1
|
Hu Y, Zhao Y, Mao Z, Yang J, Huang B, Miao J, Miao M. Inhalation of Acori Tatarinowii Rhizoma essential oil alleviates dyskinesia in Parkinson's disease rats through the regulation of neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119705. [PMID: 40245967 DOI: 10.1016/j.jep.2025.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acorus tatarinowii Rhizoma, a traditional Chinese medicine known for opening the orifices and transforming phlegm, is used in the treatment of brain disorders. It is listed as the top grade in the famous herbal monograph Shennong Materia Medica Classic. Traditional Chinese medicine believes that Acorus tatarinowii Rhizoma has a good advantage in the treatment of nervous system diseases, and modern research has also found that the essential oil of Acorus tatarinowii Rhizoma is the main component that plays a neuroprotective role and plays an important role in the treatment of Parkinson's disease. AIM OF THE STUDY This study aims to explore the effects and mechanisms of essential oil of Acorus tatarinowii Rhizoma (EOAT) on LPS-induced BV2 cell damage and Rotenone-induced Parkinson's disease (PD) rat models. MATERIALS AND METHODS In this experiment, the components of EOAT were identified by GC-MS. LPS was used to induce the overactivation of BV2 microglia, and rotenone was injected subcutaneously to induce Parkinson's disease in rats. Then, the expression of inflammatory factors and IBA-1 in cell was evaluated, and the effects of EOAT treatment were assessed on motor function, inflammatory factors, neurotransmitters, TH, α-Syn, and pathways and inflammation-related mRNA in rats. RESULTS GC-MS analysis obtained 24 components, among which β-Asarone and α-Asarone had the highest contents. In vitro experiments showed that after 2 h of EOAT intervention, the inflammatory factors TNF-α and IL-6 in the supernatant of LPS-induced BV2 cells were significantly reduced. The IF results showed that after EOAT intervention, the expression of IBA-1 protein in BV2 cells was significantly reduced. In animal experiments, rotenone injection in model rats led to a decrease in motor function, while inhalation of EOAT improved the motor ability of Parkinson's rats. In addition, Madopar and EOAT inhalation increased the levels of BDNF and DA in brain tissue and reduced the levels of IL-Iβ, TNF-α, and IL-6. IHC, IF, and WB analyses showed that the expression of TH protein in brain tissue of the Madopar group and the EOAT group was significantly increased, and the expression level of α-syn was reduced. RT-qPCR results showed that compared with the Model group, the levels of TLR2, MyD88, NF-κB, IL-1β, TNF-α, α-syn, and Bax in the substantia nigra and striatum of the Madopar group and the EOAT group were significantly down-regulated, and the levels of TH and Bcl-2 were significantly up-regulated. CONCLUSION These findings suggest that EOAT can prevent LPS from damaging BV2 cells and significantly improve the motor function of PD rats and lessen neuroinflammation. The anti-Parkinson's mechanism of EOAT is primarily dependent on the regulation of the TLR2/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yilong Hu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Yinan Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Zhiguo Mao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jingying Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Baoling Huang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jinxin Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Mingsan Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2025; 62:5252-5272. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Qiu F, Lin J, Huang X, Yang B, Lu W, Dai Z. The immunoregulatory effects of scoparone on immune-mediated inflammatory diseases. Front Immunol 2025; 16:1518886. [PMID: 39958341 PMCID: PMC11825328 DOI: 10.3389/fimmu.2025.1518886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Scoparone (SCO), also known as 6,7-Dimethoxycoumarin, is a naturally occurring bioactive ingredient originally derived from Chinese herb Artemisiae Scopariae Herba (Yin-Chen-Hao). Previous studies have shown that it is effective in treating some of the liver diseases. Beyond its hepatoprotective effects, an expanding body of research has underscored the immunoregulatory properties of SCO, indicating its potential therapeutic benefits for autoimmune and other inflammatory diseases. Over the past decade, significant advances have been made in understanding the mechanistic insights into its effects on immune-mediated diseases as well as liver diseases. SCO has an impact on various immune cells, including mast cells, monocytes, macrophages, neutrophils and T cells, and affects a broad range of intracellular signaling pathways, including TLR4/Myd88/NFκB, TGFβR/Smad3 and JNK/Sab/SHP-1 etc. Therefore, this review not only summarizes the immunomodulatory and therapeutic effects of SCO on immune-based inflammatory diseases (IMIDs), such as inflammatory bowel disease, osteoarthritis, allergic rhinitis, acute lung injury, type 1 diabetes and neuroinflammatory diseases etc., but also provides a comprehensive summary of its therapeutic effects on hepatic diseases, including non-alcoholic steatohepatitis, fulminant hepatic failure and hepatic fibrosis. In this review, we also include the broad impacts of SCO on intracellular signaling pathways, such as TLR4/Myd88/NFκB, TGFβR/Smad3, Nrf2/P38, JAK2/STAT3 and JNK/Sab/SHP-1 etc. Further researches on SCO may help understand its in-depth mechanisms of action and pave the way for the development of novel drugs to prevent and treat various immune-mediated inflammatory disorders as well as hepatic diseases, thereby significantly advancing its innovations and pharmaceutical applications.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingru Lin
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofei Huang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester, United Kingdom
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Yin L, Yuan X, Yu J, Ren X, Zhang H, Ye Y, Wang Z, Chen X. β-asarone relieves Parkinson's disease through reducing intracellular Ca 2+ in PINK1 mutant Drosophila melanogaster. Eur J Pharmacol 2025; 987:177155. [PMID: 39622404 DOI: 10.1016/j.ejphar.2024.177155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
β-asarone, an effective volatile oil component of Acorus chinensis, has been found to hold beneficial effects on Parkinson's disease (PD), but its mechanism remains incompletely understood. Drosophila melanogaster with PTEN induced kinase 1 (PINK1) mutations, a prototype PD model, was used in this study. We found that calcium chelation profoundly alleviated a spectrum of PD symptoms. Whereas, calcium supplementation made the case worse, suggesting accumulated calcium contributes to progression of PD. β-asarone administration decreased Ca2+ level in PD flies, accompanied by alleviated behavioral and neural defects. Further study demonstrated that β-asarone downregulated L-type Ca2+ channels (Dmca1D), which was increased in PD flies. Besides, β-asarone decreased expression of 1,4,5 - trisphosphate receptor (Itpr), which is responsible for calcium release from endoplasmic reticulum (ER). Knockdown of either Dmca1D or Itpr specifically in dopaminergic neurons alleviated behavioral and neural defects in PD flies. While overexpression of Itpr aggravated PD symptoms. The results indicated that increased intracellular calcium influx and release triggers dysregulation of calcium homeostasis in PD flies. And β-asarone prevents PD by restoring Ca2+ homeostasis. Overall, the study demonstrated that β-asarone can serve as a new prospective medication against PD or other diseases associated with dysregulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xintong Yuan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiahui Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuemin Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongqin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yunyan Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, Anhui, China
| | - Zixuan Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Xia M, Yi M, Guo C, Xie Y, Yu W, Wang D, Dai X. β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis. Hum Cell 2024; 38:33. [PMID: 39718669 DOI: 10.1007/s13577-024-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.
