017] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. In recent years, a plethora of proteins and biochemical pathways has been proposed as possible targets to counteract neurotoxicity. Although the complex scenario is not completely elucidated, close relationships are emerging among some of these actors. In particular, increasing evidence has shown that aggregation of amyloid beta (Aβ), glycogen synthase kinase 3β (GSK-3β) and oxidative stress are strictly interconnected and their concomitant modulation may have a positive and synergic effect in contrasting AD-related impairments. We designed compound 3 which demonstrated the ability to inhibit both GSK-3β (IC50 = 24.36 ± 0.01 μM) and Aβ42 self-aggregation (IC50 = 9.0 ± 1.4 μM), to chelate copper (II) and to act as exceptionally strong radical scavenger (kinh = 6.8 ± 0.5 · 105 M-1s-1) even in phosphate buffer at pH 7.4 (kinh = 3.2 ± 0.5 · 105 M-1s-1). Importantly, compound 3 showed high-predicted blood-brain barrier permeability, did not exert any significant cytotoxic effects in immature cortical neurons up to 50 μM and showed neuroprotective properties at micromolar concentration against toxic insult induced by glutamate.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Kim Y P Apperley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Huan Huan Chen
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Melissa Guardigni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Serena Montanari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Tereza Kobrlova
- Biomedical Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
| |
Collapse
|
33
|
Simoni E, Serafini MM, Caporaso R, Marchetti C, Racchi M, Minarini A, Bartolini M, Lanni C, Rosini M. Targeting the Nrf2/Amyloid-Beta Liaison in Alzheimer's Disease: A Rational Approach. ACS Chem Neurosci 2017; 8:1618-1627. [PMID: 28421738 DOI: 10.1021/acschemneuro.7b00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid is a prominent feature of Alzheimer's disease (AD). Yet, a linear linkage between amyloid-β peptide (Aβ) and the disease onset and progression has recently been questioned. In this context, the crucial partnership between Aβ and Nrf2 pathways is acquiring paramount importance, offering prospects for deciphering the Aβ-centered disease network. Here, we report on a new class of antiaggregating agents rationally designed to simultaneously activate transcription-based antioxidant responses, whose lead 1 showed interesting properties in a preliminary investigation. Relying on the requirements of Aβ recognition, we identified the catechol derivative 12. In SH-SY5Y neuroblastoma cells, 12 combined remarkable free radical scavenger properties to the ability to trigger the Nrf2 pathway and induce the Nrf2-dependent defensive gene NQO1 by means of electrophilic activation of the transcriptional response. Moreover, 12 prevented the formation of cytotoxic stable oligomeric intermediates, being significantly more effective, and per se less toxic, than prototype 1. More importantly, as different chemical features were exploited to regulate Nrf2 and Aβ activities, the two pathways could be tuned independently. These findings point to compound 12 and its derivatives as promising tools for investigating the therapeutic potential of the Nrf2/Aβ cellular network, laying foundation for generating new drug leads to confront AD.
Collapse
Affiliation(s)
- Elena Simoni
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Melania M. Serafini
- Department of Drug Sciences (Pharmacology
Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy
- Scuola Universitaria Superiore IUSS Pavia, P.zza Vittoria, 15, 27100 Pavia, Italy
| | - Roberta Caporaso
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Chiara Marchetti
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Marco Racchi
- Department of Drug Sciences (Pharmacology
Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy
| | - Anna Minarini
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology
Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy
| | - Michela Rosini
- Department of Pharmacy
and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| |
Collapse
|
34
|
New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer's and antiproliferative agents. Eur J Med Chem 2017; 138:761-773. [PMID: 28728108 DOI: 10.1016/j.ejmech.2017.06.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
We have designed a series of tacrine-based homo- and heterodimers that incorporate an antioxidant tether (selenoureido, chalcogenide) as new dual compounds: for the treatment of Alzheimer's disease and as antiproliferative agents. Symmetrical homodimers bearing a dichalcogenide or selenide-based tether, the best compounds in the series, were found to be strong and highly selective electric eel AChE inhibitors, with inhibition constants within the low nanomolar range. This high inhibitory activity was confirmed on recombinant human AChE for the most interesting derivatives. The three most promising homodimers also showed a good inhibitory activity towards amyloid-β self aggregation. The symmetric disulfide derivative bis[5-(1',2',3',4'-tetrahydroacridin-9'-ylamino)pentyl]disulfide (19) showed the best multipotent profile and was not neurotoxic on immortalized mouse cortical neurons even at 50 μM concentration. These results represent an improvement in activity and selectivity compared to parent tacrine, the first marketed drug against Alzheimer's disease. Title compounds also exhibited excellent in vitro antiproliferative activities against a panel of 6 human tumor cell lines, with GI50 values within the submicromolar range for the most potent derivatives (0.12-0.95 μM); such values represent a spectacular increase compared to currently-used chemotherapeutic agents, such as 5-FU (up to 306-fold) and cisplatin (up to 162-fold). Cell cycle experiments indicated the accumulation of cells in the G1 phase of the cycle, a different mechanism than the reported for cisplatin. The breast cancer cell lines turned out to be the most sensitive one of the panel tested.
