1
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles AÁO. Pannexin 1 channels: A Bridge Between Synaptic Plasticity and Learning and Memory Processes. Neurosci Biobehav Rev 2025:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Espinosa N, Martín-Suárez S, Lara-Vasquez A, Montero T, Muro-García T, Fernandez G, Encinas-Pérez JM, Fuentealba P. Purinergic receptor antagonism reduces interictal discharges and rescues cognitive function in a mouse model of temporal lobe epilepsy. Front Neurosci 2025; 19:1513135. [PMID: 40255857 PMCID: PMC12007451 DOI: 10.3389/fnins.2025.1513135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/19/2025] [Indexed: 04/22/2025] Open
Abstract
Epilepsy is one of the most prevalent neurological disorders globally. Current treatments mainly target neuronal activity, often overlooking the involvement of astrocytes and microglia in epilepsy's pathophysiology. Here, we explored the impact of purinergic receptors, predominantly found in glial tissue, on epileptiform activity. We used TNP-ATP, a potent purinergic receptor antagonist, and conducted experiments using a mouse model of mesial temporal lobe epilepsy to examine behavioral performance and neural activity patterns. Our findings reveal that although TNP-ATP treatment did not significantly impact motor function or anxiety levels, it reduced both the amplitude and rate of hippocampal interictal discharges. Such reduction also affected the synchrony of associated neuronal spiking. Additionally, cognitive function, particularly hippocampus-dependent spatial memory and prefrontal cortex-dependent executive control, were partially restored. Moreover, neuronal recordings showed increased phase coherence between the hippocampus and prefrontal cortex for both slow (theta) and fast (gamma) oscillations in treated animals, indicating strengthened neural coordination between cortical regions upon purinergic receptor antagonism. These results underscore the potential role of purinergic receptor antagonists in improving behavioral and cognitive performance in epilepsy, providing novel insight into the use of these pharmacological agents as a therapeutic approach.
Collapse
Affiliation(s)
- Nelson Espinosa
- Departamento de Psiquiatria, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ariel Lara-Vasquez
- Departamento de Psiquiatria, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trinidad Montero
- Departamento de Psiquiatria, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - German Fernandez
- Departamento de Psiquiatria, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Manuel Encinas-Pérez
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Pablo Fuentealba
- Departamento de Psiquiatria, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Li Y, Tang F, Luo Y. The cellular distribution of P2X7, P2Y6, and P2Y12 during or after pilocarpine-induced status epilepticus and literature review. Brain Circ 2024; 10:343-353. [PMID: 40012593 PMCID: PMC11850937 DOI: 10.4103/bc.bc_27_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND When a seizure occurs, the distribution of purine receptors in different cell types at various time points remains poorly understood. Our literature review revealed that P2X7, P2Y6, and P2Y12 are expressed in different cells during epilepsy pathogenesis. Therefore, we studied the protein expression patterns of the purinergic receptors P2X7, P2Y6, and P2Y12 in the normal mice hippocampus, as well as during or after pilocarpine-induced status epilepticus (DPISE or APISE). MATERIALS AND METHODS Immunohistochemical staining and double-labeling immunofluorescence staining were used to study the cellular distribution of various purinergic receptors across several groups: control, 2-hour DPISE, 1-day APISE, 2-day APISE, 3-day APISE, and 1-week APISE. RESULTS In the normal mouse brain, P2X7, P2Y6, and P2Y12 were predominantly expressed in the neurons. Microglia and astrocytes were found to express these receptors at the onset of seizures. Immunofluorescence analysis showed that P2X7 and P2Y12 are expressed in microglia, whereas P2Y6 is mainly expressed in astrocytes. CONCLUSION Different purinergic receptors are expressed in neurons, microglia, and astrocytes, mediate their interactions, and are involved in epileptogenesis.