Collapse
Affiliation(s)
- Mingyue Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunyuan Guo
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- Jiangxi Provincial, People's Hospital, Clinical College of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yeli Xie
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Wenting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China.
| |
Collapse
|
8
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 PMCID: PMC11839148 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Faris T. Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| |
Collapse
|
9
|
Lee JY, Kim S, Kim H, Yeon SH, Kim SY, Son RH, Park CL, Lee YH. Improvement in Testosterone Production by Acorus gramineus for the Alleviation of Andropause Symptoms. J Med Food 2024; 27:740-748. [PMID: 38828543 DOI: 10.1089/jmf.2023.k.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Acorus gramineus has a number of beneficial effects, including protective effects against age-related disorders. In this study, the effects of A. gramineus on testosterone production and andropause symptoms were evaluated. We first treated TM3 mouse Leydig cells, responsible for testosterone production, with A. gramineus aqueous extract at different concentrations. In TM3 cells, the testosterone concentration increased in a concentration-dependent manner compared with those in the control. In addition, at 400 μg/mL extract, the mRNA expression level of the steroidogenic enzyme CYP11A1 was increased. Subsequently, 23-week-old Sprague-Dawley (SD) rats exhibiting an age-related reduction in serum testosterone (approximately 80% lower than that in 7-week-old SD rats) were administered A. gramineus aqueous extract for 8 weeks. Serum total testosterone and free testosterone levels were higher and serum estradiol, prostate-specific antigen levels, and total cholesterol levels were lower in the AG50 group (A. gramineus aqueous extract 50 mg/kg of body weight/day) than in the OLD (control group). The AG50 group also showed significant elevations in sperm count, grip strength, and mRNA expression of StAR, CYP11A1, 17β-HSD, and CYP17A1 compared with those in the OLD group. In conclusion, A. gramineus aqueous extract facilitated steroidogenesis in Leydig cells, elevated testosterone levels, lowered serum estradiol and total cholesterol levels, and increased muscle strength and sperm count, thus alleviating the symptoms of andropause. These findings suggest that A. gramineus aqueous extract is a potentially effective therapeutic agent against various symptoms associated with andropause.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Seokho Kim
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Hongeun Kim
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Sung-Hum Yeon
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Sang-Yoon Kim
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Rak Ho Son
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Chae Lee Park
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| |
Collapse
|
10
|
Anbaraki A, Dindar Z, Mousavi-Jarrahi Z, Ghasemi A, Moeini Z, Evini M, Saboury AA, Seyedarabi A. The novel anti-fibrillary effects of volatile compounds α-asarone and β-caryophyllene on tau protein: Towards promising therapeutic agents for Alzheimer's disease. Int J Biol Macromol 2024; 271:132401. [PMID: 38761902 DOI: 10.1016/j.ijbiomac.2024.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and β-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the β-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.
Collapse
Affiliation(s)
- Afrooz Anbaraki
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Dindar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
12
|
Lim HS, Park G. Artemisinin protects dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in a mouse model of Parkinson's disease. Biomed Pharmacother 2024; 170:115972. [PMID: 38056239 DOI: 10.1016/j.biopha.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Artemisinin is an antimalarial drug that has been used for almost half a century. However, the anti-Parkinson's disease (PD) effects of artemisinin with respect to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress have not yet been investigated while focusing on NF-E2-related factor 2 (Nrf2) signaling. Thus, we sought to assess the behavioral and oxidative mechanistic effects of artemisinin on MPTP-induced toxicity via the Nrf2 signaling pathway. We explored this through immunohistochemical assays, ELISA, in differentiated PC12 cells treated with siRNA, and with a PD mouse model. Artemisinin increased Nrf2 DNA-binding activity and HO-1 and NQO1 expression. Artemisinin treatment protected cells against MPP+ -induced neuronal death signaling, including NADH dehydrogenase activity, reactive oxygen species, mitochondrial membrane potential, and cleaved caspase-3. Moreover, it protected cells against MPTP-induced behavioral impairments and significantly reduced dopaminergic neuronal loss. Additionally, Nrf2 pre-inhibition using ML385 neutralized the inhibitory effects of artemisinin on dopaminergic neuronal damage and behavioral impairments induced by MPTP. Our results suggest that artemisinin inhibits MPTP-induced behavioral and neurotoxic effects in mice. This provides a foundation for further research to evaluate artemisinin as a potential therapeutic agent for PD.
Collapse
MESH Headings
- Rats
- Mice
- Animals
- Parkinson Disease/drug therapy
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons
- NF-E2-Related Factor 2/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- Neurotoxicity Syndromes/metabolism
- Artemisinins/pharmacology
- Artemisinins/therapeutic use
- Mice, Inbred C57BL
- Disease Models, Animal
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon 34113, Republic of Korea.
| |
Collapse
|
13
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
14
|
Sun HY, Wu J, Wang R, Zhang S, Xu H, Kaznacheyeva Е, Lu XJ, Ren HG, Wang GH. Pazopanib alleviates neuroinflammation and protects dopaminergic neurons in LPS-stimulated mouse model by inhibiting MEK4-JNK-AP-1 pathway. Acta Pharmacol Sin 2023; 44:1135-1148. [PMID: 36536076 PMCID: PMC10203146 DOI: 10.1038/s41401-022-01030-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons and the accumulation of Lewy bodies (LB) in the substantia nigra (SN). Evidence shows that microglia-mediated neuroinflammation plays a key role in PD pathogenesis. Using TNF-α as an indicator for microglial activation, we established a cellular model to screen compounds that could inhibit neuroinflammation. From 2471 compounds in a small molecular compound library composed of FDA-approved drugs, we found 77 candidates with a significant anti-inflammatory effect. In this study, we further characterized pazopanib, a pan-VEGF receptor tyrosine kinase inhibitor (that was approved by the FDA for the treatment of advanced renal cell carcinoma and advanced soft tissue sarcoma). We showed that pretreatment with pazopanib (1, 5, 10 μM) dose-dependently suppressed LPS-induced BV2 cell activation evidenced by inhibiting the transcription of proinflammatory factors iNOS, COX2, Il-1β, and Il-6 through the MEK4-JNK-AP-1 pathway. The conditioned medium from LPS-treated microglia caused mouse DA neuronal MES23.5 cell damage, which was greatly attenuated by pretreatment of the microglia with pazopanib. We established an LPS-stimulated mouse model by stereotactic injection of LPS into mouse substantia nigra. Administration of pazopanib (10 mg·kg-1·d-1, i.p., for 10 days) exerted significant anti-inflammatory and neuronal protective effects, and improved motor abilities impaired by LPS in the mice. Together, we discover a promising candidate compound for anti-neuroinflammation and provide a potential repositioning of pazopanib in the treatment of PD.
