1
|
Chen D, Liu C, Wang F, Li P, Wei Z, Nie D, Liu P, Liu H. Structure-function interrelationships and associated neurotransmitter profiles in drug-naïve benign childhood epilepsy with central-temporal spikes patients. Eur Radiol 2025; 35:417-426. [PMID: 39009880 DOI: 10.1007/s00330-024-10954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES To explore the interrelationships between structural and functional changes as well as the potential neurotransmitter profile alterations in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients. METHODS Structural magnetic resonance imaging (sMRI) and resting-state functional MRI data from 20 drug-naïve BECTS patients and 33 healthy controls (HCs) were acquired. Parallel independent component analysis (P-ICA) was used to identify covarying components among gray matter volume (GMV) maps and fractional amplitude of low-frequency fluctuations (fALFF) maps. Furthermore, we explored the spatial correlations between GMV/fALFF changes derived from P-ICA and neurotransmitter maps in JuSpace toolbox. RESULTS A significantly positive correlation (p < 0.001) was identified between one structural component (GMV_IC6) and one functional component (fALFF_IC4), which showed significant group differences between drug-naïve BECTS patients and HCs (GMV_IC6: p < 0.01; fALFF_IC4: p < 0.001). GMV_IC6 showed increased GMV in the frontal lobe, temporal lobe, thalamus, and precentral gyrus as well as fALFF_IC4 had enhanced fALFF in the cerebellum in drug-naïve BECTS patients compared to HCs. Moreover, significant correlations between GMV alterations in GMV_IC6 and the serotonin (5HT1a: p < 0.001; 5HT2a: p < 0.001), norepinephrine (NAT: p < 0.001) and glutamate systems (mGluR5: p < 0.001) as well as between fALFF alterations in fALFF_IC4 and the norepinephrine system (NAT: p < 0.001) were detected. CONCLUSION The current findings suggest co-altered structural/functional components that reflect the correlation of language and motor networks as well as associated with the serotonergic, noradrenergic, and glutamatergic neurotransmitter systems. CLINICAL RELEVANCE STATEMENT The relationship between anatomical brain structure and intrinsic neural activity was evaluated using a multimodal fusion analysis and neurotransmitters which might provide an important window into the multimodal neural and underlying molecular mechanisms of benign childhood epilepsy with central-temporal spikes. KEY POINTS Structure-function relationships in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients were explored. The interrelated structure-function components were found and correlated with the serotonin, norepinephrine, and glutamate systems. Co-altered structural/functional components reflect the correlation of language and motor networks and correlate with the specific neurotransmitter systems.
Collapse
Affiliation(s)
- Duoli Chen
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chengxiang Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Fuqin Wang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Pengyu Li
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zi Wei
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Dingxin Nie
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an, China.
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| | - Heng Liu
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Ngomba RT, Lüttjohann A, Dexter A, Ray S, van Luijtelaar G. The Metabotropic Glutamate 5 Receptor in Sleep and Wakefulness: Focus on the Cortico-Thalamo-Cortical Oscillations. Cells 2023; 12:1761. [PMID: 37443795 PMCID: PMC10341329 DOI: 10.3390/cells12131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sleep is an essential innate but complex behaviour which is ubiquitous in the animal kingdom. Our knowledge of the distinct neural circuit mechanisms that regulate sleep and wake states in the brain are, however, still limited. It is therefore important to understand how these circuits operate during health and disease. This review will highlight the function of mGlu5 receptors within the thalamocortical circuitry in physiological and pathological sleep states. We will also evaluate the potential of targeting mGlu5 receptors as a therapeutic strategy for sleep disorders that often co-occur with epileptic seizures.
