1
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
2
|
Reciprocal effects of single or repeated exposure to methylphenidate or sex in adult male rats. Psychopharmacology (Berl) 2023; 240:227-237. [PMID: 36544054 DOI: 10.1007/s00213-022-06300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE Exposure to rewards can alter behavioral reactivity to them. For example, stimulants sensitize locomotor activation, whereas sexual experience sensitizes copulatory behaviors. Moreover, rewards can cross-sensitize one another. Although stimulants are known to cross-sensitize locomotor effects, the evidence for cross-sensitization between stimulants and sex is less clear. OBJECTIVES This study determined the effects of single and repeated pre-exposure to methylphenidate (MPH) or sex on one another in adult male rats. METHODS Cross-sensitization between MPH (5 mg/kg) and sex (30 min with sexually experienced female) was examined. Adult male rats were pre-exposed to 0, 1, or 10 trials of either sex or MPH before being exposed to the other reward. Locomotor chambers were used in MPH trials. Bilevel chambers were used in sexual trials, and sexual behaviors were video scored. RESULTS The amount of prior sexual experience differentially influenced the ceiling of MPH-dependent sensitization; in the last drug trial, locomotion was highest in males given 1 previous sexual trial compared with 0 or 10. Compared with MPH-naive males, pre-exposure to MPH (1 and 10 trials) reduced the number of ejaculations without impacting sexual performance (intromission/mount latency and frequency). CONCLUSIONS These findings indicate that the degree of pre-exposure to a reward can differentially affect reactivity to novel rewards. The results showed that previous findings of cross-sensitization between amphetamine and sex do not extend to MPH. However, exposure to MPH prior to sexual experience can increase the amount of sexual stimulation needed to achieve ejaculation.
Collapse
|
3
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
4
|
Huijgens PT, Snoeren EMS, Meisel RL, Mermelstein PG. Effects of gonadectomy and dihydrotestosterone on neuronal plasticity in motivation and reward related brain regions in the male rat. J Neuroendocrinol 2021; 33:e12918. [PMID: 33340384 DOI: 10.1111/jne.12918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied. Here, we investigated the effect of both castration and androgen replacement on spine plasticity in the nucleus accumbens shell and core (NAcSh and NAcC), caudate putamen (CPu), medial amygdala (MeA) and medial preoptic nucleus (MPN). Intact and castrated (gonadectomy [GDX]) male rats were treated with dihydrotestosterone (DHT, 1.5 mg) or vehicle (oil) in three experimental groups: intact-oil, GDX-oil and GDX-DHT. Spine density and morphology, measured 24 hours after injection, were determined through three-dimensional reconstruction of confocal z-stacks of DiI-labelled dendritic segments. We found that GDX decreased spine density in the MPN, which was rescued by DHT treatment. DHT also increased spine density in the MeA in GDX animals compared to intact oil-treated animals. By contrast, DHT decreased spine density in the NAcSh compared to GDX males. No effect on spine density was observed in the NAcC or CPu. Spine length and spine head diameter were unaffected by GDX and DHT in the investigated brain regions. In addition, immunohistochemistry revealed that DHT treatment of GDX animals rapidly increased the number of cell bodies in the NAcSh positive for phosphorylated cAMP response-element binding protein, a downstream messenger of the androgen receptor. These findings indicate that androgen signalling plays a role in the regulation of spine plasticity within neurocircuits involved in motivated behaviours.
Collapse
Affiliation(s)
- Patty T Huijgens
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Robert L Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Borland JM, Kim E, Swanson SP, Rothwell PE, Mermelstein PG, Meisel RL. Effect of Aggressive Experience in Female Syrian Hamsters on Glutamate Receptor Expression in the Nucleus Accumbens. Front Behav Neurosci 2020; 14:583395. [PMID: 33328919 PMCID: PMC7719767 DOI: 10.3389/fnbeh.2020.583395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions.