Collapse
Affiliation(s)
- Hong-Yang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Еlena Kaznacheyeva
- Institute of Cytology of Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Xiao-Jun Lu
- Department of Neurosurgery, the First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China
| | - Hai-Gang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Center of Translational Medicine, the First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China.
| |
Collapse
|
15
|
Balakrishnan R, Park JY, Cho DY, Ahn JY, Yoo DS, Seol SH, Yoon SH, Choi DK. AD−1 Small Molecule Improves Learning and Memory Function in Scopolamine-Induced Amnesic Mice Model through Regulation of CREB/BDNF and NF-κB/MAPK Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12030648. [PMID: 36978896 PMCID: PMC10045324 DOI: 10.3390/antiox12030648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer’s disease (AD). Based on the potential neuroprotective effects of AD−1 small molecule, we here explored the possible underlying mechanisms of the protective effect of AD-1 small molecule against scopolamine-induced oxidative stress, neuroinflammation, and neuronal apoptosis. According to our findings, scopolamine administration resulted in increased AChE activity, MDA levels, and decreased antioxidant enzymes, as well as the downregulation of the antioxidant response proteins of Nrf2 and HO-1 expression; however, treatment with AD−1 small molecule mitigated the generation of oxidant factors while restoring the antioxidant enzymes status, in addition to improving antioxidant protein levels. Similarly, AD−1 small molecule significantly increased the protein expression of neuroprotective markers such as BDNF and CREB and promoted memory processes in scopolamine-induced mice. Western blot analysis showed that AD−1 small molecule reduced activated microglia and astrocytes via the attenuation of iba-1 and GFAP protein expression. We also found that scopolamine enhanced the phosphorylation of NF-κB/MAPK signaling and, conversely, that AD−1 small molecule significantly inhibited the phosphorylation of NF-κB/MAPK signaling in the brain regions of hippocampus and cortex. We further found that scopolamine promoted neuronal loss by inducing Bax and caspase-3 and reducing the levels of the antiapoptotic protein Bcl-2. In contrast, AD−1 small molecule significantly decreased the levels of apoptotic markers and increased neuronal survival. Furthermore, AD−1 small molecule ameliorated scopolamine-induced impairments in spatial learning behavior and memory formation. These findings revealed that AD−1 small molecule attenuated scopolamine-induced cognitive and memory dysfunction by ameliorating AChE activity, oxidative brain damage, neuroinflammation, and neuronal apoptosis.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Duk-Yeon Cho
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Jae-Yong Ahn
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Sun Yoo
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Sang-Ho Seol
- Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
- Correspondence:
| |
Collapse
|
16
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
17
|
The Mechanism of Two Benzaldehydes from Aspergillus terreus C23-3 Improve Neuroinflammatory and Neuronal Damage to Delay the Progression of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24020905. [PMID: 36674443 PMCID: PMC9866346 DOI: 10.3390/ijms24020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is the most common cause of dementia in humans worldwide. Although more in-depth research has been carried out on AD, the therapeutic effect of AD is not as expected, and natural active substances are increasingly sought after by scientists. In the present study, we evaluated two benzaldehydes from a coral-derived Aspergillus terreus strain C23-3, their anti-neuroinflammatory activity in microglia (BV-2), and their neuroprotective activity and mechanisms in hippocampal neuronal cells (HT-22). These include the protein expression of iNOS, COX-2, MAPKs pathways, Tau protein-related pathways, caspases family-related signaling pathways. They also include the levels of TNF-α, IL-6, IL-18 and ROS, as well as the level of mitochondrial oxidative stress and neuronal cell apoptosis. The results showed that both benzaldehydes were effective in reducing the secretion of various inflammatory mediators, as well as pro-inflammatory factors. Among these, benzaldehyde 2 inhibited mitochondrial oxidative stress and blocked neuronal cell apoptosis through Tau protein-related pathways and caspases family-related signaling pathways, thereby inhibiting β-amyloid (Aβ)-induced neurological damage. This study reveals that benzaldehyde 2 has potential as a therapeutic agent for Alzheimer's disease, and offers a new approach to the high-value use of marine natural products.
Collapse
|
18
|
Zhai Z, Su PW, Ma LY, Yang H, Wang T, Fei ZG, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ. Progress on traditional Chinese medicine in treatment of ischemic stroke via the gut-brain axis. Biomed Pharmacother 2023; 157:114056. [PMID: 36446240 DOI: 10.1016/j.biopha.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a common issue that severely affects the human health. Between the central nervous system and the enteric system, the " Gut-Brain " axis, the bidirectional connection involved in the neuro-immuno-endocrine network, is crucial for the occurrence and development of ischemic stroke. Ischemic stroke can lead to change in the gut microbiota and gastrointestinal hormones, which will then reversely affect the disease development. Traditional Chinese Medicine (TCM) has unique advantages with reference to the treatment for ischemic stroke. The latest research revealed that a significant portion of medicines and prescriptions of TCM exert their therapeutic effects by improving the gut microbiota and regulating the secretion of gastrointestinal hormones. The present review summarized the Chinese medicines that play a therapeutic role in cerebral ischemia through regulating the "Gut-Brain" axis and described the corresponding mechanisms. This study attempts to provide reference for clinical selection of Chinese medicines and helps better understand the relevant mechanisms of action.