Collapse
|
35
|
Wang L, Moraleda I, Iriepa I, Romero A, López-Muñoz F, Chioua M, Inokuchi T, Bartolini M, Marco-Contelles J. 5-Methyl- N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5 H-indolo[2,3- b]quinolin-11-amine: a highly potent human cholinesterase inhibitor. MEDCHEMCOMM 2017; 8:1307-1317. [PMID: 30108842 PMCID: PMC6071787 DOI: 10.1039/c7md00143f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
The synthesis, cholinesterase inhibition, molecular modelling and ADME properties of novel tacrine-neocryptolepine heterodimers are described. Compound 3 [5-methyl-N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5H-indolo[2,3-b]quinolin-11-amine], showing a moderate inhibition of the Aβ1-42 self-aggregation (26.5% at a 1 : 5 ratio with Aβ1-42), and a calculated log BB value (0.27) indicating excellent potential BBB penetration, is a highly potent human cholinesterase inhibitor [IC50 (hAChE) = 0.95 ± 0.04 nM; IC50 (hBuChE) = 2.29 ± 0.14 nM] which can be listed among the most potent hAChE inhibitors so far identified, and is not hepatotoxic in vitro at the concentrations at which the ChEs are inhibited. A molecular modeling study was also undertaken in order to elucidate the AChE and the BuChE bind modes of all the new compounds. The docking results show that all of them bind to AChE in extended conformations and to BuChE in folded conformations. Moreover, these studies revealed that the length of the linker is crucial to binding both the catalytic anionic site and the peripheral anionic site.
Collapse
Affiliation(s)
- Li Wang
- Division of Chemistry and Biotechnology , Graduate School of Natural Science and Technology , Okayama University , 3.1.1 Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan . ; Tel: +81 86 294 5045
| | - Ignacio Moraleda
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares , Madrid , Spain
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares , Madrid , Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología , Facultad de Veterinaria , Universidad Complutense de Madrid , 28040-Madrid , Spain
| | - Francisco López-Muñoz
- Faculty of Health , Camilo José Cela University , C/Castillo de Alarcón, 49; 28692 Villanueva de la Cañada , Madrid , Spain
- Neuropsychopharmacology Unit , "Hospital 12 de Octubre" Research Institute , Av. de Córdoba s/n , 28041 Madrid , Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC) , C/ Juan de la Cierva 3 , 28006-Madrid , Spain . ; Tel: +34 91 5622900
| | - Tsutomu Inokuchi
- Division of Chemistry and Biotechnology , Graduate School of Natural Science and Technology , Okayama University , 3.1.1 Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan . ; Tel: +81 86 294 5045
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum , University of Bologna , Via Belmeloro 6 , 40126 Bologna , Italy . ; Tel: +39 0512099729
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) , C/ Juan de la Cierva 3 , 28006-Madrid , Spain . ; Tel: +34 91 5622900
| |
Collapse
|
36
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
37
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
38
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
39
|
Zha X, Lamba D, Zhang L, Lou Y, Xu C, Kang D, Chen L, Xu Y, Zhang L, De Simone A, Samez S, Pesaresi A, Stojan J, Lopez MG, Egea J, Andrisano V, Bartolini M. Novel Tacrine-Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography. J Med Chem 2015; 59:114-31. [PMID: 26632651 DOI: 10.1021/acs.jmedchem.5b01119] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Twenty-six new tacrine-benzofuran hybrids were designed, synthesized, and evaluated in vitro on key molecular targets for Alzheimer's disease. Most hybrids exhibited good inhibitory activities on cholinesterases and β-amyloid self-aggregation. Selected compounds displayed significant inhibition of human β-secretase-1 (hBACE-1). Among the 26 hybrids, 2e showed the most interesting profile as a subnanomolar selective inhibitor of human acetylcholinesterase (hAChE) (IC50 = 0.86 nM) and a good inhibitor of both β-amyloid aggregation (hAChE- and self-induced, 61.3% and 58.4%, respectively) and hBACE-1 activity (IC50 = 1.35 μM). Kinetic studies showed that 2e acted as a slow, tight-binding, mixed-type inhibitor, while X-ray crystallographic studies highlighted the ability of 2e to induce large-scale structural changes in the active-site gorge of Torpedo californica AChE (TcAChE), with significant implications for structure-based drug design. In vivo studies confirmed that 2e significantly ameliorates performances of scopolamine-treated ICR mice. Finally, 2e administration did not exhibit significant hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoming Zha
