1
|
Braunscheidel KM, Voren G, Fowler CD, Lu Q, Kuryatov A, Cameron MD, Ibañez-Tallon I, Lindstrom JM, Kamenecka TM, Kenny PJ. SR9883 is a novel small-molecule enhancer of α4β2* nicotinic acetylcholine receptor signaling that decreases intravenous nicotine self-administration in rats. Front Mol Neurosci 2024; 17:1459098. [PMID: 39346680 PMCID: PMC11428108 DOI: 10.3389/fnmol.2024.1459098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4β2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results The NS9283 derivative SR9883 enhanced the effect of nicotine on α4β2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 μM. SR9883 had no effect on α3β2* or α3β4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4β2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
Collapse
Affiliation(s)
- Kevin M. Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George Voren
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Ines Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Jon M. Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Theodore M. Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Bartík P, Šagát P, Pyšná J, Pyšný L, Suchý J, Trubák Z, Petrů D. The Effect of High Nicotine Dose on Maximum Anaerobic Performance and Perceived Pain in Healthy Non-Smoking Athletes: Crossover Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1009. [PMID: 36673765 PMCID: PMC9859273 DOI: 10.3390/ijerph20021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Background: In recent years, there has been intensive discussion about the positive effect of nicotine usage on enhancing sports performance. It is frequently applied through a non-burned tobacco form before physical activity. Nicotine is under the World Anti-Doping Agency (WADA) 2021 monitoring program. Therefore, study results that reveal either positive or negative effects are expected. This is the pilot study that reports the effect of 8 mg dose of nicotine on performance and perceived pain. Material and Methods: This research aimed to explore the oral intake effect of a high-nicotine dose (8 mg) on the maximum anaerobic performance and other selected physical performance parameters in healthy, well-trained adult athletes (n = 15, age 30.7 ± 3.6, BMI 25.3 ± 1.7). The cross-sectional study protocol included the oral administration of either sublingual nicotine or placebo tablets before the anaerobic load assessed by a standardized 30 s Wingate test of the lower limbs. Afterward, the Borg subjective perception of pain (CR 10) and Borg rating of perceived exertion (RPE) were evaluated. Wilcoxon signed-rank test was used for the analysis of data with a 0.05 level of significance. Results: The results revealed that oral administration of an 8 mg nicotine dose does not significantly improve any of the physical performance parameters monitored. We only reported the statistically significant positive effect in RPE (p = 0.03). Conclusion: Lower perception of pain intensity that we reported after nicotine application might be an important factor that affects performance. However, we did not report any improvement in physical performance parameters.
Collapse
Affiliation(s)
- Peter Bartík
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Peter Šagát
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Jana Pyšná
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Ladislav Pyšný
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Jiří Suchý
- Department of Physical Education, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | - Zdeněk Trubák
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Dominika Petrů
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
4
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Takahashi T, Yoshida T, Harada K, Miyagi T, Hashimoto K, Hide I, Tanaka S, Irifune M, Sakai N. Component of nicotine-induced intracellular calcium elevation mediated through α3- and α5-containing nicotinic acetylcholine receptors are regulated by cyclic AMP in SH-SY 5Y cells. PLoS One 2020; 15:e0242349. [PMID: 33253222 PMCID: PMC7703979 DOI: 10.1371/journal.pone.0242349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/01/2020] [Indexed: 12/03/2022] Open
Abstract
The pathway from the medial habenular nucleus to the interpeduncular nucleus, in which nicotinic acetylcholine receptor (nAChR) including the α3 and α5 subunits (α3 * and α5 * nAChRs) are expressed, is implicated in nicotine dependence. We investigated whether α3 * and α5 * nAChRs are regulated by cAMP using SH-SY5Y cells to clarify the significance of these receptors in nicotine dependence. We analyzed the nicotine-induced elevation of intracellular Ca2+ ([Ca2+]i). Nicotine induces a concentration-dependent increase in [Ca2+]i. The elimination of Ca2+ from extracellular fluid or intracellular stores demonstrated that the nicotine-induced [Ca2+]i elevation was due to extracellular influx and intracellular mobilization. The effects of tubocurarine on nicotine-induced [Ca2+]i elevation and current suggest that intracellular mobilization is caused by plasma membrane-permeating nicotine. The inhibition of α3 *, α5 *, α7 nAChR and voltage-gated Ca2+ channels by using siRNAs and selective antagonists revealed the involvement of these nAChR subunits and channels in nicotine-induced [Ca2+]i elevation. To distinguish and characterize the α3 * and α5 * nAChR-mediated Ca2+ influx, we measured the [Ca2+]i elevation induced by nonmembrane-permeating acetylcholine when muscarinic receptors, α7nAChR and Ca2+ channels were blocked. Under this condition, the [Ca2+]i elevation was significantly inhibited with a 48-h treatment of dibutyryl cAMP, which was accompanied by the downregulation of α3 and β4 mRNA. These findings suggest that α3 * and α5 * nAChR-mediated Ca2+ influx is possibly regulated by cAMP at the transcriptional level.