Collapse
Affiliation(s)
| | - Annika Lüttjohann
- Institute of Physiology I, University of Münster, 48149 Münster, Germany
| | - Aaron Dexter
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
4
|
Celli R, Striano P, Citraro R, Di Menna L, Cannella M, Imbriglio T, Koko M, Consortium EEC, De Sarro G, Monn JA, Battaglia G, van Luijtelaar G, Nicoletti F, Russo E, Leo A. mGlu3 Metabotropic Glutamate Receptors as a Target for the Treatment of Absence Epilepsy: Preclinical and Human Genetics Data. Curr Neuropharmacol 2023; 21:105-118. [PMID: 35579153 PMCID: PMC10193767 DOI: 10.2174/1570159x20666220509160511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous studies suggest that different metabotropic glutamate (mGlu) receptor subtypes are potential drug targets for treating absence epilepsy. However, no information is available on mGlu3 receptors. OBJECTIVE To examine whether (i) changes of mGlu3 receptor expression/signaling are found in the somatosensory cortex and thalamus of WAG/Rij rats developing spontaneous absence seizures; (ii) selective activation of mGlu3 receptors with LY2794193 affects the number and duration of spikewave discharges (SWDs) in WAG/Rij rats; and (iii) a genetic variant of GRM3 (encoding the mGlu3 receptor) is associated with absence epilepsy. METHODS Animals: immunoblot analysis of mGlu3 receptors, GAT-1, GLAST, and GLT-1; realtime PCR analysis of mGlu3 mRNA levels; assessment of mGlu3 receptor signaling; EEG analysis of SWDs; assessment of depressive-like behavior. Humans: search for GRM3 and GRM5 missense variants in 196 patients with absence epilepsy or other Idiopathic Generalized Epilepsy (IGE)/ Genetic Generalized Epilepsy (GGE) and 125,748 controls. RESULTS mGlu3 protein levels and mGlu3-mediated inhibition of cAMP formation were reduced in the thalamus and somatosensory cortex of pre-symptomatic (25-27 days old) and symptomatic (6-7 months old) WAG/Rij rats compared to age-matched controls. Treatment with LY2794193 (1 or 10 mg/kg, i.p.) reduced absence seizures and depressive-like behavior in WAG/Rij rats. LY2794193 also enhanced GAT1, GLAST, and GLT-1 protein levels in the thalamus and somatosensory cortex. GRM3 and GRM5 gene variants did not differ between epileptic patients and controls. CONCLUSION We suggest that mGlu3 receptors modulate the activity of the cortico-thalamo-cortical circuit underlying SWDs and that selective mGlu3 receptor agonists are promising candidate drugs for absence epilepsy treatment.
Collapse
Affiliation(s)
| | - Pasquale Striano
- Department Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- I.R.C.C.S. “G. Gaslini” Institute, Genova, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | | | | | | | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | - Giovambattista De Sarro
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | | | - Giuseppe Battaglia
- I.R.C.C.S. Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| | - Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Department, FAS@UMG Research Center, Catanzaro, Italy
| |
Collapse
|
5
|
Xu P, Huang X, Niu W, Yu D, Zhou M, Wang H. Metabotropic glutamate receptor 5 upregulation of γ-aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Res Bull 2022; 183:104-115. [DOI: 10.1016/j.brainresbull.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
6
|
Brown J, Iacovelli L, Di Cicco G, Grayson B, Rimmer L, Fletcher J, Neill JC, Wall MJ, Ngomba RT, Harte M. The comparative effects of mGlu5 receptor positive allosteric modulators VU0409551 and VU0360172 on cognitive deficits and signalling in the sub-chronic PCP rat model for schizophrenia. Neuropharmacology 2022; 208:108982. [DOI: 10.1016/j.neuropharm.2022.108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
|
7
|
Korkmaz OT, Arkan S, Öncü-Kaya EM, Ateş N, Tunçel N. Vasoactive intestinal peptide (VIP) conducts the neuronal activity during absence seizures: GABA seems to be the main mediator of VIP. Neurosci Lett 2021; 765:136268. [PMID: 34571088 DOI: 10.1016/j.neulet.2021.136268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Absence epilepsy is classified as a childhood generalized epilepsy syndrome with distinctive electroencephalographic patterns. The Wistar Albino Glaxo originating from Rijswijk (WAG/Rij) strain is a very well validated animal model of absence epilepsy that also shows behavioral deficits. In addition to the gastrointestinal system, VIP is highly expressed throughout numerous brain regions, and it plays crucial roles as a neurotransmitter and as a neuromodulatory, neurotrophic and neuroprotective factor in both the central and peripheral nervous systems. In this study, adult WAG/Rij rats were divided into two groups (n = 10): a group that was administered VIP (25 ng/kg i.p.) every 2 days for 15 days and an age-matched control group that was administered physiological saline. Electrical brain activity and behavior (depressive- like behavior, learning and memory and anxiety) were investigated in both groups. In addition, the extracellular concentrations of GABA and glutamate and the GABA/glutamate ratio were measured by high-performance liquid chromatography in microdialysate samples collected from the somatosensorial cortex of WAG/Rij rats. Our results demonstrated that VIP treatment significantly suppressed the total duration and number of spike wave discharges in WAG/Rij rats. However, VIP had no significant effect on behavior. VIP increased the extracellular concentration of GABA and the GABA/glutamate ratio in the somatosensory cortex. In conclusion, VIP has suppressive effects on absence seizures, possibly by increasing the GABA concentration and inducing the transformation of glutamate to GABA in the somatosensory cortex of WAG/Rij rats.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Sertan Arkan