Collapse
Affiliation(s)
- Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lan-Ying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng-Gen Fei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
19
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
20
|
Pang M, Peng R, Wang Y, Zhu Y, Wang P, Moussian B, Su Y, Liu X, Ming D. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson's disease. Biomed Pharmacother 2022; 155:113718. [PMID: 36152409 DOI: 10.1016/j.biopha.2022.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Collapse
Affiliation(s)
- Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Rui Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yi Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Peng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China.
| |
Collapse
|
21
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
22
|
Alam Q, Krishnamurthy S. Dihydroquercetin ameliorates LPS-induced neuroinflammation and memory deficit. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100091. [PMID: 35243333 PMCID: PMC8857648 DOI: 10.1016/j.crphar.2022.100091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Dihydroquercetin (DHQ) is a pentahydroxyflavanone that has been used as an important suppliment against oxidative stress related inflammation and neuroinflammation. Neuroinflammation, which is the activation of the defense mechanism of the central nervous system, upon exposure to stimuli like amyloid β, Lewy bodies, lipopolysaccharide (LPS) and reactive oxygen species. It is an important pathophysiological mediator of a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis and others. The objective of the present study is to evaluate the neuroprotective effect of DHQ, a potent antioxidant molecule, against LPS induced neuroinflammation. On the first day of the experiment (day-1), neuroinflammation was induced through intracerebroventricular injection of LPS (5 μg/5 μl) into each lateral ventricle in the rats. DHQ-0.5, 1 and 2 μg/kg was injected into the tail vein in respective groups from day-2 to day-10. Behavioral studies showed that DHQ attenuated the LPS-induced loss in long-term memory and working memory as evaluated by elevated plus maze and Y-maze test, respectively. Further, the biochemical estimations revealed that DHQ dose-dependently attenuated the LPS-induced decrease in acetylcholine level and increased in the acetylcholine-esterase activity in the hippocampal region. DHQ also increased the catalase activity and decreased nitric oxide and lipid peroxidation altered by LPS injection. DHQ also attenuated interleukin-6 in the brain, which has elevated upon LPS induction. The decrease in IL-6 is attributed to its antioxidant activity. Hence, DHQ could be a potential therapeutic candidate in the management of neuroinflammation and related neurodegenerative disorders. Dihydroquercetin (DHQ) improves LPS induced loss in working memory and long-term memory. DHQ attenuates LPS –induced decrease in cholinergic activity. DHQ shows anti-oxidant properties. DHQ shows anti-neuroinflammatory effect.
Collapse
|
23
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
24
|
Vaidya B, Kaur H, Thapak P, Sharma SS, Singh JN. Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson's Disease in Sprague Dawley Rats. Mol Neurobiol 2022; 59:1528-1542. [PMID: 34997907 DOI: 10.1007/s12035-021-02711-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson's disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Harpinder Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India.
| |
Collapse
|
25
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
26
|
Md S, Alhakamy NA, Alfaleh MA, Afzal O, Altamimi ASA, Iqubal A, Shaik RA. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. J Pers Med 2021; 11:1116. [PMID: 34834468 PMCID: PMC8619529 DOI: 10.3390/jpm11111116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aβ), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3β/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr's therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
27
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
28
|
Gangar K, Bhatt LK. Therapeutic Targets for the Treatment of Comorbidities Associated with Epilepsy. Curr Mol Pharmacol 2021; 13:85-93. [PMID: 31793425 DOI: 10.2174/1874467212666191203101606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.
Collapse
Affiliation(s)
- Kinjal Gangar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| |
Collapse
|
29
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
30
|
Figura M, Sitkiewicz E, Świderska B, Milanowski Ł, Szlufik S, Koziorowski D, Friedman A. Proteomic Profile of Saliva in Parkinson's Disease Patients: A Proof of Concept Study. Brain Sci 2021; 11:661. [PMID: 34070185 PMCID: PMC8158489 DOI: 10.3390/brainsci11050661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. It affects many organs. Lewy bodies-a histopathological "hallmark" of PD-are detected in about 75% of PD submandibular gland samples. We hypothesize that saliva can be a source of biomarkers of PD. The aim of the study was to evaluate and compare the salivary proteome of PD patients and healthy controls (HC). Salivary samples from 39 subjects (24 PD patients, mean age 61.6 ± 8.2; 15 HC, mean age 60.9 ± 6.7) were collected. Saliva was collected using RNA-Pro-Sal kits. Label-free LC-MS/MS mass spectrometry was performed to characterize the proteome of the saliva. IPA analysis of upstream inhibitors was performed. A total of 530 proteins and peptides were identified. We observed lower concentrations of S100-A16, ARP2/3, and VPS4B in PD group when compared to HC. We conclude that the salivary proteome composition of PD patients is different than that of healthy controls. We observed a lower concentration of proteins involved in inflammatory processes, exosome formation, and adipose tissue formation. The variability of expression of proteins between the two groups needs to be considered.
Collapse
Affiliation(s)
- Monika Figura
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (B.Ś.)
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (B.Ś.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Andrzej Friedman
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| |
Collapse
|
31
|
The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094674. [PMID: 33925146 PMCID: PMC8125349 DOI: 10.3390/ijms22094674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test-assessed motor performance and improved Y-maze test-assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.
Collapse
|
32
|
Maurya SK, Bhattacharya N, Mishra S, Bhattacharya A, Banerjee P, Senapati S, Mishra R. Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Front Pharmacol 2021; 12:654489. [PMID: 33927630 PMCID: PMC8076853 DOI: 10.3389/fphar.2021.654489] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer's, Parkinson's, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer's, Parkinson's and Multiple Sclerosis for microglia-mediated therapeutics.
Collapse
Affiliation(s)
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Suman Mishra
- Department of Molecular Medicine and Biotechnology, SGPGI, Lucknow, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2021; 68:3375-3387. [PMID: 33830916 DOI: 10.1109/tbme.2021.3071807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuroinflammation contributes to the development and progression of Parkinson's disease (PD). The aim of this study was to examine whether ultrasound (US) stimulation of the subthalamic nucleus (STN) could suppress the neuroinflammation in a chronic PD mouse model induced by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). METHODS A chronic PD mouse model was built by injections of 20mg/kg MPTP and 250 mg/kg probenecid at 3.5-day intervals for 5 weeks. Mice were randomized into control+sham, MPTP+sham and MPTP+STN+US group. For MPTP+STN+US group, ultrasound wave (3.8 MHz, 50% duty cycle, 1 kHz pulse repetition frequency, 30 min/day) was delivered to the STN the day after MPTP and probenecid injection (the early stage of PD progression). The rotarod test and pole test were performed to evaluate the behavioral changes after ultrasound treatment. Then, the activity of microglia and astrocyte were measured to evaluate the inflammation level in the brain. RESULTS Ultrasound stimulation improved the latency to falls in the rotarod test (p = 0.033) and decreased the climbing time in the pole test (p = 0.016) compared with MPTP+sham group. Moreover, ultrasound stimulation reduced the chronic inflammation response as shown in microglia (p = 0.007) and astrocyte (p = 0.032) activation. In addition, HE, Nissl and Tunel staining showed that no brain tissue injury was induced by US. CONCLUSION These findings demonstrated that ultrasound stimulation could suppress neuroinflammation in PD mice. SIGNIFICANCE Transcranial ultrasound neuromodulation offers a novel approach for Parkinson's disease intervention, potentially through its anti-neuroinflammation functions.
