1
|
Fritzius T, Tureček R, Fernandez-Fernandez D, Isogai S, Rem PD, Kralikova M, Gassmann M, Bettler B. Preassembly of specific Gβγ subunits at GABA B receptors through auxiliary KCTD proteins accelerates channel gating. Biochem Pharmacol 2024; 228:116176. [PMID: 38555036 DOI: 10.1016/j.bcp.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
GABAB receptors (GBRs) are G protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GBRs regulate fast synaptic transmission by gating Ca2+ and K+ channels via the Gβγ subunits of the activated G protein. It has been demonstrated that auxiliary GBR subunits, the KCTD proteins, shorten onset and rise time and increase desensitization of receptor-induced K+ currents. KCTD proteins increase desensitization of K+ currents by scavenging Gβγ from the channel, yet the mechanism responsible for the rapid activation of K+ currents has remained elusive. In this study, we demonstrate that KCTD proteins preassemble Gβγ at GBRs. The preassembly obviates the need for diffusion-limited G protein recruitment to the receptor, thereby accelerating G protein activation and, as a result, K+ channel activation. Preassembly of Gβγ at the receptor relies on the interaction of KCTD proteins with a loop protruding from the seven-bladed propeller of Gβ subunits. The binding site is shared between Gβ1 and Gβ2, limiting the interaction of KCTD proteins to these particular Gβ isoforms. Substituting residues in the KCTD binding site of Gβ1 with those from Gβ3 hinders the preassembly of Gβγ with GBRs, delays onset and prolongs rise time of receptor-activated K+ currents. The KCTD-Gβ interface, therefore, represents a target for pharmacological modulation of channel gating by GBRs.
Collapse
Affiliation(s)
| | - Rostislav Tureček
- Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Auditory Neuroscience, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | | | - Shin Isogai
- Microbial Downstream Process Development, Lonza AG, Visp, Switzerland
| | - Pascal D Rem
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michaela Kralikova
- Department of Auditory Neuroscience, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Xu C, Zhou Y, Liu Y, Lin L, Liu P, Wang X, Xu Z, Pin JP, Rondard P, Liu J. Specific pharmacological and G i/o protein responses of some native GPCRs in neurons. Nat Commun 2024; 15:1990. [PMID: 38443355 PMCID: PMC10914727 DOI: 10.1038/s41467-024-46177-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins and are important drug targets. The discovery of drugs targeting these receptors and their G protein signaling properties are based on assays mainly performed with modified receptors expressed in heterologous cells. However, GPCR responses may differ in their native environment. Here, by using highly sensitive Gi/o sensors, we reveal specific properties of Gi/o protein-mediated responses triggered by GABAB, α2 adrenergic and cannabinoid CB1 receptors in primary neurons, different from those in heterologous cells. These include different profiles in the Gi/o protein subtypes-mediated responses, and differences in the potencies of some ligands even at similar receptor expression levels. Altogether, our results show the importance of using biosensors compatible with primary cells for evaluating the activities of endogenous GPCRs in their native environment.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| | - Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lin
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| |
Collapse
|
3
|
O'Connor EC, Kambara K, Bertrand D. Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery. Expert Opin Drug Discov 2024; 19:173-187. [PMID: 37850233 DOI: 10.1080/17460441.2023.2270902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.