Collapse
Affiliation(s)
- Yue Li
- Department of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Anatomy, National University of Singapore, Singapore
| | - Fengru Tang
- Department of Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Yumin Luo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang K, Yang J, Xu W, Wang L, Wang Y. Interplay between immune cells and metabolites in epilepsy: insights from a Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1400426. [PMID: 39170897 PMCID: PMC11335650 DOI: 10.3389/fnagi.2024.1400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Epilepsy is associated with the immune system and metabolism; however, its etiology remains insufficiently understood. Here, we aim to elucidate whether circulating immune cell profiles and metabolites impact the susceptibility to epilepsy. Methods We used publicly available genetic data and two-sample Mendelian randomization (MR) analyses to establish causal relationships and mediating effects between 731 immune cells and 1,400 metabolites associated with epilepsy. Sensitivity analyses were conducted to detect heterogeneity and horizontal pleiotropy in the study results. Results MR analysis examining the relationship between immune cells, metabolites, and epilepsy revealed significant causal associations with 28 different subtypes of immune cells and 14 metabolites. Besides, the mediation effects analysis revealed that eight metabolites mediated the effects of six types of immune cells on epilepsy and that 3-hydroxyoctanoylcarnitine (2) levels exhibited the highest mediating effect, mediating 15.3% (95%CI, -0.008, -30.6%, p = 0.049) of the effect of DN (CD4-CD8-) AC on epilepsy. 1-(1-enyl-stearoyl)-2-linoleoyl-GPE (p-18:0/18:2) levels (95%CI, 0.668, 10.6%, p = 0.026) and X-12544 levels (95%CI, -15.1, -0.856%, p = 0.028) contributed 5.63 and 8%, respectively, to the causal effect of FSC-A on myeloid DC on epilepsy. Conclusion This study revealed a significant causal link between immune cells, metabolites, and epilepsy. It remarkably enhances our understanding of the interplay between immune responses, metabolites, and epilepsy risk, providing insights into the development of therapeutic strategies from both immune and metabolic perspectives.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinwei Yang
- Department of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Witkin JM, Shafique H, Smith JL, Cerne R. Is there a biochemical basis for purinergic P2X3 and P2X4 receptor antagonists to be considered as anti-seizure medications? Biochem Pharmacol 2024; 222:116046. [PMID: 38341001 DOI: 10.1016/j.bcp.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Neuroscience and Trauma Research, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
7
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
8
|
Kuan YH, Li FA, Cheng SJ, Chang WP, Shyu BC. Modulation of Thalamocingulate Nociceptive Transmission and Glutamate Secretion by Targeting P2×7 Receptor. THE JOURNAL OF PAIN 2023; 24:1915-1930. [PMID: 37271352 DOI: 10.1016/j.jpain.2023.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The complexity and diversity of pain signaling have led to obstacles for prominent treatments due to mechanisms that are not yet fully understood. Among adenosine triphosphate (ATP) receptors, P2×7 differs in many respects from P2×1-6, it plays a significant role in various inflammatory pain, but whether it plays a role in noninflammatory pain has not been widely discussed. In this study, we utilized major neuropharmacological methods to record the effects of manipulating P2×7 during nociceptive signal transmission in the thalamocingulate circuits. Our results show that regardless of the specific cell type distribution of P2×7 in the central nervous system (CNS), it participates directly in the generated nociceptive transmission, which indicates its apparent functional existence in the major pain transmission path, the thalamocingulate circuits. Activation of P2×7 may facilitate transmission velocity along the thalamocingulate projection as well as neuron firings and synaptic vesicle release in anterior cingulate cortical neurons. Targeting thalamic P2×7 affects glutamate and ATP secretion during nociceptive signal transmission. PERSPECTIVE: The observations in this study provide evidence that the ATP receptor P2×7 presents in the central ascending pain path and plays a modulatory role during nociceptive transmission, which could contribute new insights for many antinociceptive applications.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Proteomics Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Neuro Circuit Electrophysiology Core Facility, Neuroscience Program, Academia Sinica (NPAS), Taipei, Taiwan
| | - Wei-Peng Chang
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
10
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
11
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
12
|
Wang Q, Shi NR, Lv P, Liu J, Zhang JZ, Deng BL, Zuo YQ, Yang J, Wang X, Chen X, Hu XM, Liu TT, Liu J. P2Y12 receptor gene polymorphisms are associated with epilepsy. Purinergic Signal 2023; 19:155-162. [PMID: 35175489 PMCID: PMC9984642 DOI: 10.1007/s11302-022-09848-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368-0.901, p = 0.015; OR = 0.603, 95% CI = 0.367-0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255-0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.