Collapse
Affiliation(s)
- Tamayo Takahashi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiko Miyagi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
6
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
7
|
Influence of neuropathic pain on nicotinic acetylcholine receptor plasticity and behavioral responses to nicotine in rats. Pain 2019; 159:2179-2191. [PMID: 29939964 DOI: 10.1097/j.pain.0000000000001318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tobacco smoking is particularly evident in individuals experiencing chronic pain. This complex relationship is poorly understood at both molecular and behavioral levels. Here, we describe experiments aimed at understanding whether a chronic pain state induces neuroadaptations into the brain or peripheral nerves that involve nicotinic acetylcholine receptors (nAChRs) and whether these neuroadaptations directly lead to increased vulnerability to nicotine addiction or to the development of coping strategies to relieve pain symptoms. We found that ligation of the rat L5 spinal nerve led to a dramatic downregulation in the mRNA expression levels of all nAChR subunits examined in dorsal root ganglia and a time-dependent downregulation of discrete subunits, particularly in the cingulate cortex and the amygdala. Spinal nerve ligation and sham-operated rats showed minor or no changes in patterns of acquisition and motivation for nicotine taking. Spinal nerve ligation rats also showed similar vulnerability to nicotine seeking as sham animals when reinstatement was induced by nicotine-associated cues, but failed to reinstate lever pressing when relapse was induced by nicotine priming. Spinal nerve ligation and sham rats were equally sensitive to nicotine-induced anxiety-like behavior and antinociception; however, nicotine produced a potent and long-lasting antiallodynic effect in spinal nerve ligation rats. These results demonstrate that chronic pain leads to plasticity of nAChRs that do not directly facilitate nicotine addictive behaviors. Instead, nicotine potently decreases allodynia, an effect that could lead to increased nicotine consumption in chronic pain subjects.
Collapse
|
8
|
Jareczek FJ, White SR, Hammond DL. Plasticity in Brainstem Mechanisms of Pain Modulation by Nicotinic Acetylcholine Receptors in the Rat. eNeuro 2017; 4:ENEURO.0364-16.2017. [PMID: 28197544 PMCID: PMC5286660 DOI: 10.1523/eneuro.0364-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/03/2023] Open
Abstract
Individuals with chronic pain may be driven to smoke more because the analgesic efficacy of nicotine diminishes. To determine whether persistent pain diminishes the actions of a nicotinic acetylcholine receptor (nAChR) agonist in pain modulatory pathways, we examined the effects of epibatidine in the rostral ventromedial medulla (RVM) of rats with and without inflammatory injury induced by intraplantar injection of complete Freund's adjuvant (CFA). In uninjured rats, epibatidine produced a dose-dependent antinociception that was completely blocked by dihydro-β-erythroidine (DHβE; α4β2 antagonist) and partially blocked by methyllycaconitine (MLA; α7 antagonist). Epibatidine reversed heat hyperalgesia when microinjected in the RVM 4 h, 4 d, or 2 weeks after CFA treatment. Although DHβE completely blocked epibatidine's antihyperalgesic effect at 4 h, at 2 weeks it elicited only partial antagonism. Methyllycaconitine was ineffective at both time points. Epibatidine's antinociceptive efficacy in the uninjured hind paw progressively declined, and it was without effect 2 weeks after CFA. Moreover, as early as 4 h after CFA, the antinociceptive effect of epibatidine was no longer antagonized by DHβE. Neither antagonist alone altered paw withdrawal latency in uninjured or CFA-treated rats, suggesting that neither α4β2 nor α7 nAChRs are tonically active in the RVM. The Bmax and Kd of α4β2 nAChRs in the RVM were unchanged after CFA treatment. These observations provide the first evidence of pharmacological plasticity of the actions of α4β2 nAChR agonists in a critical brainstem pain modulatory pathway and may in part explain why people with chronic pain smoke more than the general population.
Collapse
Affiliation(s)
- Francis J. Jareczek
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | | | - Donna L. Hammond
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Department of Anesthesia, University of Iowa, Iowa City, IA 52242
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Wang L, Almeida LEF, Nettleton M, Khaibullina A, Albani S, Kamimura S, Nouraie M, Quezado ZMN. Altered nocifensive behavior in animal models of autism spectrum disorder: The role of the nicotinic cholinergic system. Neuropharmacology 2016; 111:323-334. [PMID: 27638450 PMCID: PMC5075237 DOI: 10.1016/j.neuropharm.2016.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/21/2016] [Accepted: 09/12/2016] [Indexed: 02/05/2023]
Abstract
Caretakers and clinicians alike have long recognized that individuals with autism spectrum disorder (ASD) can have altered sensory processing, which can contribute to its core symptoms. However, the pathobiology of sensory alterations in ASD is poorly understood. Here we examined nocifensive behavior in ASD mouse models, the BTBR T+Itpr3tf/J (BTBR) and the fragile-X mental retardation-1 knockout (Fmr1-KO) mice. We also examined the effects of nicotine on nocifensive behavior given that nicotine, a nicotinic cholinergic receptor (nAChR) agonist that has antinociceptive effects, was shown to improve social deficits and decrease repetitive behaviors in BTBR mice. Compared to respective controls, both BTBR and Fmr1-KO had hyporesponsiveness to noxious thermal stimuli and electrical stimulation of C-sensory fibers, normal responsiveness to electrical stimulation of Aβ- and Aδ-fiber, and hyperresponsiveness to visceral pain after acetic acid intraperitoneal injection. In BTBR, nicotine at lower doses increased, whereas at higher doses, it decreased hotplate latency compared to vehicle. In a significantly different effect pattern, in control mice, nicotine had antinociceptive effects to noxious heat only at the high dose. Interestingly, these nocifensive behavior alterations and differential responses to nicotine antinociceptive effects in BTBR mice were associated with significant downregulation of α3, α4, α5, α7, β2, β3, and β4 nAChR subunits in several cerebral regions both, during embryonic development and adulthood. Taken together, these findings further implicate nAChRs in behaviors alterations in the BTBR model and lend support to the hypothesis that nAChRs may be a target for treatment of behavior deficits and sensory dysfunction in ASD.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Margaret Nettleton
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Sarah Albani
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA; Center for Neuroscience Research, Children's Research Institute, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA.
| |
Collapse
|