Collapse
Affiliation(s)
- Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience & Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
4
|
Bielopolski N, Stawarski M, Roitman I, Fridman K, Wald-Altman S, Früh S, Bettler B, Nissenkorn A. Characterization of a de novo GABBR2 variant linked to autism spectrum disorder. Front Mol Neurosci 2023; 16:1267343. [PMID: 38076211 PMCID: PMC10710151 DOI: 10.3389/fnmol.2023.1267343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/19/2023] [Indexed: 02/23/2025] Open
Abstract
GABAB receptors (GABABRs) are G protein-coupled receptors for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Pathogenic variants in the GABBR1 and GABBR2 genes, which encode the GB1 and GB2 subunits of GABABRs, are implicated in several neurological and developmental disorders, including epilepsy and autism. Here we present a 7-year-old boy with Level 3 Autism Spectrum Disorder who carries a de novo heterozygous missense GABBR2 p.Arg212Gln variant. This variant was identified through whole exome sequencing and classified as variant of unknown significance (VUS). Treatment with the GABABR agonist baclofen showed no clinical improvement, raising the question whether this VUS is responsible for the patient’s phenotype. We conducted a study to investigate the impact of the GABBR2 p.Arg212Gln and the previously reported GABBR2 p.Arg212Trp variants on protein structure and receptor activity. This study utilized a combination of molecular dynamics (MD) simulations, and in vitro experiments. Our simulations demonstrate that both amino acid substitutions locally alter amino acid interactions in the extracellular domain of GB2. Most importantly, the substitutions influence the positioning of transmembrane helices, shifting the conformation towards an active state with GABBR2 p.Arg212Gln and an inactive state with GABBR2 p.Arg212Trp. Functional assays confirmed the MD predictions, as evidenced by increased constitutive activity and enhanced potency of GABA for GABBR2 p.Arg212Gln, and a decreased constitutive activity with a loss of GABA potency for GABBR2 p.Arg212Trp. Our findings demonstrate the utility of MD simulations in predicting the functional consequences of VUS. Clarifying the pathogenic mechanisms associated with gene variants will aid in the identification of personalized treatment approaches.
Collapse
Affiliation(s)
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Andreea Nissenkorn
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen Center for Rare Diseases, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatrics, The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Rem PD, Sereikaite V, Fernández-Fernández D, Reinartz S, Ulrich D, Fritzius T, Trovo L, Roux S, Chen Z, Rondard P, Pin JP, Schwenk J, Fakler B, Gassmann M, Barkat TR, Strømgaard K, Bettler B. Soluble amyloid-β precursor peptide does not regulate GABA B receptor activity. eLife 2023; 12:82082. [PMID: 36688536 PMCID: PMC9917443 DOI: 10.7554/elife.82082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023] Open
Abstract
Amyloid-β precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release, or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.
Collapse
Affiliation(s)
- Pascal Dominic Rem
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | | | - Sebastian Reinartz
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Luca Trovo
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Salomé Roux
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- CIBSS Center for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulationFreiburgGermany
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| |
Collapse
|
6
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
7
|
Fritzius T, Stawarski M, Isogai S, Bettler B. Structural Basis of GABA B Receptor Regulation and Signaling. Curr Top Behav Neurosci 2022; 52:19-37. [PMID: 32812202 DOI: 10.1007/7854_2020_147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), activate Go/i-type G proteins that regulate adenylyl cyclase, Ca2+ channels, and K+ channels. GBR signaling to enzymes and ion channels influences neuronal activity, plasticity processes, and network activity throughout the brain. GBRs are obligatory heterodimers composed of GB1a or GB1b subunits with a GB2 subunit. Heterodimeric GB1a/2 and GB1b/2 receptors represent functional units that associate in a modular fashion with regulatory, trafficking, and effector proteins to generate receptors with distinct physiological functions. This review summarizes current knowledge on the structure, organization, and functions of multi-protein GBR complexes.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Shin Isogai
- Biozentrum, Focal Area Structural Biology and Biophysics, University of Basel, Basel, Switzerland.
- Microbial Downstream Process Development, Lonza AG, Visp, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Porcu A, Mostallino R, Serra V, Melis M, Sogos V, Beggiato S, Ferraro L, Manetti F, Gianibbi B, Bettler B, Corelli F, Mugnaini C, Castelli MP. COR758, a negative allosteric modulator of GABA B receptors. Neuropharmacology 2021; 189:108537. [PMID: 33798546 DOI: 10.1016/j.neuropharm.2021.108537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
9
|
Deng SL, Hu ZL, Mao L, Gao B, Yang Q, Wang F, Chen JG. The effects of Kctd12, an auxiliary subunit of GABA B receptor in dentate gyrus on behavioral response to chronic social defeat stress in mice. Pharmacol Res 2021; 163:105355. [PMID: 33285230 DOI: 10.1016/j.phrs.2020.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Adaptive responses to stress are critical to enhance physical and mental well-being, but excessive or prolonged stress may cause inadaptability and increase the risks of psychiatric disorders, such as depression. GABABR signaling is fundamental to brain function and has been identified in neuropsychiatric disorders. KCTD12 is a critical auxiliary subunit in GABABR signaling, but its role in mental disorders, such as depression is unclear. In the present study, we used a well-validated mice model, chronic social defeat stress (CSDS) to investigate behavioral responses to stress and explore the role of Kctd12 in stress response, as well as the relevant mechanisms. We found that CSDS increased the expression of Kctd12 in the dentate gyrus (DG), a subregion of hippocampus. Overexpression of Kctd12 in DG induced higher responsiveness to acute stress and increased vulnerability to social stress in mice, whereas knock-down of Kctd12 in DG prevented the social avoidance. Furthermore, an increased expression of GABAB receptor 2 (GB2) in the DG of CSDS-treated mice was observed, and CGP35348, an antagonist of GABABR, improved the stress-induced behavior responses along with suppressing the excess expression of Kctd12. In addition, Kctd12 regulated the excitability of granule cell in DG, and the stimulation of neuronal activity by silencing Kctd12 contributed to the antidepressant-like effect of fluoxetine. These findings identify that the Kctd12 in DG works as a critical mediator of stress responses, providing a promising therapeutic target in stress-related psychiatric disorders, including depression.