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Elif Mine Öncü-Kaya
- Department of Chemistry, Science Faculty, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Nurbay Ateş
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Neşe Tunçel
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| |
Collapse
|
8
|
Di Cicco G, Marzano E, Iacovelli L, Celli R, van Luijtelaar G, Nicoletti F, Ngomba RT, Wall MJ. Group I metabotropic glutamate receptor-mediated long term depression is disrupted in the hippocampus of WAG/Rij rats modelling absence epilepsy. Neuropharmacology 2021; 196:108686. [PMID: 34197893 DOI: 10.1016/j.neuropharm.2021.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Absence epilepsy is frequently associated with cognitive dysfunction, although the underlying mechanisms are not well understood. Here we report that some forms of hippocampal synaptic plasticity are abnormal in symptomatic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Metabotropic Glu 1/5 receptor-mediated long term depression (LTD) at Schaffer collateral CA1 synapses is significantly reduced in symptomatic, 5-6 months old WAG/Rij rats compared to age-matched non epileptic control rats. There were no significant changes in mGlu1/5-dependent LTD in pre-symptomatic, 4-6 weeks old WAG/Rij rats compared to age matched controls. The changes in LTD found in symptomatic WAG/Rij forms are not indicative of general deficits in all forms of synaptic plasticity as long term potentiation (LTP) was unchanged. Immunoblot analysis of hippocampal tissue showed a significant reduction in mGlu5 receptor expression, a trend to an increase in pan Homer protein levels and a decrease in GluA1 receptor expression in the hippocampus of symptomatic WAG/Rij rats vs non-epileptic control rats. There were no changes in mGlu1α receptor or GluA2 protein levels. These findings suggest that abnormalities in hippocampal mGlu5 receptor-dependent synaptic plasticity are associated with the pathological phenotype of WAG/Rij rats. This lays the groundwork for the study of mGlu5 receptors as a candidate drug target for the treatment of cognitive dysfunction linked to absence epilepsy.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | - Emanuela Marzano
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | - Luisa Iacovelli
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Richard T Ngomba
- University of Lincoln, School of Pharmacy Lincoln, United Kingdom; and, Coventry, UK.
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
9
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
10
|
Celli R, Wall MJ, Santolini I, Vergassola M, Di Menna L, Mascio G, Cannella M, van Luijtelaar G, Pittaluga A, Ciruela F, Bruno V, Nicoletti F, Ngomba RT. Pharmacological activation of mGlu5 receptors with the positive allosteric modulator VU0360172, modulates thalamic GABAergic transmission. Neuropharmacology 2020; 178:108240. [PMID: 32768418 DOI: 10.1016/j.neuropharm.2020.108240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have shown that injection of the mGlu5 receptor positive allosteric modulator (PAM) VU0360172 into either the thalamus or somatosensory cortex markedly reduces the frequency of spike-and-wave discharges (SWDs) in the WAG/Rij model of absence epilepsy. Here we have investigated the effects of VU0360172 on GABA transport in the thalamus and somatosensory cortex, as possible modes of action underlying the suppression of SWDs. Systemic VU0360172 injections increase GABA uptake in thalamic synaptosomes from epileptic WAG/Rij rats. Consistent with this observation, VU0360172 could also enhance thalamic GAT-1 protein expression, depending on the dosing regimen. This increase in GAT-1 expression was also observed in the thalamus from non-epileptic rats (presymptomatic WAG/Rij and Wistar) and appeared to occur selectively in neurons. The tonic GABAA receptor current present in ventrobasal thalamocortical neurons was significantly reduced by VU0360172 consistent with changes in GAT-1 and GABA uptake. The in vivo effects of VU0360172 (reduction in tonic GABA current and increase in GAT-1 expression) could be reproduced in vitro by treating thalamic slices with VU0360172 for at least 1 h and appeared to be dependent on the activation of PLC. Thus, the effects of VU0360172 do not require an intact thalamocortical circuit. In the somatosensory cortex, VU0360172 reduced GABA uptake but did not cause significant changes in GAT-1 protein levels. These findings reveal a novel mechanism of regulation mediated by mGlu5 receptors, which could underlie the powerful anti-absence effect of mGlu5 receptor enhancers in animal models.