Collapse
Affiliation(s)
- Qi Wang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Peng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Juan Liu
- School of Sports Medicine and Health, Sports Medicine Key Laboratory of Sichuan Province, Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Bin-Lu Deng
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xiang Chen
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Xiu-Min Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Ting-Ting Liu
- Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Liu
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China. .,Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
13
|
Vezzani A, Di Sapia R, Kebede V, Balosso S, Ravizza T. Neuroimmunology of status epilepticus. Epilepsy Behav 2023; 140:109095. [PMID: 36753859 DOI: 10.1016/j.yebeh.2023.109095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Status epilepticus (SE) is a very heterogeneous clinical condition often refractory to available treatment options. Evidence in animal models shows that neuroinflammation arises in the brain during SE due to the activation of innate immune mechanisms in brain parenchyma cells. Intervention studies in animal models support the involvement of neuroinflammation in SE onset, duration, and severity, refractoriness to treatments, and long-term neurological consequences. Clinical evidence shows that neuroinflammation occurs in patients with SE of diverse etiologies likely representing a common phenomenon, thus broadening the involvement of the immune system beyond the infective and autoimmune etiologies. There is urgent need for novel therapies for refractory SE that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Preclinical and clinical evidence encourage consideration of specific anti-inflammatory treatments for controlling SE and its consequences in patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Rossella Di Sapia
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Valentina Kebede
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
14
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
15
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
16
|
Mikkelsen JD, Aripaka SS, Kaad S, Pazarlar BA, Pinborg L, Finsen B, Varrone A, Bang-Andersen B, Bastlund JF. Characterization of the Novel P2X7 Receptor Radioligand [ 3H]JNJ-64413739 in Human Brain Tissue. ACS Chem Neurosci 2022; 14:111-118. [PMID: 36535632 PMCID: PMC9817075 DOI: 10.1021/acschemneuro.2c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radioligands targeting microglia cells have been developed to identify and determine neuroinflammation in the living brain. One recently discovered ligand is JNJ-64413739 that binds selectively to the purinergic receptor P2X7R. The expression of P2X7R is increased under inflammation; hence, the ligand is considered useful in the detection of neuroinflammation in the brain. [18F]JNJ-64413739 has been evaluated in healthy subjects with positron emission tomography; however, the in vitro binding properties of the ligand in human brain tissue have not been investigated. Therefore, the purpose of this study was to measure Bmax and Kd of [3H]JNJ-64413739 using autoradiography on human cortical tissue sections resected from a total of 48 patients with treatment-resistant epilepsy. Correlations between the specific binding of [3H]JNJ-64413739 with age, sex, and duration of disease were explored. Finally, to examine the relationship between P2X7R and TSPO availability, specific binding of [3H]JNJ-64413739 and [123I]CLINDE was examined in the same tissue. The binding was measured in both cortical gray and subcortical white matter. Saturation revealed a Kd (5 nM) value similar between gray and white matter but a larger Bmax in the white than in the gray matter. The binding was completely displaced by the cold ligand and structurally different P2X7R ligands. The variability in saturable binding among the samples was found to be 38% in gray and white matter but was not correlated to either age, sex, or the duration of the disease. Interestingly, there was no significant correlation between [3H]JNJ-64413739 and [123I]CLINDE binding. These data demonstrate that [3H]JNJ-64413739 is a suitable radioligand for evaluating the distribution and expression of the P2X7R in the human brain.
Collapse
Affiliation(s)
- Jens D. Mikkelsen
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Institute
of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark,Department
of Molecular Medicine, University of Southern
Denmark, Odense 5000, Denmark,. Tel.: +45 3545 6701
| | - Sanjay S. Aripaka
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Sif Kaad
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Burcu A. Pazarlar
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Physiology
Department, Faculty of Medicine, Izmir Katip
Celebi University, Izmir 35330, Turkey
| | - Lars Pinborg
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Epilepsy
Clinic, Department of Neurology, Copenhagen
University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Bente Finsen
- Department
of Molecular Medicine, University of Southern
Denmark, Odense 5000, Denmark
| | | | | | | |
Collapse
|
17
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
18
|
Sun J, Zheng Y, Chen Z, Wang Y. The role of Na + -K + -ATPase in the epileptic brain. CNS Neurosci Ther 2022; 28:1294-1302. [PMID: 35751846 PMCID: PMC9344081 DOI: 10.1111/cns.13893] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Na+-K+-ATPase, a P-type ATP-powered ion transporter on cell membrane, plays a vital role in cellular excitability. Cellular hyperexcitability, accompanied by hypersynchronous firing, is an important basis for seizures/epilepsy. An increasing number of studies point to a significant contribution of Na+-K+-ATPase to epilepsy, although discordant results exist. In this review, we comprehensively summarize the structure and physiological function of Na+-K+-ATPase in the central nervous system and critically evaluate the role of Na+-K+-ATPase in the epileptic brain. Importantly, we further provide perspectives on some possible research directions and discuss its potential as a therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jinyi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
20
|
Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23042380. [PMID: 35216493 PMCID: PMC8875404 DOI: 10.3390/ijms23042380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.