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park - Basovizza , S.S. no. 14 Km 163.5, I-34149 Trieste, Italy
| | - Lili Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yinghan Lou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Changxu Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Di Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | | | | | - Luyong Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna , Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Sarah Samez
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park - Basovizza , S.S. no. 14 Km 163.5, I-34149 Trieste, Italy.,Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Alessandro Pesaresi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park - Basovizza , S.S. no. 14 Km 163.5, I-34149 Trieste, Italy
| | - Jure Stojan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana , Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Manuela G Lopez
- Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid , C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid , C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna , Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna , Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
40
|
Hu SQ, Wang R, Cui W, Mak SH, Li G, Hu YJ, Lee MY, Pang YP, Han YF. Dimeric bis (heptyl)-Cognitin Blocks Alzheimer's β-Amyloid Neurotoxicity Via the Inhibition of Aβ Fibrils Formation and Disaggregation of Preformed Fibrils. CNS Neurosci Ther 2015; 21:953-61. [PMID: 26507365 DOI: 10.1111/cns.12472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/28/2022] Open
Abstract
AIMS Fibrillar aggregates of β-amyloid protein (Aβ) are the main constituent of senile plaques and considered to be one of the causative events in the pathogenesis of Alzheimer's disease (AD). Compounds that could inhibit Aβ fibrils formation, disaggregate preformed Aβ fibrils as well as reduce their associated neurotoxicity might have therapeutic values for treating AD. In this study, the inhibitory effects of bis (heptyl)-cognitin (B7C), a multifunctional dimer derived from tacrine, on aggregation and neurotoxicity of Aβ1-40 were evaluated both in vitro and in vivo. METHODS Thioflavin T fluorescence assay was carried out to evaluate Aβ aggregation, MTT and Hoechst-staining assays were performed to investigate Aβ-associated neurotoxicity. Fluorescent probe DCFH-DA was used to estimate the accumulation of intracellular reactive oxygen stress (ROS). Morris water maze was applied to determine learning and memory deficits induced by intracerebroventricular infusion of Aβ in rats. RESULTS B7C (0.1-10 μM), but not tacrine, effectively inhibited Aβ fibrils formation and disaggregated preformed Aβ fibrils following co-incubation of B7C and Aβ monomers or preformed fibrils, respectively. In addition, B7C markedly reduced Aβ fibrils-associated neurotoxicity in SH-SY5Y cell line, as evidenced by the increase in cell survival, the decrease in Hoechst-stained nuclei and in intracellular ROS. Most encouragingly, B7C (0.1 and 0.2 mg/kg), 10 times more potently than tacrine (1 and 2 mg/kg), inhibited memory impairments after intracerebroventricular infusion of Aβ in rats, as evidenced by the decrease in escape latency and the increase in the spatial bias in Morris water maze test along with upregulation of choline acetyltransferase activity and downregulation of acetylcholinesterase activity. CONCLUSION These findings provide not only novel molecular insight into the potential application of B7C in treating AD, but also an effective approach for screening anti-AD agents.