Collapse
|
34
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin-Jian Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Han-Cheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ming-Xin Dong
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
35
|
Co-Administration of Gagam-Sipjeondaebo-Tang and Ibuprofen Alleviates the Inflammatory Response in MPTP-Induced Parkinson's Disease Mouse Model and RAW264.7 Macrophages. Pathogens 2021; 10:pathogens10030268. [PMID: 33652920 PMCID: PMC7996732 DOI: 10.3390/pathogens10030268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD), a common neurodegenerative disease, is characterized by degeneration of dopaminergic neurons with neuroinflammation. Gagam-Sipjeondaebo-Tang (GST), a traditional herbal formula made of twelve medicinal herbs, is known to be effective in PD, and the use of ibuprofen has been associated with a lower risk of PD. The aim of this study was to evaluate whether the combined administration of GST and ibuprofen affects the inflammatory response of Parkinson’s disease. MPTP-induced parkinsonian mouse models were treated with GST or ibuprofen using oral gavage once a day for 5 days. The effects of GST were examined by measuring the TH level and expression of CD68 in the mice brain in addition to behavioral tests. The anti-inflammatory effect of GST on the LPS-treated RAW264.7 murine macrophages was examined using the NO assay. Inflammatory cytokines were analyzed using quantitative-PCR and flow cytometry. In the results, GST significantly improved the loss of dopaminergic neurons and alleviated PD-induced behavioral deficits. GST also decreased macrophage activation in the MPTP-induced PD mouse model. Interestingly, co-administration of GST and ibuprofen showed a synergistic effect in improving the loss of dopaminergic neurons and decreasing the activation of macrophages. Moreover, the NO level decreased in LPS-stimulated macrophages with this combined treatment. GST reduced iNOS, COX-2, IL-1β, and IL-6 levels, and co-administration with ibuprofen showed a synergistic effect. Furthermore, pretreatment of GST reduced the expression levels of MCP-1 and IL-12 p70 in LPS-stimulated RAW264.7 cells. These results can possibly suggest a future therapeutic approach for PD patients.
Collapse
|
36
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Zeng L, Zhang D, Liu Q, Zhang J, Mu K, Gao X, Zhang K, Li H, Wang Q, Zheng Y, Mao S. Alpha-asarone Improves Cognitive Function of APP/PS1 Mice and Reducing Aβ 42, P-tau and Neuroinflammation, and Promoting Neuron Survival in the Hippocampus. Neuroscience 2021; 458:141-152. [PMID: 33412244 DOI: 10.1016/j.neuroscience.2020.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors. GABA level's change, neuroinflammation, and dysfunctional autophagy are found to be associated with AD. However, the effect of alpha-asarone on cognitive function of APP/PS1 transgenic mice and its underlying mechanism in terms of aggregation of amyloid-β42 (Aβ42) and phosphorylated tau (p-tau), glutamic acid decarboxylase (GAD) level, neuroinflammation, and autophagy are unclear. Accordingly, we attempted to explore whether alpha-asarone improves AD mice's cognitive function and alleviates pathological symptoms by regulating GAD level, inhibiting neuroinflammation, or restore autophagy. We found that alpha-asarone enhanced spatial learning memory and decreased Aβ42 and p-tau levels without influencing the GAD level in APP/PS1 transgenic mice. Also, it decreased the GFAP expression and reduced pro-inflammatory cytokines levels, thus alleviating neuroinflammation. Furthermore, alpha-asarone decreased the excess number of autophagosomes and promoted hippocampal neurons' survival. In conclusion, the results confirmed the therapeutic effect of alpha-asarone on AD-related astrogliosis, dysfunctional autophagy, and neuronal damage, which indicates its great potential to treat AD.
Collapse
Affiliation(s)
- Lili Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keman Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Yang X, Li Y, Chen L, Xu M, Wu J, Zhang P, Nel D, Sun B. Protective effect of hydroxysafflor yellow A on dopaminergic neurons against 6-hydroxydopamine, activating anti-apoptotic and anti-neuroinflammatory pathways. PHARMACEUTICAL BIOLOGY 2020; 58:686-694. [PMID: 32658590 PMCID: PMC7470140 DOI: 10.1080/13880209.2020.1784237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Hydroxysafflor yellow A (HSYA) has been shown to have neuroprotective effects in cerebral infarction. However, its underlying roles in apoptosis and inflammation in Parkinson's disease (PD) are unknown. OBJECTIVE The present study investigates the effects and underlying mechanisms of HSYA on dopaminergic (DA) neurodegeneration, inflammation, and apoptosis. MATERIALS AND METHODS The PD model was established by 2 μL of 6-hyroxydopamine (6-OHDA) (3 μg/μL) striatal injection in C57BL/6J mice with different doses of HSYA (2, 4, or 8 mg/kg). In vitro, after being treated with HSYA for 1 h, SH-SY5Y cells were exposed to 6-OHDA for 24 h before analysis. Expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and corpus striatum (STR) was evaluated by immunohistochemistry (IHC) and western blot. In addition, apoptosis-related and inflammatory proteins were examined by western blot. RESULTS Administration of HSYA significantly reduced the Apomorphine (APO)-induced rotation, decreased from 122.5 ± 15.1 (6-OHDA group) to 47.2 ± 14.3 (8 mg/kg HSYA group). HSYA partially restored a deficit in the SN and STR of PD mice brains in TH. Furthermore, western blot analysis revealed that HSYA reduced inflammatory proteins, including iNOS, COX-2 and NF-κB and attenuated the elevation of DA neuronal apoptosis observed in PD. In vitro assays showed that HSYA reduced the levels of p-p38 and p-JNK and increased that of p-ERK in 6-OHDA-leisoned SH-SY5Y cells. CONCLUSIONS These findings indicate that HSYA protects against 6-OHDA induced DA neurodegeneration partly by regulating the MAPK inflammatory signalling pathway and apoptosis which highlight its therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Yun Li
- Department of Traditional Chinese Medicine, Dezhou People’s Hospital, Dezhou, P.R. China
| | - Lin Chen
- Department of Pharmacology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mingguo Xu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, P.R. China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Deon Nel
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| |
Collapse
|
39
|
Gureev AP, Sadovnikova IS, Starkova NN, Starkov AA, Popov VN. p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10110847. [PMID: 33198234 PMCID: PMC7696015 DOI: 10.3390/brainsci10110847] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Turnover of the mitochondrial pool due to coordinated processes of mitochondrial biogenesis and mitophagy is an important process in maintaining mitochondrial stability. An important role in this process is played by the Nrf2/ARE signaling pathway, which is involved in the regulation of the expression of genes responsible for oxidative stress protection, regulation of mitochondrial biogenesis, and mitophagy. The p62 protein is a multifunctional cytoplasmic protein that functions as a selective mitophagy receptor for the degradation of ubiquitinated substrates. There is evidence that p62 can positively regulate Nrf2 by binding to its negative regulator, Keap1. However, there is also strong evidence that Nrf2 up-regulates p62 expression. Thereby, a regulatory loop is formed between two important signaling pathways, which may be an important target for drugs aimed at treating neurodegeneration. Constitutive activation of p62 in parallel with Nrf2 would most likely result in the activation of mTORC1-mediated signaling pathways that are associated with the development of malignant neoplasms. The purpose of this review is to describe the p62-Nrf2-p62 regulatory loop and to evaluate its role in the regulation of mitophagy under various physiological conditions.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