Collapse
|
21
|
Dossi E, Rouach N. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin : The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling. Purinergic Signal 2021; 17:533-548. [PMID: 34495463 DOI: 10.1007/s11302-021-09818-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
22
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
23
|
Zhang Y, Ichinose F, Maeda T, Nakamura T, Matsuo M. A pediatric case of transient periictal MRI abnormalities after repeated seizures. Brain Dev 2021; 43:809-813. [PMID: 33958241 DOI: 10.1016/j.braindev.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transient periictal MRI abnormalities (TPMA) are caused by seizures, and may completely or partially reverse within a few days following seizure. Although TPMA are usually observed in patients with status epilepticus (SE), they have also been rarely reported after isolated/recurrent seizures not fulfilling the criteria for SE. Herein, we present a case of a 1-year-old girl with TPMA. CASE A 1-year-old girl with Apert syndrome and epilepsy showed MRI abnormalities in the cortico-subcortical areas of the left temporal, occipital and parietal lobes, as well as the left thalamus. These abnormalities showed as a hyperintense signal on diffusion-weighted imaging and a hypointense signal on apparent-diffusion coefficient maps. On follow-up MRI after 3 days, the abnormal signals were completely reversed. We confirmed TPMA after eliminating other possibilities. When treatment was withdrawn, the patient regained consciousness immediately and did not show any abnormality on subsequent MRI. CONCLUSION TPMA may occur in young children; recognizing this possibility is important for making the diagnosis and conducting appropriate treatment. As a previous study revealed, the distribution of signal changes in cortico-subcortical areas and the ipsilateral thalamus may be a characteristic feature of TPMA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan; Department of Pediatrics, Saga-Ken Medical Center Koseikan, Saga, Japan
| | - Fumio Ichinose
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshiyuki Maeda
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan; Department of Pediatrics, Saga-Ken Medical Center Koseikan, Saga, Japan
| | - Takuji Nakamura
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
24
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
25
|
Augusto E, Gonçalves FQ, Real JE, Silva HB, Pochmann D, Silva TS, Matos M, Gonçalves N, Tomé ÂR, Chen JF, Canas PM, Cunha RA. Increased ATP release and CD73-mediated adenosine A 2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiol Dis 2021; 157:105441. [PMID: 34224862 DOI: 10.1016/j.nbd.2021.105441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alterations being eliminated by A2AR blockade. However, it is not known if upon convulsions there is a CD73-mediated coupling between ATP release and A2AR overactivation, causing neurodegeneration. We now show that kainate-induced convulsions trigger a parallel increase of ATP release and of CD73 and A2AR densities in synapses and astrocytes of the mouse hippocampus. Notably, the genetic deletion of CD73 attenuates neuronal degeneration but has no impact on astrocytic modifications in the hippocampus upon kainate-induced convulsions. Furthermore, kainate-induced convulsions cause a parallel deterioration of hippocampal long-term potentiation (LTP) and hippocampal-dependent memory performance, which is eliminated by knocking out CD73. This demonstrates the key role of the ATP release/CD73/A2AR pathway to selectively control synaptic dysfunction and neurodegeneration following an acute brain insult, paving the way to consider CD73 as a new therapeutic target to prevent neuronal damage upon acute brain damage.
Collapse
Affiliation(s)
- Elisabete Augusto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Joana E Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Tiago S Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Marco Matos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
26
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
27
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
28
|
Khir NAM, Noh ASM, Shafin N, Ismail CAN. Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review. Purinergic Signal 2021; 17:201-213. [PMID: 33594635 PMCID: PMC8155137 DOI: 10.1007/s11302-021-09764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pain is the most common symptom reported by patients with rheumatoid arthritis (RA) even after the resolution of chronic joint inflammation. It is believed that RA-associated pain is not solely due to inflammation, but could also be attributed to aberrant modifications to the central nervous system. The P2X4 receptor (P2X4R) is an ATP-activated purinergic receptor that plays a significant role in the transmission of information in the nervous system and pain. The involvement of P2X4R during the pathogenesis of chronic inflammatory pain and neuropathic pain is well-established. The attenuation of this receptor alleviates disease pathogenesis and related symptoms, including hyperalgesia and allodynia. Although some studies have revealed the contribution of P2X4R in promoting joint inflammation in RA, how it implicates pain associated with RA at peripheral and central nervous systems is still lacking. In this review, the possible contributions of P2X4R in the nervous system and how it implicates pain transmission and responses were examined.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- International Medical School, Management and Science University, 40100 Shah Alam, Selangor Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Ain’ Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
29
|
Sun L, Shan W, Yang H, Liu R, Wu J, Wang Q. The Role of Neuroinflammation in Post-traumatic Epilepsy. Front Neurol 2021; 12:646152. [PMID: 34122298 PMCID: PMC8194282 DOI: 10.3389/fneur.2021.646152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the consequences after traumatic brain injury (TBI), which increases the morbidity and mortality of survivors. About 20% of patients with TBI will develop PTE, and at least one-third of them are resistant to conventional antiepileptic drugs (AEDs). Therefore, it is of utmost importance to explore the mechanisms underlying PTE from a new perspective. More recently, neuroinflammation has been proposed to play a significant role in epileptogenesis. This review focuses particularly on glial cells activation, peripheral leukocytes infiltration, inflammatory cytokines release and chronic neuroinflammation occurrence post-TBI. Although the immune response to TBI appears to be primarily pro-epileptogenic, further research is needed to clarify the causal relationships. A better understanding of how neuroinflammation contributes to the development of PTE is of vital importance. Novel prevention and treatment strategies based on the neuroinflammatory mechanisms underlying epileptogenesis are evidently needed. Search Strategy Search MeSH Terms in pubmed: "["Epilepsy"(Mesh)] AND "Brain Injuries, Traumatic"[Mesh]". Published in last 30 years. 160 results were founded. Full text available:145 results. Record screened manually related to Neuroinflammation and Post-traumatic epilepsy. Then finally 123 records were included.