Collapse
Affiliation(s)
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | | - Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy.
| | | |
Collapse
|
11
|
Aygun H, Ayyildiz M, Agar E. Effects of vitamin D and paricalcitol on epileptogenesis and behavioral properties of WAG/Rij rats with absence epilepsy. Epilepsy Res 2019; 157:106208. [PMID: 31581040 DOI: 10.1016/j.eplepsyres.2019.106208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/10/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
AIM Vitamin D (Vit D) has been considered as a neurosteroid and has a pivotal role in neuroprotection including epilepsy. Vit D regulator acts via a Vit D receptor (VDR). WAG/Rij rats have a genetically epileptic model of absence epilepsy with comorbidity of depression. The aim of the present study was to investigate the effect of Vit D and paricalcitol (PRC) on WAG/Rij rats. MATERIAL AND METHODS Sixty-three male WAG/Rij rats and seven male Wistar rats were used. The effects of acute and chronic treatment with Vit D (5.000 and 60.000 IU/kg, i.p) and PRC (0.5, 5 and 10 μg/kg, i.p) on absence seizures, and related psychiatric comorbidity were investigated in WAG/Rij rats. Depression-like behavior was assayed by using the forced swimming test (FST) and; anxiety-like behavior by using the open field test (OFT). RESULTS Acute Vit D treatments (5.000 and 60.000 IU/kg) similarly reduced the number and duration of spike-wave discharges (SWDs) and showed anxiolytic-antidepressive effect whereas there were no significant changes in other measured parameters between the daily and the bolus dose of Vit D. Acute administration of PRC (0.5, 5 and 10 μg/kg) showed anti-convulsive and anxiolytic-antidepressive effect. The dose (0.5 μg/kg) of PRC was the most effective dose. Chronic treatment was more effective than acute therapy in all parameters. CONCLUSION The results of the present study demonstrate that Vit D and PRC have antiepileptic and anxiolytic-antidepressive effects on the absence epilepsy in WAG/Rij rats.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey.
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Erdal Agar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
12
|
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets 2019; 23:341-351. [PMID: 30801204 DOI: 10.1080/14728222.2019.1586885] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Several drugs targeting the GABAergic system are used in the treatment of epilepsy, but only one drug targeting glutamate receptors is on the market. This is surprising because an imbalance between excitatory and inhibitory neurotransmission lies at the core of the pathophysiology of epilepsy. One possible explanation is that drug development has been directed towards the synthesis of molecules that inhibit the activity of ionotropic glutamate receptors. These receptors mediate fast excitatory synaptic transmission in the central nervous system (CNS) and their blockade may cause severe adverse effects such as sedation, cognitive impairment, and psychotomimetic effects. Metabotropic glutamate (mGlu) receptors are more promising drug targets because these receptors modulate synaptic transmission rather than mediate it. Areas covered: We review the current evidence that links mGlu receptor subtypes to the pathophysiology and experimental treatment of convulsive and absence seizures. Expert opinion: While mGlu5 receptor negative allosteric modulators have the potential to be protective against convulsive seizures and hyperactivity-induced neurodegeneration, drugs that enhance mGlu5 and mGlu7 receptor function may have beneficial effects in the treatment of absence epilepsy. Evidence related to the other mGlu receptor subtypes is more fragmentary; further investigations are required for an improved understanding of their role in the generation and propagation of seizures.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Bruno
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| | - Ferdinando Nicoletti
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| |
Collapse
|
13
|
Ngomba RT, van Luijtelaar G. Metabotropic glutamate receptors as drug targets for the treatment of absence epilepsy. Curr Opin Pharmacol 2018; 38:43-50. [PMID: 29547778 DOI: 10.1016/j.coph.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed in key regions of the cortex and the thalamus and are known to regulate spike and wave discharges (SWDs), the electroclinical hallmarks of absence seizures. Recent preclinical studies have highlighted the therapeutic potential of selective group I and III mGlu receptor subtype allosteric modulators, which can suppress pathological SWDs. Of particular interest are positive allosteric modulators (PAMs) for mGlu5 receptors, as they currently show the most promise as novel anti-absence epilepsy drugs. The rational design of novel selective positive and negative allosteric mGlu modulators, especially for the mGlu5 receptor, has been made possible following the recent crystallographic structure determination of group I mGlu receptors. Our current knowledge of the role of different mGlu receptor subtypes in absence epilepsy is outlined in this article.