- Correspondence:
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
| | | | - Anatoly A. Starkov
- Neuroscience Department, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
- Voronezh State University of Engineering Technologies, 394018 Voronezh, Russia
| |
Collapse
|
40
|
Saldanha AA, Vieira L, Maia DSDS, de Oliveira FM, Ribeiro RIMDA, Thomé RG, Dos Santos HB, Lopes DDO, Carollo CA, Silva DB, Soares AC, de Siqueira JM. Anti-inflammatory and antinociceptive activities of a phenylpropanoid-enriched fraction of Duguetia furfuracea. Inflammopharmacology 2020; 29:409-422. [PMID: 33156477 DOI: 10.1007/s10787-020-00775-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/25/2020] [Indexed: 01/15/2023]
Abstract
A previous study reported the in vivo anti-inflammatory and antinociceptive activities of essential oil of the underground stem bark of Duguetia furfuracea, termed EODf. This study aimed to obtain a phenylpropanoid-enriched fraction from the D. furfuracea (EFDf) essential oil and to investigate its anti-inflammatory and antinociceptive effects. The chemical composition of the EFDf was determined by gas chromatography-mass spectrometry (GC-MS). The in vivo anti-inflammatory activity was evaluated with a lipopolysaccharide (LPS)-induced paw oedema model. The effects of the EFDf on the polymorphonuclear leukocyte recruitment and the inducible nitric oxide synthase (iNOS) expression were evaluated in mice footpads. Moreover, the in vivo antinociceptive effect was assayed using the formalin test and the LPS-induced thermal hyperalgesia model. In the EFDf, 8 major compounds were identified, with α-asarone (36.4%) and 2,4,5-trimethoxystyrene (27.8%) the main constituents. A higher concentration of phenylpropanoid derivatives was found in the EFDf, 64.2% compared to the EODf (38%). The oral (p.o.) treatment with the EFDf at a dose of 3 mg/kg significantly attenuated the paw oedema, polymorphonuclear leukocyte migration, iNOS expression, and tumour necrosis factor alpha (TNF-α) production. The EFDf (10 and 30 mg/kg) also inhibited both phases of the formalin test and caused a significant increase in the reaction time in the LPS-induced thermal hyperalgesia model. Finally, EFDf-treated animals did not show any alteration of motor coordination. The results suggest that the enrichment of 2,4,5-trimethoxystyrene and α-asarone enhances the anti-inflammatory activity of the EFDf compared to the EODf. In contrast, the antinociception promoted by the EFDf was similar to the EODf and was mediated via activation of adenosinergic and opioidergic receptors.
Collapse
Affiliation(s)
- Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.,Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Letícia Vieira
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil
| | - Débora Soares da Silva Maia
- Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | | | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.
| | - João Máximo de Siqueira
- Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| |
Collapse
|
41
|
Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020; 26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine. This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations. Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects. OBJECTIVE Herein, brain-targeting strategies for nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties. CONCLUSION Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
42
|
Ramalingam P, Ganesan P, Prabakaran DS, Gupta PK, Jonnalagadda S, Govindarajan K, Vishnu R, Sivalingam K, Sodha S, Choi DK, Ko YT. Lipid Nanoparticles Improve the Uptake of α-Asarone Into the Brain Parenchyma: Formulation, Characterization, In Vivo Pharmacokinetics, and Brain Delivery. AAPS PharmSciTech 2020; 21:299. [PMID: 33140227 DOI: 10.1208/s12249-020-01832-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Treatment of brain-related diseases is one of the most strenuous challenges in drug delivery research due to numerous hurdles, including poor blood-brain barrier penetration, lack of specificity, and severe systemic toxicities. Our research primarily focuses on the delivery of natural therapeutic compound, α-asarone, for the treatment of brain-related diseases. However, α-asarone has poor aqueous solubility, bioavailability, and stability, all of which are critical issues that need to be addressed. This study aims at formulating a lipid nanoparticulate system of α-asarone (A-LNPs) that could be used as a brain drug delivery system. The physicochemical, solid-state properties, stability, and in vitro and in vivo studies of the A-LNPs were characterized. The release of α-asarone from the A-LNPs was prolonged and sustained. After intravenous administration of A-LNPs or free α-asarone, significantly higher levels of α-asarone from the A-LNPs were detected in murine plasma and brain parenchyma fractions, confirming the ability of A-LNPs to not only maintain a therapeutic concentration of α-asarone in the plasma, but also transport α-asarone across the blood-brain barrier. These findings confirm that lipid nanoparticulate systems enable penetration of natural therapeutic compound α-asarone through the blood-brain barrier and may be a candidate for the treatment of brain-related diseases.
Collapse
|
43
|
Song SY, Kim IS, Koppula S, Park JY, Kim BW, Yoon SH, Choi DK. 2-Hydroxy-4-Methylbenzoic Anhydride Inhibits Neuroinflammation in Cellular and Experimental Animal Models of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21218195. [PMID: 33147699 PMCID: PMC7662568 DOI: 10.3390/ijms21218195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia-mediated neuroinflammation is one of the key mechanisms involved in acute brain injury and chronic neurodegeneration. This study investigated the inhibitory effects of 2-hydroxy-4-methylbenzoic anhydride (HMA), a novel synthetic derivative of HTB (3-hydroxy-4-trifluoromethylbenzoic acid) on neuroinflammation and underlying mechanisms in activated microglia in vitro and an in vivo mouse model of Parkinson’s disease (PD). In vitro studies revealed that HMA significantly inhibited lipopolysaccharide (LPS)-stimulated excessive release of nitric oxide (NO) in a concentration dependent manner. In addition, HMA significantly suppressed both inducible NO synthase and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in LPS-stimulated BV-2 microglia cells. Moreover, HMA significantly inhibited the proinflammatory cytokines such as interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha in LPS-stimulated BV-2 microglial cells. Furthermore, mechanistic studies ensured that the potent anti-neuroinflammatory effects of HMA (0.1, 1.0, and 10 μM) were mediated by phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) in LPS-stimulated BV-2 cells. In vivo evaluations revealed that intraperitoneal administration of potent neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg, four times a 1 day) in mice resulted in activation of microglia in the brain in association with severe behavioral deficits as assessed using a pole test. However, prevention of microglial activation and attenuation of Parkinson’s disease (PD)-like behavioral changes was obtained by oral administration of HMA (30 mg/kg) for 14 days. Considering the overall results, our study showed that HMA exhibited strong anti-neuroinflammatory effects at lower concentrations than its parent compound. Further work is warranted in other animal and genetic models of PD for evaluating the efficacy of HMA to develop a potential therapeutic agent in the treatment of microglia-mediated neuroinflammatory disorders, including PD.