Collapse
Affiliation(s)
- Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Huajun Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
30
|
Obot P, Velíšek L, Velíšková J, Scemes E. The Contribution of Astrocyte and Neuronal Panx1 to Seizures Is Model and Brain Region Dependent. ASN Neuro 2021; 13:17590914211007273. [PMID: 33910381 PMCID: PMC8718119 DOI: 10.1177/17590914211007273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pannexin1 (Panx1) is an ATP release channel expressed in neurons and astrocytes that plays important roles in CNS physiology and pathology. Evidence for the involvement of Panx1 in seizures includes the reduction of epileptiform activity and ictal discharges following Panx1 channel blockade or deletion. However, very little is known about the relative contribution of astrocyte and neuronal Panx1 channels to hyperexcitability. To this end, mice with global and cell type specific deletion of Panx1 were used in one in vivo and two in vitro seizure models. In the low-Mg2+ in vitro model, global deletion but not cell-type specific deletion of Panx1 reduced the frequency of epileptiform discharges. This reduced frequency of discharges did not impact the overall power spectra obtained from local field potentials. In the in vitro KA model, in contrast, global or cell type specific deletion of Panx1 did not affect the frequency of discharges, but reduced the overall power spectra. EEG recordings following KA-injection in vivo revealed that although global deletion of Panx1 did not affect the onset of status epilepticus (SE), SE onset was delayed in mice lacking neuronal Panx1 and accelerated in mice lacking astrocyte Panx1. EEG power spectral analysis disclosed a Panx1-dependent cortical region effect; while in the occipital region, overall spectral power was reduced in all three Panx1 genotypes; in the frontal cortex, the overall power was not affected by deletion of Panx1. Together, our results show that the contribution of Panx1 to ictal activity is model, cell-type and brain region dependent.
Collapse
Affiliation(s)
- Price Obot
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States.,Department of Neurology, New York Medical College, Valhalla, New York, United States.,Department of Pediatrics, New York Medical College, Valhalla, New York, United States
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States.,Department of Neurology, New York Medical College, Valhalla, New York, United States.,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York, United States
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
31
|
Glaser T, Oliveira-Giacomelli Á, Petiz LL, Ribeiro DE, Andrejew R, Ulrich H. Antagonistic Roles of P2X7 and P2Y2 Receptors in Neurodegenerative Diseases. Front Pharmacol 2021; 12:659097. [PMID: 33912064 PMCID: PMC8072373 DOI: 10.3389/fphar.2021.659097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
33
|
Beamer E, Lacey A, Alves M, Conte G, Tian F, de Diego-Garcia L, Khalil M, Rosenow F, Delanty N, Dale N, El-Naggar H, Henshall DC, Engel T. Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia 2021; 62:817-828. [PMID: 33599287 DOI: 10.1111/epi.16839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is a major unmet need for a molecular biomarker of seizures or epilepsy that lends itself to fast, affordable detection in an easy-to-use point-of-care device. Purines such as adenosine triphosphate and adenosine are potent neuromodulators released during excessive neuronal activity that are also present in biofluids. Their biomarker potential for seizures and epilepsy in peripheral blood has, however, not yet been investigated. The aim of the present study was to determine whether blood purine nucleoside measurements can serve as a biomarker for the recent occurrence of seizures and to support the diagnosis of epilepsy. METHODS Blood purine concentrations were measured via a point-of-care diagnostic technology based on the summated electrochemical detection of adenosine and adenosine breakdown products (inosine, hypoxanthine, and xanthine; SMARTChip). Measurements of blood purine concentrations were carried out using samples from mice subjected to intra-amygdala kainic acid-induced status epilepticus and in video-electroencephalogram (EEG)-monitored adult patients with epilepsy. RESULTS In mice, blood purine concentrations were rapidly increased approximately two- to threefold after status epilepticus (2.32 ± .40 µmol·L-1 [control] vs. 8.93 ± 1.03 µmol·L-1 [after status epilepticus]), and levels correlated with seizure burden and postseizure neurodegeneration in the hippocampus. Blood purine concentrations were also elevated in patients with video-EEG-diagnosed epilepsy (2.39 ± .34 µmol·L-1 [control, n = 13] vs. 4.35 ± .38 µmol·L-1 [epilepsy, n = 26]). SIGNIFICANCE Our data provide proof of concept that the measurement of blood purine concentrations may offer a rapid, low-volume bedside test to support the diagnosis of seizures and epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Faming Tian
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mohamed Khalil
- Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Hessen, Marburg, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Frankfurt on the Main, Germany
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Nicholas Dale
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Hany El-Naggar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
34
|
Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 2020; 178:489-514. [PMID: 33125712 PMCID: PMC8199792 DOI: 10.1111/bph.15299] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The known seven mammalian receptor subunits (P2X1–7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop. Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors. The agonist-binding pocket is located at the intersection of two neighbouring subunits. In addition to the mammalian P2X receptors, their primitive ligand-gated counterparts with little structural similarity have also been cloned. Selective agonists for P2X receptor subtypes are not available, but medicinal chemistry supplied a range of subtype-selective antagonists, as well as positive and negative allosteric modulators. Knockout mice and selective antagonists helped to identify pathological functions due to defective P2X receptors, such as male infertility (P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), inflammatory bone loss (P2X5), and faulty immune reactions (P2X7).