Collapse
Affiliation(s)
- Richard Teke Ngomba
- School of Pharmacy in College of Science, University of Lincoln, Lincoln LN6 7TS, UK.
| | | |
Collapse
|
14
|
Santolini I, Celli R, Cannella M, Imbriglio T, Guiducci M, Parisi P, Schubert J, Iacomino M, Zara F, Lerche H, Moyanova S, Ngomba RT, van Luijtelaar G, Battaglia G, Bruno V, Striano P, Nicoletti F. Alterations in the α 2 δ ligand, thrombospondin-1, in a rat model of spontaneous absence epilepsy and in patients with idiopathic/genetic generalized epilepsies. Epilepsia 2017; 58:1993-2001. [PMID: 28913875 DOI: 10.1111/epi.13898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). METHODS We measured the transcripts of thrombospondin-1 and α2 δ subunit, and protein levels of α2 δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. RESULTS Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. SIGNIFICANCE These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs.
Collapse
Affiliation(s)
| | | | | | | | - Michela Guiducci
- Departments of Neurosciences, Mental Health and Sensory Organs, University Sapienza, Rome, Italy
| | - Pasquale Parisi
- Departments of Neurosciences, Mental Health and Sensory Organs, University Sapienza, Rome, Italy
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michele Iacomino
- Laboratory of Neurogenetics, "G. Gaslini" Institute, Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, "G. Gaslini" Institute, Genova, Italy
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy.,Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Departments of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy.,Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy
| |
Collapse
|
15
|
Jarre G, Altwegg-Boussac T, Williams MS, Studer F, Chipaux M, David O, Charpier S, Depaulis A, Mahon S, Guillemain I. Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cereb Cortex 2017; 27:4607-4623. [DOI: 10.1093/cercor/bhx174] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/22/2017] [Indexed: 01/14/2023] Open
Affiliation(s)
- Guillaume Jarre
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Tristan Altwegg-Boussac
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mark S. Williams
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Florian Studer
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Mathilde Chipaux
- Pediatric Neurosurgery Department, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Stéphane Charpier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- UPMC Univ Paris 06, F-75005, Paris, France
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Séverine Mahon
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabelle Guillemain
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
16
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
17
|
The anti-absence effect of mGlu5 receptor amplification with VU0360172 is maintained during and after antiepileptogenesis. Pharmacol Biochem Behav 2016; 146-147:50-9. [PMID: 27178815 DOI: 10.1016/j.pbb.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/19/2023]
|
18
|
Karimzadeh F, Modarres Mousavi SM, Ghadiri T, Jafarian M, Soleimani M, Sadeghi SM, Mesgari M, Joghataei MT, Gorji A. The Modulatory Effect of Metabotropic Glutamate Receptor Type-1α on Spike-Wave Discharges in WAG/Rij Rats. Mol Neurobiol 2016; 54:846-854. [PMID: 26780454 DOI: 10.1007/s12035-016-9692-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Modulatory function of metabotropic glutamate type 1 (mGlu1) receptors plays a crucial role in the pathophysiology of some neurological disorders, including schizophrenia and epilepsy. In this study, the expression of mGlu1α receptors in the thalamic nuclei was assessed during development of absence seizures in the WAG/Rij rats, a valid genetic animal model of absence epilepsy. In addition, the effect of pharmacological modulation of mGlu1α receptors in the laterodorsal (LD) nucleus of the thalamus on the characteristic features of bioelectrical brain activities in the WAG/Rij rats was assessed. The expression of mGlu1α receptors in the LD was assessed in four experimental groups of both WAG/Rij and Wistar rats with 2 and 6 months of age. Agonist and antagonist of mGlu1α receptors were infused in LD in the six months old WAG/Rij (epileptic) rats. The