Collapse
Affiliation(s)
- Soo-Yeol Song
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - In-Su Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (J.-Y.P.); (S.-H.Y.)
| | - Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (J.-Y.P.); (S.-H.Y.)
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
- Correspondence: ; Tel.: +82-43-840-3616
| |
Collapse
|
44
|
Chen Y, Zhu G, Liu D, Zhang X, Liu Y, Yuan T, Du T, Zhang J. Subthalamic nucleus deep brain stimulation suppresses neuroinflammation by Fractalkine pathway in Parkinson's disease rat model. Brain Behav Immun 2020; 90:16-25. [PMID: 32726685 DOI: 10.1016/j.bbi.2020.07.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is widely used to treat patients with Parkinson's disease (PD), and recent studies have shown that it is more beneficial for early stages, suggesting a potential neuroprotective effect. And the neuroinflammation plays an indispensable role in progress of PD. However, the underlying mechanisms are not well understood. The aim of this study was to investigate the effect of STN-DBS on neuroinflammation and the potential pathway. To address this question, we established a rat PD model by unilateral 6-hydroxydopamine injection into the left striatum and implanted stimulation leads into the ipsilateral STN to deliver electrical stimulation for a week. The neuroprotective effects of STN-DBS were examined by molecular biology techniques, including western blotting, immunohistochemistry and so on. We found that motor deficits were alleviated by STN-DBS, with increased survival of dopaminergic neurons in the substantia nigra (SN). Furthermore, STN-DBS decreased Fractalkine (CX3CL1) and its receptor (CX3CR1) expression. Meanwhile, the suppressed microglia activation and nuclear factor-κB expression, decrease in the levels of pro-inflammatory cytokine interleukin (IL)-1β and IL-6 and increase in anti-inflammatory cytokine IL-4, downregulated IL-1 receptor, extracellular signal-regulated kinase (ERK) and cleaved-caspase3 were also observed in SN of PD models received STN-DBS. In conclusion, we observed a significant association between the suppressed neuroinflammation and STN-DBS, which may be attributed to CX3CL1/CX3CR1 signaling. These results provide novel insight into the mechanistic basis of STN-DBS therapy for PD.
Collapse
Affiliation(s)
- Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yuye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing 100070, China.
| |
Collapse
|
45
|
Zhu X, Wei Y, Dong J. Long Noncoding RNAs in the Regulation of Asthma: Current Research and Clinical Implications. Front Pharmacol 2020; 11:532849. [PMID: 33013382 PMCID: PMC7516195 DOI: 10.3389/fphar.2020.532849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic airway inflammatory disorder related to variable expiratory airflow limitation, leading to wheeze, shortness of breath, chest tightness, and cough. Its characteristic features include airway inflammation, airway remodeling and airway hyperresponsiveness. The pathogenesis of asthma remains extremely complicated and the detailed mechanisms are not clarified. Long noncoding RNAs (lncRNAs) have been reported to play a prominent role in asthma and function as modulators of various aspects in pathological progress of asthma. Here, we summarize recent advances of lncRNAs in asthma pathogenesis to guide future researches, clinical treatment and drug development, including their regulatory functions in the T helper (Th) 1/Th2 imbalance, Th17/T regulatory (Treg) imbalance, eosinophils dysfunction, macrophage polarization, airway smooth muscle cells proliferation, and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Costa G, Sisalli MJ, Simola N, Della Notte S, Casu MA, Serra M, Pinna A, Feliciello A, Annunziato L, Scorziello A, Morelli M. Gender Differences in Neurodegeneration, Neuroinflammation and Na +-Ca 2+ Exchangers in the Female A53T Transgenic Mouse Model of Parkinson's Disease. Front Aging Neurosci 2020; 12:118. [PMID: 32477098 PMCID: PMC7232579 DOI: 10.3389/fnagi.2020.00118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Twelve-month-old male mice expressing the human A53T variant of α-synuclein (A53T) develop dopamine neuron degeneration, neuroinflammation, and motor deficits, along with dysfunctions of the mitochondrial Na+-Ca2+ exchanger (NCX) isoforms 1 (NCX1) and 3 (NCX3) in the nigrostriatal system. Since gender is thought to play a role in the etiology of Parkinson's disease (PD), we characterized neurochemical and behavioral alterations in 12-month-old female A53T transgenic mice. We investigated the presence of dopaminergic degeneration, astrogliosis and microgliosis using immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (IBA-1) in both the substantia nigra pars compacta (SNc) and striatum. In the same regions, we also evaluated the co-localization of NCX1 in cells positive for IBA-1 and the co-localization of NCX3 in TH-positive neurons and fibers. Furthermore, in both male and female mice, we performed motor (beam walking and pole tests) and memory [novel object recognition (NOR) and spontaneous alternation] tasks, together with tests to evaluate peripheral deficits (olfactory and stool collection tests). Female A53T transgenic mice displayed degeneration of nigral dopaminergic neurons, but neither microgliosis nor astrogliosis in the SNc and striatum. Moreover, female A53T transgenic mice displayed co-localization between NCX1 and IBA-1 positive cells in the striatum but not SNc, whereas NCX3 did not co-localize with either TH-positive terminals or neuronal bodies in the nigrostriatal system. Furthermore, female A53T transgenic mice showed increased crossing time in the beam walking test, but no impairments in the pole or memory tests, and in tests that evaluated peripheral deficits, whereas male A53T transgenic mice displayed motor, memory and peripheral deficits. Immunohistochemical and behavioral results obtained here in the female mice differ from those previously observed in males, and suggest a dissimilar influence of NCX1 and NCX3 on dopaminergic function in female and male A53T transgenic mice, strengthening the validity of these mice as a model for studying the etiological factors of PD.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Maria Jose Sisalli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Salvatore Della Notte
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
47
|