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Grutter
- University of Strasbourg, Centre National de la Recherche Scientifique, CAMB UMR 7199, Strasbourg, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | | | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brian F King
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Francesco Di Virgilio
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
López X, Escamilla R, Fernández P, Duarte Y, González-Nilo F, Palacios-Prado N, Martinez AD, Sáez JC. Stretch-Induced Activation of Pannexin 1 Channels Can Be Prevented by PKA-Dependent Phosphorylation. Int J Mol Sci 2020; 21:ijms21239180. [PMID: 33276429 PMCID: PMC7731223 DOI: 10.3390/ijms21239180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.
Collapse
Affiliation(s)
- Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| | - Rosalba Escamilla
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Yorley Duarte
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Agustín D. Martinez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Juan C. Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| |
Collapse
|
36
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
38
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
39
|
Abstract
AbstractEpilepsy is a chronic neurological disorder that has an extensive impact on a patient’s life. Accumulating evidence has suggested that inflammation participates in the progression of spontaneous and recurrent seizures. Pro-convulsant incidences can stimulate immune cells, augment the release of pro-inflammatory cytokines, elicit neuronal excitation as well as blood-brain barrier (BBB) dysfunction, and finally trigger the generation or recurrence of seizures. Understanding the pathogenic roles of inflammatory mediators, including inflammatory cytokines, cells, and BBB, in epileptogenesis will be beneficial for the treatment of epilepsy. In this systematic review, we performed a literature search on the PubMed database using the following keywords: “epilepsy” or “seizures” or “epileptogenesis”, and “immunity” or “inflammation” or “neuroinflammation” or “damage-associated molecular patterns” or “cytokines” or “chemokines” or “adhesion molecules” or “microglia” or “astrocyte” or “blood-brain barrier”. We summarized the classic inflammatory mediators and their pathogenic effects in the pathogenesis of epilepsy, based on the most recent findings from both human and animal model studies.
Collapse
|
40
|
Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neurosci Bull 2020; 36:1242-1258. [PMID: 32895896 DOI: 10.1007/s12264-020-00573-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting evidence suggests that the ATP-gated P2X7 receptor contributes to increased hyperexcitability in the brain. While increased expression of P2X7 in the hippocampus and cortex following status epilepticus and during epilepsy has been repeatedly demonstrated, the cell type-specific expression of P2X7 and its expression in extra-hippocampal brain structures remains incompletely explored. In this study, P2X7 expression was visualized by using a transgenic mouse model overexpressing P2X7 fused to the fluorescent protein EGFP. The results showed increased P2X7-EGFP expression after status epilepticus induced by intra-amygdala kainic acid and during epilepsy in different brain regions including the hippocampus, cortex, striatum, thalamus and cerebellum, and this was most evident in microglia and oligodendrocytes. Co-localization of P2X7-EGFP with cell type-specific markers was not detected in neurons or astrocytes. These data suggest that P2X7 activation is a common pathological hallmark across different brain structures, possibly contributing to brain inflammation and neurodegeneration following acute seizures and during epilepsy.