protein level of mGlu1α receptors in the thalamus of the 6-month-old WAG/Rij rats was lower than non-epileptic animals. In addition, the distribution of mGlu1α receptors in different thalamic nuclei was lower in the 6-month-old WAG/Rij compared to age-matched Wistar rats. The gene expression of mGlu1α receptor was also significantly lower in 6-month-old WAG/Rij rats in the LD compared to other animal groups. The microinjection of mGlu1α receptors agonist and antagonist in the LD reduced the duration of spike-wave discharges (SWDs) and increased the amplitude and duration of SWDs, respectively, in 6-month-old WAG/Rij rats. The alterations of mGlu1α receptors expression in the thalamus of epileptic WAG/Rij rats as well as its modulatory effects in the generation of SWDs suggest the potential of mGlu1 receptors as a therapeutic target in absence epilepsy.
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Tahereh Ghadiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Maryam Jafarian
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Mohammad Sadeghi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mesgari
- Klinik und Poliklinik für Neurochirurgie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Klinik und Poliklinik für Neurologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Klinik und Poliklinik für Neurochirurgie, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Klinik und Poliklinik für Neurologie, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
19
|
Metabotropic glutamate receptor 5 – a promising target in drug development and neuroimaging. Eur J Nucl Med Mol Imaging 2016; 43:1151-70. [DOI: 10.1007/s00259-015-3301-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
20
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
21
|
D'Amore V, von Randow C, Nicoletti F, Ngomba RT, van Luijtelaar G. Anti-absence activity of mGlu1 and mGlu5 receptor enhancers and their interaction with a GABA reuptake inhibitor: Effect of local infusions in the somatosensory cortex and thalamus. Epilepsia 2015; 56:1141-51. [PMID: 26040777 DOI: 10.1111/epi.13024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glutamate and γ-aminobutyric acid (GABA) are the key neurotransmitter systems in the cortical-thalamocortical network, involved in normal and pathologic oscillations such as spike-wave discharges (SWDs), which characterize different forms of absence epilepsy. Metabotropic glutamate (mGlu) and GABA receptors are widely expressed within this network. Herein, we examined the effects of two selective positive allosteric modulators (PAMs) of mGlu1 and mGlu5 receptors, the GABA reuptake inhibitor, tiagabine, and their interaction in the somatosensory cortex and thalamus on SWDs in WAG/Rij rats. METHODS Male WAG/Rij rats were equipped with bilateral cannulas in the somatosensory cortex (S1po) or the ventrobasal (VB) thalamic nuclei, and with cortical electroencephalography (EEG) electrodes. Rats received a single dose of the mGlu1 receptor PAM, RO0711401, or the mGlu5 receptor PAM, VU0360172, various doses of tiagabine, or VU0360172 combined with tiagabine. RESULTS Both PAMs suppressed SWDs regardless of the site of injection. Tiagabine enhanced SWDs when injected into the thalamus, but, unexpectedly, suppressed SWDs in a dose-dependent manner when injected into the cortex. Intracortical co-injection of VU0360172 and tiagabine produced slightly larger effects as compared to either VU0360172 or tiagabine alone. Intrathalamic co-injections of VU0360172 and subthreshold doses of tiagabine caused an antiabsence effect similar to that exhibited by VU0360172 alone in the first 10 min. At 30 min, however, the antiabsence effect of VU0360172 was prevented by subthreshold doses of tiagabine, and the combination produced a paradoxical proabsence effect at 40 and 50 min. SIGNIFICANCE These data (1) show that mGlu1 and mGlu5 receptor PAMs reduce absence seizures acting at both thalamic and cortical levels; (2) demonstrate for the first time that tiagabine, despite its established absence-enhancing effect, reduces SWDs when injected into the somatosensory cortex; and (3) indicate that the efficacy of VU0360172 in the thalamus may be critically affected by the availability of (extra)synaptic GABA.