Kim B, Park JY, Cho DY, Ko HM, Yoon SH, Choi DK. 2-(5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)-N-(2-hydroxyethyl)-2-oxoacetamide (CDMPO) has anti-inflammatory properties in microglial cells and prevents neuronal and behavioral deficits in MPTP mouse model of Parkinson's disease. Neuropharmacology 2019; 166:107928. [PMID: 31887307 DOI: 10.1016/j.neuropharm.2019.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective loss of nigrostriatal dopamine neurons associated with microglial activation. Inhibition of the inflammatory response elicited by activated microglia could be an effective strategy to alleviate the progression of PD. Here, we synthesized 2-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)-N-(2-hydroxyethyl)-2-oxoacetamide (CDMPO) and studied its protective anti-inflammatory mechanisms following lipopolysaccharide (LPS)-induced neuroinflammation in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in vivo. CDMPO and its parent compound, rimonabant, significantly attenuated nitric oxide (NO) production in LPS-stimulated primary microglia and BV2 cells. Furthermore, CDMPO significantly inhibited the release of proinflammatory cytokines and prostaglandin E2 (PGE2) by activated BV2 cells, also suppressed expression of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Mechanistically, CDMPO attenuated LPS-induced activation of nuclear factor-kappa B (NF-κB), inhibitor of kappa B alpha (IκBα), and p38 phosphorylation in BV2 cells. MPTP intoxication of mice results in glial activation, tyrosine hydroxylase (TH) depletion, and significant behavioral deficits. Prophylactic treatment with CDMPO decreased proinflammatory molecules via NF-κB and p38 mitogen-activated protein kinase signaling, resulting in protection of dopaminergic neurons and improved behavioral impairments. These results suggest that CDMPO is a promising neuroprotective agent for the prevention and treatment of microglia-mediated neuroinflammatory conditions and may be useful for behavioral improvement in PD phenotype.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hyun Myung Ko
- Department of Biotechnology, Konkuk University, Chungju, 27478, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Dong-Kug Choi
- Department of Applied Life Science, BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biotechnology, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
48
|
Saldanha AA, Vieira L, de Oliveira FM, Lopes DDO, Ribeiro RIMDA, Thomé RG, Dos Santos HB, Silva DB, Carollo CA, de Siqueira JM, Soares AC. Anti-inflammatory and central and peripheral anti-nociceptive activities of α-asarone through the inhibition of TNF-α production, leukocyte recruitment and iNOS expression, and participation of the adenosinergic and opioidergic systems. Inflammopharmacology 2019; 28:1039-1052. [PMID: 31865494 DOI: 10.1007/s10787-019-00679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Alpha-asarone has been found to possess many pharmacological activities, which can improve cognitive function and exert anti-oxidant, anxiolytic, anti-epileptic and protective effects against endothelial cell injury. The anti-inflammatory activity of α-asarone was evaluated using lipopolysaccharide (LPS)-induced paw oedema. Moreover, leukocyte migration, inducible nitric oxide synthase (iNOS) expression and tumour necrosis factor-alpha (TNF-α) levels were quantified in footpads. Formalin and LPS-induced thermal hyperalgesia models were generated using adenosinergic, opioidergic, serotonergic and muscarinic receptor antagonists. The effects on motor coordination were evaluated by means of the rota-rod test. Oral treatment (p.o.) with α-asarone (3 mg/kg) significantly inhibited paw oedema by 62.12 and 72.22%, 2 and 4 h post LPS injection, respectively. Alpha-asarone (3 mg/kg, p.o.) attenuated the inflammatory infiltrate 1, 3 and 6 h after LPS injection. Furthermore, α-asarone (3 mg/kg, p.o.) suppressed iNOS expression and TNF-α production, 6 and 1 h after inflammatory stimulus, respectively. Alpha-asarone (3, 10 and 30 mg/kg, p.o.) inhibited both phases of formalin-induced licking. In the hot-plate test, α-asarone (10 and 30 mg/kg, p.o.) increased the latency to response 3 and 5 h post LPS stimulus. Caffeine and naloxone abolished the central anti-nociceptive effect of α-asarone (neurogenic phase of formalin and hot plate tests), suggesting the participation of the adenosinergic and opioidergic systems. Furthermore, naloxone reversed the peripheral activity of α-asarone (inflammatory phase of formalin test), indicating the possible involvement of the opioidergic pathway. In the rota-rod test, α-asarone did not change motor coordination. These findings suggest that α-asarone has anti-inflammatory, peripheral and central anti-nociceptive effects and could represent a promising agent for future research.
Collapse
Affiliation(s)
- Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.,Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Letícia Vieira
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil
| | | | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - João Máximo de Siqueira
- Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
49
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
50
|
Lee JE, Kim N, Yeo JY, Seo DG, Kim S, Lee JS, Hwang KW, Park SY. Anti-Amyloidogenic Effects of Asarone Derivatives From Perilla frutescens Leaves against Beta-Amyloid Aggregation and Nitric Oxide Production. Molecules 2019; 24:molecules24234297. [PMID: 31775356 PMCID: PMC6930631 DOI: 10.3390/molecules24234297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder associated with loss of memory and cognitive function. Beta-amyloid (Aβ) aggregates, in particular, are known to be highly neurotoxic and lead to neurodegeneration. Therefore, blockade or reduction of Aβ aggregation is a promising therapeutic approach in AD. We have previously reported an inhibitory effect of the methanol extract of Perilla frutescens (L.) Britton (Lamiaceae) and its hexane fraction on Aβ aggregation. Here, the hexane fraction of P. frutescens was subjected to diverse column chromatography based on activity-guided isolation methodology. This approach identified five asarone derivatives including 2,3-dimethoxy-5-(1E)-1-propen-1-yl-phenol (1), β-asarone (2), 3-(2,4,5-trimethoxyphenyl)-(2E)-2-propen-1-ol (3), asaronealdehyde (4), and α-asarone (5). All five asarone derivatives efficiently reduced the aggregation of Aβ and disaggregated preformed Aβ aggregates in a dose-dependent manner as determined by a Thioflavin T (ThT) fluorescence assay. Furthermore, asarone derivatives protected PC12 cells from Aβ aggregate-induced toxicity by reducing the aggregation of Aβ, and significantly reduced NO production from LPS-stimulated BV2 microglial cells. Taken together, these results suggest that asarone derivatives derived from P. frutescens are neuroprotective and have the prophylactic and therapeutic potential in AD.
Collapse
Affiliation(s)
- Jae Eun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Nayeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Ji Yun Yeo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Dae-Gun Seo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Sunggun Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Jae-Sun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - So-Young Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
- Correspondence: ; Tel.: +82-41-550-1434; Fax: +82-41-559-7899
| |
Collapse
|