Collapse
|
41
|
Conte G, Nguyen NT, Alves M, de Diego-Garcia L, Kenny A, Nicke A, Henshall DC, Jimenez-Mateos EM, Engel T. P2X7 Receptor-Dependent microRNA Expression Profile in the Brain Following Status Epilepticus in Mice. Front Mol Neurosci 2020; 13:127. [PMID: 32982684 PMCID: PMC7485385 DOI: 10.3389/fnmol.2020.00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
The ionotropic ATP-gated P2X7 receptor is an important contributor to inflammatory signaling cascades via the release of Interleukin-1β, as well as having roles in cell death, neuronal plasticity and the release of neurotransmitters. Accordingly, there is interest in targeting the P2X7 receptor for the treatment of epilepsy. However, the signaling pathways downstream of P2X7 receptor activation remain incompletely understood. Notably, recent studies showed that P2X7 receptor expression is controlled, in part, by microRNAs (miRNAs). Here, we explored P2X7 receptor-dependent microRNA expression by comparing microRNA expression profiles of wild-type (wt) and P2X7 receptor knockout mice before and after status epilepticus. Genome-wide microRNA profiling was performed using hippocampi from wt and P2X7 receptor knockout mice following status epilepticus induced by intra-amygdala kainic acid. This revealed that the genetic deletion of the P2X7 receptor results in distinct patterns of microRNA expression. Specifically, we found that in vehicle-injected control mice, the lack of the P2X7 receptor resulted in the up-regulation of 50 microRNAs and down-regulation of 35 microRNAs. Post-status epilepticus, P2X7 receptor deficiency led to the up-regulation of 44 microRNAs while 13 microRNAs were down-regulated. Moreover, there was only limited overlap among identified P2X7 receptor-dependent microRNAs between control conditions and post-status epilepticus, suggesting that the P2X7 receptor regulates the expression of different microRNAs during normal physiology and pathology. Bioinformatic analysis revealed that genes targeted by P2X7 receptor-dependent microRNAs were particularly overrepresented in pathways involved in intracellular signaling, inflammation, and cell death; processes that have been repeatedly associated with P2X7 receptor activation. Moreover, whereas genes involved in signaling pathways and inflammation were common among up- and down-regulated P2X7 receptor-dependent microRNAs during physiological and pathological conditions, genes associated with cell death seemed to be restricted to up-regulated microRNAs during both physiological conditions and post-status epilepticus. Taken together, our results demonstrate that the P2X7 receptor impacts on the expression profile of microRNAs in the brain, thereby possibly contributing to both the maintenance of normal cellular homeostasis and pathological processes.
Collapse
Affiliation(s)
- Giorgia Conte
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ngoc T Nguyen
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Ireland, The University of Dublin, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
42
|
Umpierre AD, Bystrom LL, Ying Y, Liu YU, Worrell G, Wu LJ. Microglial calcium signaling is attuned to neuronal activity in awake mice. eLife 2020; 9:56502. [PMID: 32716294 PMCID: PMC7402678 DOI: 10.7554/elife.56502] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Microglial calcium signaling underlies a number of key physiological and pathological processes in situ, but has not been studied in vivo in awake mice. Using multiple GCaMP6 variants targeted to microglia, we assessed how microglial calcium signaling responds to alterations in neuronal activity across a wide range. We find that only a small subset of microglial somata and processes exhibited spontaneous calcium transients in a chronic window preparation. However, hyperactive shifts in neuronal activity (kainate status epilepticus and CaMKIIa Gq DREADD activation) triggered increased microglial process calcium signaling, often concomitant with process extension. Additionally, hypoactive shifts in neuronal activity (isoflurane anesthesia and CaMKIIa Gi DREADD activation) also increased microglial process calcium signaling. Under hypoactive neuronal conditions, microglia also exhibited process extension and outgrowth with greater calcium signaling. Our work reveals that microglia have highly distinct microdomain signaling, and that processes specifically respond to bi-directional shifts in neuronal activity through increased calcium signaling.
Collapse
Affiliation(s)
| | | | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Yong U Liu
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, United States.,Department of Immunology, Mayo Clinic, Rochester, United States
| |
Collapse
|
43
|
Zhang WJ, Zhu ZM, Liu ZX. The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 2020; 158:104875. [PMID: 32407956 DOI: 10.1016/j.phrs.2020.104875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zeng-Xu Liu
- Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
44
|
Scemes E, Velíšek L, Velíšková J. Astrocyte and Neuronal Pannexin1 Contribute Distinctly to Seizures. ASN Neuro 2020; 11:1759091419833502. [PMID: 30862176 PMCID: PMC6415468 DOI: 10.1177/1759091419833502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ATP- and adenosine-mediated signaling are prominent types of glia–glia and glia–neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.
Collapse
Affiliation(s)
- Eliana Scemes
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,2 Departments of Neurology and Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.,3 Departments of Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
45
|
Pannexin-1 Channel Regulates ATP Release in Epilepsy. Neurochem Res 2020; 45:965-971. [PMID: 32170674 DOI: 10.1007/s11064-020-02981-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022]
Abstract
With the deepening of research on epilepsy in recent decades, great progress has been made in the diagnosis and treatment of the disease. However, the clinical outcome remains unsatisfactory due to the confounding symptoms and complications, as well as complex intrinsic pathogenesis. A better understanding of the pathogenesis of epilepsy should be able to hinder the progress of the disease and improve the therapeutic effectiveness. Since the discovery of pannexin (Panx), unremitting efforts on the study of this gap junction protein family member have revealed its role in participating in the expression of various physiopathological processes. Among them, the activation or inhibition of Panx channel has been shown to regulate the release of adenosine triphosphate (ATP) and other signals, which is very important for the onset and control of nervous system diseases including epilepsy. In this article, we summarize the factors influencing the regulation of Panx channel opening, hoping to find a way to interfere with the activation or inhibition of Panx channel that regulates the signal transduction of ATP and other factors so as to control the progression of epilepsy and improve the quality of life of epileptic patients who fail to respond to the existing medical therapies and those at risk of surgical treatment.