Collapse
Affiliation(s)
- Si-Long Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Li Mao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiong Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative-Innovation Center for Brain Science, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative-Innovation Center for Brain Science, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| |
Collapse
|
10
|
Rivas J, Díaz N, Silva I, Morales D, Lavanderos B, Álvarez A, Saldías MP, Pulgar E, Cruz P, Maureira D, Flores G, Colombo A, Blanco C, Contreras HR, Jaña F, Gallegos I, Concha ML, Vergara-Jaque A, Poblete H, González W, Varela D, Trimmer JS, Cáceres M, Cerda O. KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB J 2020; 34:7847-7865. [PMID: 32301552 DOI: 10.1096/fj.201901195rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.
Collapse
Affiliation(s)
- José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Danna Morales
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Alhejandra Álvarez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Eduardo Pulgar
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Guillermo Flores
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Héctor R Contreras
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabián Jaña
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Ivan Gallegos
- Departamento de Oncología Básico Clínica, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Miguel L Concha
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Millennium Nucleus on Physics of Active Matter, Santiago, Chile
| | - Ariela Vergara-Jaque
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Multidisciplinary Scientific Nucleus, Universidad de Talca, Talca, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Horacio Poblete
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Multidisciplinary Scientific Nucleus, Universidad de Talca, Talca, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Wendy González
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Center for Bioinformatics and Molecular Simulations (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
11
|
Kniazeff J. The different aspects of the GABAB receptor allosteric modulation. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:83-113. [DOI: 10.1016/bs.apha.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Petrov AM, Astafev AA, Mast N, Saadane A, El-Darzi N, Pikuleva IA. The Interplay between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina. Biomolecules 2019; 9:biom9120867. [PMID: 31842366 PMCID: PMC6995521 DOI: 10.3390/biom9120867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
In mammalian retina, cholesterol excess is mainly metabolized to oxysterols by cytochromes P450 27A1 (CYP27A1) and 46A1 (CYP46A1) or removed on lipoprotein particles containing apolipoprotein E (APOE). In contrast, esterification by sterol-O-acyltransferase 1 (SOAT) plays only a minor role in this process. Accordingly, retinal cholesterol levels are unchanged in Soat1-/- mice but are increased in Cyp27a1-/-Cyp46a1-/- and Apoe-/- mice. Herein, we characterized Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- mice. In the former, retinal cholesterol levels, anatomical gross structure, and vasculature were normal, yet the electroretinographic responses were impaired. Conversely, in Cyp27a1-/-Cyp46a1-/-Apoe-/- mice, retinal cholesterol levels were increased while anatomical structure and vasculature were unaffected with only male mice showing a decrease in electroretinographic responses. Sterol profiling, qRT-PCR, proteomics, and transmission electron microscopy mapped potential compensatory mechanisms in the Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- retina. These included decreased cholesterol biosynthesis along with enhanced formation of intra- and extracellular vesicles, possibly a reserve mechanism for lowering retinal cholesterol. In addition, there was altered abundance of proteins in Cyp27a1-/-Cyp46a1-/-Soat1-/- mice that can affect photoreceptor function, survival, and retinal energy homeostasis (glucose and fatty acid metabolism). Therefore, the levels of retinal cholesterol do not seem to predict retinal abnormalities, and it is rather the network of compensatory mechanisms that appears to determine retinal phenotype.