Collapse
Affiliation(s)
- Sheng-Quan Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Rui Wang
- Department of Pharmaceutical Science, School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shing-Hung Mak
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
41
|
Simoni E, Serafini MM, Bartolini M, Caporaso R, Pinto A, Necchi D, Fiori J, Andrisano V, Minarini A, Lanni C, Rosini M. Nature-Inspired Multifunctional Ligands: Focusing on Amyloid-Based Molecular Mechanisms of Alzheimer's Disease. ChemMedChem 2015; 11:1309-17. [DOI: 10.1002/cmdc.201500422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Simoni
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Melania M. Serafini
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Roberta Caporaso
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Antonella Pinto
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Daniela Necchi
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Jessica Fiori
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies; Alma Mater Studiorum, University of Bologna; Corso d'Augusto 237 47921 Rimini Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| |
Collapse
|
42
|
Kanhed AM, Sinha A, Machhi J, Tripathi A, Parikh ZS, Pillai PP, Giridhar R, Yadav MR. Discovery of isoalloxazine derivatives as a new class of potential anti-Alzheimer agents and their synthesis. Bioorg Chem 2015; 61:7-12. [DOI: 10.1016/j.bioorg.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
|
43
|
Eslami M, Hashemianzadeh SM, Bagherzadeh K, Seyed Sajadi SA. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2015; 34:855-69. [PMID: 26043757 DOI: 10.1080/07391102.2015.1057526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The infamous chronic neurodegenerative disease, Alzheimer's, that starts with short-term memory loss and eventually leads to gradual bodily function decline which has been attributed to the deficiency in brain neurotransmitters, acetylcholine, and butylcholine. As a matter of fact, design of compounds that can inhibit cholinesterases activities (acetylcholinesterase and butylcholinesterase) has been introduced as an efficient method to treat Alzheimer's. Among proposed compounds, bis(7)tacrine (B7T) is recognized as a noteworthy suppressor for Alzheimer's disease. Recently a new analog of B7T, cystamine-tacrine dimer is offered as an agent to detain Alzheimer's complications, even better than the parent compound. In this study, classical molecular dynamic simulations have been employed to take a closer look into the modes of interactions between the mentioned ligands and both cholinesterase enzymes. According to our obtained results, the structural differences in the target enzymes active sites result in different modes of interactions and inhibition potencies of the ligands against both enzymes. The obtained information can help to investigate those favorable fragments in the studied ligands skeletons that have raised the potency of the analog in comparison with the parent compound to design more potent multi target ligands to heal Alzheimer's disease.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| | - Seyed Majid Hashemianzadeh
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| | - Kowsar Bagherzadeh
- b Faculty of Pharmacy and Medicinal Plants Research Center, Department of Medicinal Chemistry , Tehran University of Medical Sciences , Tehran , Iran
| | - Seyed Abolfazl Seyed Sajadi
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| |
Collapse
|
44
|
Traumatic brain injury and NADPH oxidase: a deep relationship. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:370312. [PMID: 25918580 PMCID: PMC4397034 DOI: 10.1155/2015/370312] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world.
TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology.
In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.
Collapse
|
45
|
Rochais C, Lecoutey C, Gaven F, Giannoni P, Hamidouche K, Hedou D, Dubost E, Genest D, Yahiaoui S, Freret T, Bouet V, Dauphin F, Sopkova de Oliveira Santos J, Ballandonne C, Corvaisier S, Malzert-Fréon A, Legay R, Boulouard M, Claeysen S, Dallemagne P. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride. J Med Chem 2015; 58:3172-87. [PMID: 25793650 DOI: 10.1021/acs.jmedchem.5b00115] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, we describe the synthesis and in vitro evaluation of a novel series of multitarget-directed ligands (MTDL) displaying both nanomolar dual-binding site (DBS) acetylcholinesterase inhibitory effects and partial 5-HT4R agonist activity, among which donecopride was selected for further in vivo evaluations in mice. The latter displayed procognitive and antiamnesic effects and enhanced sAPPα release, accounting for a potential symptomatic and disease-modifying therapeutic benefit in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Christophe Rochais
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Cédric Lecoutey
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Florence Gaven
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Patrizia Giannoni
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Katia Hamidouche
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Damien Hedou
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Emmanuelle Dubost
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - David Genest
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Samir Yahiaoui
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Thomas Freret
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Valentine Bouet
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - François Dauphin
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | | | - Céline Ballandonne
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Sophie Corvaisier