Collapse
|
46
|
New frontiers in probing the dynamics of purinergic transmitters in vivo. Neurosci Res 2020; 152:35-43. [PMID: 31958495 DOI: 10.1016/j.neures.2020.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Purinergic transmitters such as adenosine, ADP, ATP, UTP, and UDP-glucose play important roles in a wide range of physiological processes, including the sleep-wake cycle, learning and memory, cardiovascular function, and the immune response. Moreover, impaired purinergic signaling has been implicated in various pathological conditions such as pain, migraine, epilepsy, and drug addiction. Examining the function of purinergic transmission in both health and disease requires direct, sensitive, non-invasive tools for monitoring structurally similar purinergic transmitters; ideally, these tools should have high spatial and temporal resolution in in vivo applications. Here, we review the recent progress with respect to the development and application of new methods for detecting purinergic transmitters, focusing on optical tools; in addition, we provide discussion regarding future perspectives.
Collapse
|
47
|
Alves M, Smith J, Engel T. Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y 1 Antagonism in Mice. Front Pharmacol 2020; 10:1558. [PMID: 32009961 PMCID: PMC6976538 DOI: 10.3389/fphar.2019.01558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Purinergic signaling via P2 receptors is now widely accepted to play a critical role during increased states of hyperexcitability and seizure-induced pathology. In the setting of seizures and epilepsy, most attention has been paid to investigating the fast-acting ATP-gated P2X receptor family. More recent evidence has now also provided compelling evidence of an involvement of the slower-acting P2Y receptor family during seizures. This includes data demonstrating expression changes of P2Y receptors in the hippocampus following acute seizures and during epilepsy and anticonvulsive properties of P2Y-targeting drugs; in particular drugs targeting the P2Y1 subtype. Seizures, however, also involve damage to extra-hippocampal brain regions such as the cortex, which is thought to contribute to the epileptic phenotype. To analyze expressional changes of the P2Y receptor family in the cortex following status epilepticus and to determine the impact of drugs interfering with P2Y1 signaling on cortical damage, we used a unilateral mouse model of intraamygdala kainic acid-induced status epilepticus. Analysis of cortical tissue showed that status epilepticus leads to a global up-regulation of the P2Y receptor family in the cortex including P2Y1, P2Y2, P2Y4, and P2Y6, with the P2Y1 and P2Y4 receptor subtypes showing the strongest increase. Supporting a detrimental role of P2Y1 activation during status epilepticus, treatment with the P2Y1 agonist MRS2365 exacerbated high frequency high amplitude spiking, synonymous with injury-causing electrographic activity, and treatment with the P2Y1 antagonists MRS2500 protected against seizure-induced cortical damage. Suggesting P2Y1-mediated effects are predominantly due to increased microglia activation, treatment with the broad-spectrum anti-inflammatory drug minocycline abolished the observed neuroprotective effects of P2Y1 antagonism. In conclusion, our results further support a role for P2Y1-mediated signaling during seizure generation and seizure-induced neurodegeneration, suggesting P2Y1-targeting therapies as novel treatment for drug-refractory status epilepticus.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| |
Collapse
|
48
|
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019; 20:282-297. [PMID: 30792501 DOI: 10.1038/s41583-019-0126-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.
Collapse
Affiliation(s)
- Dipan C Patel
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Bhanu P Tewari
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Lata Chaunsali
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Harald Sontheimer
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA. .,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
49
|
Connexins-Based Hemichannels/Channels and Their Relationship with Inflammation, Seizures and Epilepsy. Int J Mol Sci 2019; 20:ijms20235976. [PMID: 31783599 PMCID: PMC6929063 DOI: 10.3390/ijms20235976] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cxs) are a family of 21 protein isoforms, eleven of which are expressed in the central nervous system, and they are found in neurons and glia. Cxs form hemichannels (connexons) and channels (gap junctions/electric synapses) that permit functional and metabolic coupling between neurons and astrocytes. Altered Cx expression and function is involved in inflammation and neurological diseases. Cxs-based hemichannels and channels have a relevance to seizures and epilepsy in two ways: First, this pathological condition increases the opening probability of hemichannels in glial cells to enable gliotransmitter release, sustaining the inflammatory process and exacerbating seizure generation and epileptogenesis, and second, the opening of channels favors excitability and synchronization through coupled neurons. These biological events highlight the global pathological mechanism of epilepsy, and the therapeutic potential of Cxs-based hemichannels and channels. Therefore, this review describes the role of Cxs in neuroinflammation and epilepsy and examines how the blocking of channels and hemichannels may be therapeutic targets of anti-convulsive and anti-epileptic treatments.
Collapse
|
50
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|