Collapse
|
13
|
Fritzius T, Bettler B. The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:25-34. [PMID: 31033219 PMCID: PMC7317483 DOI: 10.1111/bcpt.13241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA), regulate synaptic transmission at most synapses in the brain. Proteomic approaches revealed that native GBR complexes assemble from an inventory of ~30 proteins that provide a molecular basis for the functional diversity observed with these receptors. Studies with reconstituted GBR complexes in heterologous cells and complementary knockout studies have allowed to identify cellular and physiological functions for obligate and several non-obligate receptor components. It emerges that modular association of receptor components in space and time generates a variety of multiprotein receptor complexes with different localizations, kinetic properties and effector channels. This article summarizes current knowledge on the organizing principle of GBR complexes. We further discuss unanticipated receptor functions, links to disease and opportunities for drug discovery arising from the identification of novel receptor components.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Luo ZH, Walid A A, Xie Y, Long H, Xiao W, Xu L, Fu Y, Feng L, Xiao B. Construction and analysis of a dysregulated lncRNA-associated ceRNA network in a rat model of temporal lobe epilepsy. Seizure 2019; 69:105-114. [PMID: 31005697 DOI: 10.1016/j.seizure.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/09/2023] Open
Abstract
PURPOSE The aim of this work was to investigate expression and cross-talk between long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in a rat model of temporal lobe epilepsy (TLE). METHODS Noncoding RNA chips were used to explore the expression and relationship between lncRNAs and miRNAs in a rat model of TLE. The expression of different lncRNAs and mRNAs was analysed by Pearson's correlation coefficient, and the function of each lncRNA was annotated by co-expressed genes based on gene ontology classification using DAVID. MiRNA-lncRNA interactions were predicted by using StarBase v2.0, and the competing endogenous RNA (ceRNA) relationship between lncRNAs and miRNAs was built by using Cytoscape software. Real-time PCR was used to verify chip results. RESULTS According to the expression profile analysis, 54 lncRNAs, 36 miRNAs and 122 mRNAs were dysregulated in TLE rat model compared to normal controls. The functions of lncRNAs in epilepsy were annotated by their co-expressed genes based on the "guilt by association" strategy. DAVID analysis revealed that differentially expressed lncRNA functions were involved in "potassium channel activity", "metal ion transmembrane transporter activity", and "voltage-gated potassium channel activity". Based on the ceRNA theory, 13 mRNAs, 10 miRNAs and 11 lncRNAs comprise the lncRNA-miRNA-mRNA ceRNA relationship in epilepsy. CONCLUSIONS The molecular functions of the differentially expressed genes play an important role in the pathogenesis of voltage-gated potassium channel activity. Further ceRNA analyses suggest that modulation of lncRNAs could emerge as a promising therapeutic target for TLE.
Collapse
Affiliation(s)
- Zhao Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Alsharafi Walid A
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yujiao Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
15
|
Frangaj A, Fan QR. Structural biology of GABA B receptor. Neuropharmacology 2018; 136:68-79. [PMID: 29031577 PMCID: PMC5897222 DOI: 10.1016/j.neuropharm.2017.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Metabotropic GABAB receptor is a G protein-coupled receptor (GPCR) that mediates slow and prolonged inhibitory neurotransmission in the brain. It functions as a constitutive heterodimer composed of the GABAB1 and GABAB2 subunits. Each subunit contains three domains; the extracellular Venus flytrap module, seven-helix transmembrane region and cytoplasmic tail. In recent years, the three-dimensional structures of GABAB receptor extracellular and intracellular domains have been elucidated. These structures reveal the molecular basis of ligand recognition, receptor heterodimerization and receptor activation. Here we provide a brief review of the GABAB receptor structures, with an emphasis on describing the different ligand-bound states of the receptor. We will also compare these with the known structures of related GPCRs to shed light on the molecular mechanisms of activation and regulation in the GABAB system, as well as GPCR dimers in general. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Aurel Frangaj
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | - Qing R Fan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
16
|
Wong TCB, Rebbert M, Wang C, Chen X, Heffer A, Zarelli VE, Dawid IB, Zhao H. Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:159-66. [PMID: 27389986 DOI: 10.1387/ijdb.160058id] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.