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.,⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Aurélie Malzert-Fréon
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Remi Legay
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Michel Boulouard
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Sylvie Claeysen
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Patrick Dallemagne
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
46
|
Brogi S, Butini S, Maramai S, Colombo R, Verga L, Lanni C, De Lorenzi E, Lamponi S, Andreassi M, Bartolini M, Andrisano V, Novellino E, Campiani G, Brindisi M, Gemma S. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci Ther 2015; 20:624-32. [PMID: 24935788 DOI: 10.1111/cns.12290] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022] Open
Abstract
AIMS We recently described multifunctional tools (2a-c) as potent inhibitors of human Cholinesterases (ChEs) also able to modulate events correlated with Aβ aggregation. We herein propose a thorough biological and computational analysis aiming at understanding their mechanism of action at the molecular level. METHODS We determined the inhibitory potency of 2a-c on Aβ1-42 self-aggregation, the interference of 2a with the toxic Aβ oligomeric species and with the postaggregation states by capillary electrophoresis analysis and transmission electron microscopy. The modulation of Aβ toxicity was assessed for 2a and 2b on human neuroblastoma cells. The key interactions of 2a with Aβ and with the Aβ-preformed fibrils were computationally analyzed. 2a-c toxicity profile was also assessed (human hepatocytes and mouse fibroblasts). RESULTS Our prototypical pluripotent analogue 2a interferes with Aβ oligomerization process thus reducing Aβ oligomers-mediated toxicity in human neuroblastoma cells. 2a also disrupts preformed fibrils. Computational studies highlighted the bases governing the diversified activities of 2a. CONCLUSION Converging analytical, biological, and in silico data explained the mechanism of action of 2a on Aβ1-42 oligomers formation and against Aβ-preformed fibrils. This evidence, combined with toxicity data, will orient the future design of safer analogues.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Digiacomo M, Chen Z, Wang S, Lapucci A, Macchia M, Yang X, Chu J, Han Y, Pi R, Rapposelli S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg Med Chem Lett 2015; 25:807-10. [DOI: 10.1016/j.bmcl.2014.12.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/28/2022]
|
48
|
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease. Curr Med Chem 2015; 22:373-404. [PMID: 25386820 PMCID: PMC4435057 DOI: 10.2174/0929867321666141106122628] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Barbara Malawska
- Jagiellonian University, Medical College, Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, 30-688 Krakow, Medyczna 9, Poland.
| |
Collapse
|
49
|
Eslami M, Hashemianzadeh SM, Moghaddam KG, Khorsandi-Lagol A, Seyed Sajadi SA. Computational evidence to design an appropriate candidate for the treatment of Alzheimer's disease through replacement of the heptamethylene linker of bis(7)tacrine with S-allylcysteine. RSC Adv 2015. [DOI: 10.1039/c5ra11346f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the multiple pathogens of Alzheimer's disease, multitarget-directed ligand (MTDL) design has been highly regarded in recent years.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Kiana Gholamjani Moghaddam
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Amin Khorsandi-Lagol
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Seyed Abolfazl Seyed Sajadi
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| |
Collapse
|
50
|
Qian S, He L, Mak M, Han Y, Ho CY, Zuo Z. Synthesis, biological activity, and biopharmaceutical characterization of tacrine dimers as acetylcholinesterase inhibitors. Int J Pharm 2014; 477:442-53. [PMID: 25445524 DOI: 10.1016/j.ijpharm.2014.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/19/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022]
Abstract
Tacrine (THA), as the first approved acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD), has been extensively investigated in last seven decades. After dimerization of THA via a 7-carbon alkyl spacer, bis(7)-tacrine (B7T) showed much potent anti-AChE activity than THA. We here report synthesis, biological evaluation and biopharmaceutical characterization of six THA dimers referable to B7T. According to IC50 values, the in vitro anti-AChE activities of THA dimers were up to 300-fold more potent and 200-fold more selective than that of THA. In addition, the anti-AChE activities of THA dimers were found to be associated with the type and length of the linkage. All studied THA dimers showed much lower cytotoxicity than B7T, but like B7T, they demonstrated much lower absorptive permeabilities than that of THA on Caco-2 monolayer model. In addition, all THA dimers demonstrated significant efflux transport (efflux ratio >4), indicating that the limited permeability could be associated with the efflux transport during absorption process. Moreover, the dimer with higher Log P value was accompanied with higher permeability but lower aqueous solubility. A balanced consideration of activity, solubility, cytotoxicity and permeability should be conducted in selection of the potential candidates for further in vivo investigation.
Collapse
Affiliation(s)
- Shuai Qian
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Lisi He
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Marvin Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Chun-Yu Ho
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Department of Chemistry, South University of Science and Technology of China, Shenzhen, PR China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|