Collapse
Affiliation(s)
- Johnathan M. Borland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | |
Collapse
|
6
|
Zoicas I, Kornhuber J. The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. Int J Mol Sci 2019; 20:ijms20061412. [PMID: 30897826 PMCID: PMC6470515 DOI: 10.3390/ijms20061412] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023] Open
Abstract
The appropriate display of social behavior is critical for the well-being and survival of an individual. In many psychiatric disorders, including social anxiety disorder, autism spectrum disorders, depression and schizophrenia social behavior is severely impaired. Selective targeting of metabotropic glutamate receptors (mGluRs) has emerged as a novel treatment strategy for these disorders. In this review, we describe some of the behavioral paradigms used to assess different types of social behavior, such as social interaction, social memory, aggressive behavior and sexual behavior. We then focus on the effects of pharmacological modulation of mGluR1-8 on these types of social behavior. Indeed, accumulating evidence indicates beneficial effects of selective ligands of specific mGluRs in ameliorating innate or pharmacologically-induced deficits in social interaction and social memory as well as in reducing aggression in rodents. We emphasize the importance of future studies investigating the role of selective mGluR ligands on different types of social behavior to provide a better understanding of the neural mechanisms involved which, in turn, might promote the development of selective mGluR-targeted tools for the improved treatment of psychiatric disorders associated with social deficits.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| |
Collapse
|
7
|
Gross KS, Moore KM, Meisel RL, Mermelstein PG. mGluR5 Mediates Dihydrotestosterone-Induced Nucleus Accumbens Structural Plasticity, but Not Conditioned Reward. Front Neurosci 2018; 12:855. [PMID: 30515075 PMCID: PMC6255826 DOI: 10.3389/fnins.2018.00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Gonadal hormones play a vital role in driving motivated behavior. They not only modulate responses to naturally rewarding stimuli, but also influence responses to drugs of abuse. A commonality between gonadal hormones and drugs of abuse is that they both impact the neurocircuitry of reward, including the regulation of structural plasticity in the nucleus accumbens (NAc). Previous hormonal studies have focused on the mechanisms and behavioral correlates of estradiol-induced dendritic spine changes in the female NAc. Here we sought to determine the effects of androgens on medium spiny neuron (MSN) spine plasticity in the male NAc. Following treatment with the androgen receptor agonist dihydrotestosterone (DHT), MSNs in castrated male rats exhibited a significant decrease in dendritic spine density. This effect was isolated to the shell subregion of the NAc. The effect of DHT was dependent on mGluR5 activity, and local mGluR5 activation and subsequent endocannabinoid signaling produce an analogous NAc shell spine decrease. Somewhat surprisingly, DHT-induced conditioned place preference remained intact following systemic inhibition of mGluR5. These findings indicate that androgens can utilize mGluR signaling, similar to estrogens, to mediate changes in NAc dendritic structure. In addition, there are notable differences in the direction of spine changes, and site specificity of estrogen and androgen action, suggesting sex differences in the hormonal regulation of motivated behaviors.
Collapse
Affiliation(s)
- Kellie S Gross
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey M Moore
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Robert L Meisel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Paul G Mermelstein
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Beloate LN, Coolen LM. Effects of Sexual Experience on Psychostimulant- and Opiate-Induced Behavior and Neural Plasticity in the Mesocorticolimbic Pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:249-270. [DOI: 10.1016/bs.irn.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
10
|
Beloate LN, Omrani A, Adan RA, Webb IC, Coolen LM. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence. J Neurosci 2016; 36:9949-61. [PMID: 27656032 PMCID: PMC6705564 DOI: 10.1523/jneurosci.0937-16.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. SIGNIFICANCE STATEMENT Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior, followed by a period of abstinence from sexual behavior, causes increased reward for amphetamine in male rats. This study demonstrates that activation of ventral tegmental area dopamine neurons during sexual experience regulates cross-sensitization of amphetamine reward. Finally, ventral tegmental area dopamine cell activation is essential for experience-induced neural adaptations in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. These findings demonstrate a role of mesolimbic dopamine in the interaction between natural and drug rewards, and identify mesolimbic dopamine as a key mediator of changes in vulnerability for drug use after loss of natural reward.
Collapse
Affiliation(s)
- Lauren N Beloate
- Department of Neurobiology and Anatomical Sciences, Graduate Program in Neuroscience, and
| | - Azar Omrani
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Roger A Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ian C Webb
- Department of Neurobiology and Anatomical Sciences
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| |
Collapse
|