Collapse
Affiliation(s)
- Thomas C B Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
18
|
Ulrich D, Lalanne T, Gassmann M, Bettler B. GABA B receptor subtypes differentially regulate thalamic spindle oscillations. Neuropharmacology 2017; 136:106-116. [PMID: 29106983 DOI: 10.1016/j.neuropharm.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Following the discovery of GABAB receptors by Norman Bowery and colleagues, cloning and biochemical efforts revealed that GABAB receptors assemble multi-subunit complexes composed of principal and auxiliary subunits. The principal receptor subunits GABAB1a, GABAB1b and GABAB2 form two heterodimeric GABAB(1a,2) and GABAB(1b,2) receptors that can associate with tetramers of auxiliary KCTD (K+ channel tetramerization domain) subunits. Experiments with subunit knock-out mice revealed that GABAB(1b,2) receptors activate slow inhibitory postsynaptic currents (sIPSCs) while GABAB(1a,2) receptors function as heteroreceptors and inhibit glutamate release. Both GABAB(1a,2) and GABAB(1b,2) receptors can serve as autoreceptors and inhibit GABA release. Auxiliary KCTD subunits regulate the duration of sIPSCs and scaffold effector channels at the receptor. GABAB receptors are well known to contribute to thalamic spindle oscillations. Spindles are generated through alternating burst-firing in reciprocally connected glutamatergic thalamocortical relay (TCR) and GABAergic thalamic reticular nucleus (TRN) neurons. The available data implicate postsynaptic GABAB receptors in TCR cells in the regulation of spindle frequency. We now used electrical or optogenetic activation of thalamic spindles and pharmacological experiments in acute slices of knock-out mice to study the impact of GABAB(1a,2) and GABAB(1b,2) receptors on spindle oscillations. We found that selectively GABAB(1a,2) heteroreceptors at TCR to TRN cell synapses regulate oscillation strength, while GABAB(1b,2) receptors control oscillation frequency. The auxiliary subunit KCTD16 influences both oscillation strength and frequency, supporting that KCTD16 regulates network activity through GABAB(1a,2) and GABAB(1b,2) receptors. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Daniel Ulrich
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Txomin Lalanne
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Martin Gassmann
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland
| | - Bernhard Bettler
- Dept. Biomedicine, Institute of Physiology, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Kahanovitch U, Berlin S, Dascal N. Collision coupling in the GABA
B
receptor–G protein–GIRK signaling cascade. FEBS Lett 2017; 591:2816-2825. [DOI: 10.1002/1873-3468.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Uri Kahanovitch
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Israel
| |
Collapse
|
20
|
GABA B receptor modulation — to B or not to be B a pro-cognitive medicine? Curr Opin Pharmacol 2017; 35:125-132. [DOI: 10.1016/j.coph.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022]
|
21
|
Li M, Milligan CJ, Wang H, Walker A, Churilov L, Lawrence AJ, Reid CA, Hopkins SC, Petrou S. KCTD12 modulation of GABA(B) receptor function. Pharmacol Res Perspect 2017; 5:e00319. [PMID: 28713569 PMCID: PMC5508304 DOI: 10.1002/prp2.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
The molecular composition and functional diversity of native GABAB receptors (GABABR) are still poorly understood, thus hindering development of selective GABABR ligands. Potassium channel tetramerization domain‐containing protein (KCTD) 12 is a GABABR auxiliary subunit and mouse KCTD12 can alter GABABR function. In this study, we sought to characterize the effects of human KCTD12 on GABABR kinetics and pharmacology, using an automated electrophysiological assay. Seizure susceptibility and ethanol consumption were also investigated in a KCTD12 knockout mouse model. Human KCTD12 co‐expression altered the kinetics of GABABR‐mediated GIRK channels, speeding rates of both activation and desensitization. Analysis of concentration‐response curves showed that KCTD12 coexpression did not alter effects of the agonists GABA or baclofen on GABABR. KCTD12 coexpression enhanced the potentiating effects of the positive allosteric modulator CGP7930, and its effects on GABABR activation and desensitization. The function of KCTD12 in vivo was examined, using the KCTD12 knockout mouse model. The knockout mice were more resistant to a pentylenetetrazole proconvulsant challenge suggesting reduced seizure susceptibility. In the two bottle preference test, KCTD12 knockout mice demonstrated a reduced consumption at high ethanol concentrations. In summary, human KCTD12 accelerated the kinetics of GABABR in vitro, in a manner possibly sensitive to allosteric pharmacological modulation. This study also provides novel in vivo evidence that the interaction between KCTD12 and GABABR is of physiological significance, and may be a mechanism to more selectively modulate GABABR.