Collapse
Affiliation(s)
| | - Constanze von Randow
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure's on- and offset in rodents and man. Front Physiol 2015; 6:16. [PMID: 25698972 PMCID: PMC4318340 DOI: 10.3389/fphys.2015.00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/11/2015] [Indexed: 11/13/2022] Open
Abstract
Network mechanisms relevant for the generation, maintenance and termination of spike-wave discharges (SWD), the neurophysiological hallmark of absence epilepsy, are still enigmatic and widely discussed. Within the last years, however, improvements in signal analytical techniques, applied to both animal and human fMRI, EEG, MEG, and ECoG data, greatly increased our understanding and challenged several, dogmatic concepts of SWD. This review will summarize these recent data, demonstrating that SWD are not primary generalized, are not sudden and unpredictable events. It will disentangle different functional contributions of structures within the cortico-thalamo-cortical system, relevant for the generation, generalization, maintenance, and termination of SWD and will present a new “network based” scenario for these oscillations. Similarities and differences between rodent and human data are presented demonstrating that in both species a local cortical onset zone of SWD exists, although with different locations; that in both some forms of cortical and thalamic precursor activity can be found, and that SWD occur through repetitive cyclic activity between cortex and thalamus. The focal onset zone in human data could differ between patients with varying spatial and temporal dynamics; in rats the latter is still poorly investigated.
Collapse
Affiliation(s)
- Annika Lüttjohann
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Institute of Physiology I, Westfälische Wilhelms-University Münster Münster, Germany
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
23
|
Metabotropic glutamate receptors as drug targets: what's new? Curr Opin Pharmacol 2014; 20:89-94. [PMID: 25506748 DOI: 10.1016/j.coph.2014.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022]
Abstract
The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive.
Collapse
|
24
|
D'Amore V, Santolini I, Celli R, Lionetto L, De Fusco A, Simmaco M, van Rijn CM, Vieira E, Stauffer SR, Conn PJ, Bosco P, Nicoletti F, van Luijtelaar G, Ngomba RT. Head-to head comparison of mGlu1 and mGlu5 receptor activation in chronic treatment of absence epilepsy in WAG/Rij rats. Neuropharmacology 2014; 85:91-103. [PMID: 24859611 DOI: 10.1016/j.neuropharm.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/10/2014] [Accepted: 05/04/2014] [Indexed: 11/17/2022]
Abstract
Acute treatment with positive allosteric modulators (PAMs) of mGlu1 and mGlu5 metabotropic glutamate receptors (RO0711401 and VU0360172, respectively) reduces the incidence of spike-and wave discharges in the WAG/Rij rat model of absence epilepsy. However, from the therapeutic standpoint, it was important to establish whether tolerance developed to the action of these drugs. We administered either VU0360172 (3 mg/kg, s.c.) or RO0711401 (10 mg/kg, s.c.) to WAG/Rij rats twice daily for ten days. VU0360172 maintained its activity during the treatment, whereas rats developed tolerance to RO0711401 since the 3rd day of treatment and were still refractory to the drug two days after treatment withdrawal. In response to VU0360172, expression of mGlu5 receptors increased in the thalamus of WAG/Rij rats after 1 day of treatment, and remained elevated afterwards. VU0360172 also enhanced mGlu5 receptor expression in the cortex after 8 days of treatment without changing the expression of mGlu1a receptors. Treatment with RO0711401 enhanced the expression of both mGlu1a and mGlu5 receptors in the thalamus and cortex of WAG/Rij rats after 3-8 days of treatment. These data were different from those obtained in non-epileptic rats, in which repeated injections of RO0711401 and VU0360172 down-regulated the expression of mGlu1a and mGlu5 receptors. Levels of VU0360172 in the thalamus and cortex remained unaltered during the treatment, whereas levels of RO0711401 were reduced in the cortex at day 8 of treatment. These findings suggest that mGlu5 receptor PAMs are potential candidates for the treatment of absence epilepsy in humans.