Collapse
Affiliation(s)
- Melody Li
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Carol J Milligan
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Haiyan Wang
- Sunovion Pharmaceuticals Inc Marlborough Massachusetts
| | - Andrew Walker
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Leonid Churilov
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | | | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia.,Department of Anatomy and Neuroscience University of Melbourne Parkville Victoria Australia.,Centre for Neural Engineering University of Melbourne Parkville Victoria Australia
| |
Collapse
|
22
|
Wu N, Wang F, Jin Z, Zhang Z, Wang LK, Zhang C, Sun T. Effects of GABA B receptors in the insula on recognition memory observed with intellicage. Behav Brain Funct 2017; 13:7. [PMID: 28416021 PMCID: PMC5392977 DOI: 10.1186/s12993-017-0125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insular function has gradually become a topic of intense study in cognitive research. Recognition memory is a commonly studied type of memory in memory research. GABABR has been shown to be closely related to memory formation. In the present study, we used intellicage, which is a new intelligent behavioural test system, and a bilateral drug microinjection technique to inject into the bilateral insula, to examine the relationship between GABABR and recognition memory. METHODS Male Sprague-Dawley rats were randomly divided into control, Sham, Nacl, baclofen and CGP35348 groups. Different testing procedures were employed using intellicage to detect changes in rat recognition memory. The expression of GABABR (GB1, GB2) in the insula of rats was determined by immunofluorescence and western blotting at the protein level. In addition, the expression of GABABR (GB1, GB2) was detected by RT-PCR at the mRNA level. RESULTS The results of the intellicage test showed that recognition memory was impaired in terms of position learning, punitive learning and punitive reversal learning by using baclofen and CGP35348. In position reversal learning, no significant differences were found in terms of cognitive memory ability between the control groups and the CGP and baclofen groups. Immunofluorescence data showed GABABR (GB1, GB2) expression in the insula, while data from RT-PCR and western blot analysis demonstrated that the relative expression of GB1 and GB2 was significantly increased in the baclofen group compared with the control groups. In the CGP35348 group, the expression of GB1 and GB2 was significantly decreased, but there was no significant difference in GB1 or GB2 expression in the control groups. CONCLUSIONS GABABR expression in the insula plays an important role in the formation of recognition memory in rats.
Collapse
Affiliation(s)
- Nan Wu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhen Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lian-Kun Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China. .,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
23
|
KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. J Neurosci 2016; 37:1162-1175. [PMID: 28003345 DOI: 10.1523/jneurosci.2181-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus. SIGNIFICANCE STATEMENT The KCTD proteins 8, 12, and 16 are auxiliary subunits of GABAB receptors that differentially regulate G-protein signaling of the receptor. The KCTD proteins are generally assumed to function as homo-oligomers. Here we show that the KCTD proteins also assemble hetero-oligomers in all possible dual combinations. Experiments in live cells demonstrate that KCTD hetero-oligomers form at least tetramers and that these tetramers directly interact with the receptor and the G-protein. KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties to GABAB receptor-induced Kir3 currents in heterologous cells. KCTD12/KCTD16 hetero-oligomers are abundant in the hippocampus, where they prolong the duration of slow IPSCs in pyramidal cells. Our data therefore support that KCTD hetero-oligomers modulate physiologically induced K+ current responses in the brain.