Collapse
MESH Headings
- Animals
- Anticonvulsants/pharmacology
- Blotting, Western
- Cerebral Cortex/drug effects
- Cerebral Cortex/physiopathology
- Disease Models, Animal
- Drug Tolerance
- Electrodes, Implanted
- Electroencephalography
- Epilepsy, Absence/drug therapy
- Epilepsy, Absence/physiopathology
- Excitatory Amino Acid Agents/pharmacology
- Male
- Mice, Transgenic
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Rats
- Rats, Inbred ACI
- Rats, Wistar
- Receptor, Metabotropic Glutamate 5/genetics
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Thalamus/drug effects
- Thalamus/physiopathology
- Time Factors
Collapse
Affiliation(s)
- V D'Amore
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy
| | - I Santolini
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy
| | - R Celli
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy
| | - L Lionetto
- Department of Neuroscience and Mental Health, St. Andrea Hospital, Rome, Italy
| | - A De Fusco
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy
| | - M Simmaco
- Department of Neuroscience and Mental Health, St. Andrea Hospital, Rome, Italy
| | - C M van Rijn
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - E Vieira
- pRED Discovery Chemistry F. Hoffmann-La Roche Ltd, Pharmaceutical Division, Basel, Switzerland
| | - S R Stauffer
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA
| | - P J Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232, USA
| | - P Bosco
- IRCCS Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Italy
| | - F Nicoletti
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy; Department of Physiology and Pharmacology, University "Sapienza", Rome, Italy
| | - G van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - R T Ngomba
- I.R.C.C.S., NEUROMED, Neuropharmacology Unit, Parco Tecnologico, Località Camerelle 86077 Pozzilli, Isernia, Italy.
| |
Collapse
|
25
|
Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, Mascio G, Scarselli P, Fazio F, Weisz F, Lionetto L, Simmaco M, Gradini R, Battaglia G, Signore M, Puliti A, Nicoletti F. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. Mol Brain 2013; 6:48. [PMID: 24252411 PMCID: PMC4225515 DOI: 10.1186/1756-6606-6-48] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) is a genetic disorder characterized by severe ataxia associated with progressive loss of cerebellar Purkinje cells. The mGlu1 metabotropic glutamate receptor plays a key role in mechanisms of activity-dependent synaptic plasticity in the cerebellum, and its dysfunction is linked to the pathophysiology of motor symptoms associated with SCA1. We used SCA1 heterozygous transgenic mice (Q154/Q2) as a model for testing the hypothesis that drugs that enhance mGlu1 receptor function may be good candidates for the medical treatment of SCA1. Results Symptomatic 30-week old SCA1 mice showed reduced mGlu1 receptor mRNA and protein levels in the cerebellum. Interestingly, these mice also showed an intense expression of mGlu5 receptors in cerebellar Purkinje cells, which normally lack these receptors. Systemic treatment of SCA1 mice with the mGlu1 receptor positive allosteric modulator (PAM), Ro0711401 (10 mg/kg, s.c.), caused a prolonged improvement of motor performance on the rotarod and the paw-print tests. A single injection of Ro0711401 improved motor symptoms for several days, and no tolerance developed to the drug. In contrast, the mGlu5 receptor PAM, VU0360172 (10 mg/kg, s.c.), caused only a short-lasting improvement of motor symptoms, whereas the mGlu1 receptor antagonist, JNJ16259685 (2.5 mg/kg, i.p.), further impaired motor performance in SCA1 mice. The prolonged symptomatic benefit caused by Ro0711401 outlasted the time of drug clearance from the cerebellum, and was associated with neuroadaptive changes in the cerebellum, such as a striking reduction of the ectopically expressed mGlu5 receptors in Purkinje cells, increases in levels of total and Ser880-phosphorylated GluA2 subunit of AMPA receptors, and changes in the length of spines in the distal dendrites of Purkinje cells. Conclusions These data demonstrate that pharmacological enhancement of mGlu1 receptors causes a robust and sustained motor improvement in SCA1 mice, and lay the groundwork for the development of mGlu1 receptor PAMs as novel “cerebellum-specific”, effective, and safe symptomatic drugs for the treatment of SCA1 in humans.
Collapse
|
26
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|