Collapse
|
24
|
Pin JP, Bettler B. Organization and functions of mGlu and GABAB receptor complexes. Nature 2016; 540:60-68. [DOI: 10.1038/nature20566] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023]
|
25
|
Moen MN, Fjær R, Hamdani EH, Laerdahl JK, Menchini RJ, Vigeland MD, Sheng Y, Undlien DE, Hassel B, Salih MA, El Khashab HY, Selmer KK, Chaudhry FA. Pathogenic variants in KCTD7 perturb neuronal K+ fluxes and glutamine transport. Brain 2016; 139:3109-3120. [PMID: 27742667 DOI: 10.1093/brain/aww244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/11/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022] Open
Abstract
Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.
Collapse
Affiliation(s)
- Marivi Nabong Moen
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Roar Fjær
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - El Hassan Hamdani
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,3 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- 4 Department of Microbiology, Oslo University Hospital, Oslo, Norway.,5 Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway
| | - Robin Johansen Menchini
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Magnus Dehli Vigeland
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Ying Sheng
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Dag Erik Undlien
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Bjørnar Hassel
- 6 Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mustafa A Salih
- 7 Division of Paediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Heba Y El Khashab
- 7 Division of Paediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,8 Department of Paediatrics, Ain Shams University, Cairo, Egypt
| | - Kaja Kristine Selmer
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway.,9 National Centre for Rare Epilepsy-related Disorders, Oslo University Hospital, Oslo, Norway
| | - Farrukh Abbas Chaudhry
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway .,3 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
27
|
Brown JW, Moeller A, Schmidt M, Turner SC, Nimmrich V, Ma J, Rueter LE, van der Kam E, Zhang M. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology 2015; 101:358-69. [PMID: 26471422 DOI: 10.1016/j.neuropharm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 02/02/2023]
Abstract
The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity/anticonvulsant effects). Calculated TIs for A-1295120, CMPPE, rac-BHFF, GS39783, and A-1474713 were 5.31x, 5.00x, 4.74x, 3.41x, and 1.83x, respectively, whereas baclofen was <1. The results presented here suggest the DBA/2J mouse AGS test is a potentially useful screening model for detecting PD effects of GABA(B) PAMs and can provide an initial read-out on target-related motor side-effects. Furthermore, an improved TI was observed for PAMs compared to baclofen, indicating the PAM approach may be a viable therapeutic alternative to baclofen.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Achim Moeller
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Martin Schmidt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Sean C Turner
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Volker Nimmrich
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Junli Ma
- Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, IL 60064, United States
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Elizabeth van der Kam
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Min Zhang
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
28
|
Ji AX, Chu A, Nielsen TK, Benlekbir S, Rubinstein JL, Privé GG. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition. J Mol Biol 2015; 428:92-107. [PMID: 26334369 DOI: 10.1016/j.jmb.2015.08.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/01/2023]
Abstract
Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family.
Collapse
Affiliation(s)
- Alan X Ji
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Anh Chu
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tine Kragh Nielsen
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Samir Benlekbir
- The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
29
|
Kasten CR, Boehm SL. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015; 57:70-87. [PMID: 26283074 DOI: 10.1016/j.neubiorev.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States.
| | - Stephen L Boehm
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
30
|
Raveh A, Turecek R, Bettler B. Mechanisms of fast desensitization of GABA(B) receptor-gated currents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:145-65. [PMID: 25637440 DOI: 10.1016/bs.apha.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABA(B) receptors (GABA(B)Rs) regulate the excitability of most neurons in the central nervous system by modulating the activity of enzymes and ion channels. In the sustained presence of the neurotransmitter γ-aminobutyric acid, GABA(B)Rs exhibit a time-dependent decrease in the receptor response-a phenomenon referred to as homologous desensitization. Desensitization prevents excessive receptor influences on neuronal activity. Much work focused on the mechanisms of GABA(B)R desensitization that operate at the receptor and control receptor expression at the plasma membrane. Over the past few years, it became apparent that GABA(B)Rs additionally evolved mechanisms for faster desensitization. These mechanisms operate at the G protein rather than at the receptor and inhibit G protein signaling within seconds of agonist exposure. The mechanisms for fast desensitization are ideally suited to regulate receptor-activated ion channel responses, which influence neuronal activity on a faster timescale than effector enzymes. Here, we provide an update on the mechanisms for fast desensitization of GABA(B)R responses and discuss physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Adi Raveh
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Rostislav Turecek
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland; Department of Auditory Neuroscience, Institute of Experimental Medicine, ASCR, Prague, Czech Republic
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|