1
|
Chevalier S, Decourt M, Francheteau M, Nicol F, Balbous A, Fernagut PO, Benoit-Marand M. Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity. NPJ Parkinsons Dis 2024; 10:169. [PMID: 39251645 PMCID: PMC11385550 DOI: 10.1038/s41531-024-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Parkinson's disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.
Collapse
Affiliation(s)
- Sarah Chevalier
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Mélina Decourt
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - François Nicol
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Anaïs Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
| |
Collapse
|
2
|
Mazzocco C, Genevois C, Li Q, Doudnikoff E, Dutheil N, Leste-Lasserre T, Arotcarena ML, Bezard E. In vivo bioluminescence imaging of the intracerebral fibroin-controlled AAV-α-synuclein diffusion for monitoring the central nervous system and peripheral expression. Sci Rep 2024; 14:9710. [PMID: 38678103 PMCID: PMC11055870 DOI: 10.1038/s41598-024-60613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.
Collapse
Affiliation(s)
- Claire Mazzocco
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Coralie Genevois
- VIVOPTIC-TBM-Core Univ Bordeaux, UAR 3427, 33000, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, M15 6WE, UK
| | - Evelyne Doudnikoff
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Nathalie Dutheil
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | | | - Marie-Laure Arotcarena
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France.
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France.
- Motac Neuroscience, Manchester, M15 6WE, UK.
| |
Collapse
|
3
|
Hathaway BA, Li A, Brodie HG, Silveira MM, Tremblay M, Seo YS, Winstanley CA. Dopamine activity in the nigrostriatal pathway alters cue-induced risky choice patterns in female rats. Eur J Neurosci 2024; 59:1621-1637. [PMID: 38369911 DOI: 10.1111/ejn.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Deficits in cost/benefit decision making is a critical risk factor for gambling disorder. Reward-paired cues may play an important role, as these stimuli can enhance risk preference in rats. Despite extensive research implicating the dorsal striatum in the compulsive aspects of addiction, the role of nigrostriatal dopaminergic activity in cue-induced risk preference remains unclear, particularly in females. Accordingly, we examined the effects of manipulating the dopaminergic nigrostriatal pathway on cue-induced risky choice in female rats. TH:Cre rats were trained on the cued version of the rat Gambling Task. This task was designed such that maximal reward is attained by avoiding the high-risk, high-reward options and instead favouring the options associated with lower per-trial gains, as they feature less frequent and shorter time-out penalties. Adding reward-paired audiovisual cues to the task leads to greater risky choice on average. To assess the role of the nigrostriatal pathway, a viral vector carrying either Cre-dependent inhibitory or excitatory DREADD was infused into the substantia nigra. Rats then received clozapine-N-oxide either during task acquisition or after a stable performance baseline was reached. Inhibition of this pathway accelerated the development of risk preference in early sessions and increased risky choice during performance, but long-term inhibition actually improved decision making. Activation of this pathway had minimal effects. These results provide evidence for the involvement of the dopaminergic nigrostriatal pathway in cue-induced risk preference in females, therefore shedding light on its role in cost/benefit decision-making deficits and expanding our knowledge of the female dopaminergic system.
Collapse
Affiliation(s)
- Brett A Hathaway
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrew Li
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Hannah G Brodie
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Yeon Soo Seo
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Magnard R, Fouyssac M, Vachez YM, Cheng Y, Dufourd T, Carcenac C, Boulet S, Janak PH, Savasta M, Belin D, Carnicella S. Pramipexole restores behavioral inhibition in highly impulsive rats through a paradoxical modulation of frontostriatal networks. Transl Psychiatry 2024; 14:86. [PMID: 38336862 PMCID: PMC10858232 DOI: 10.1038/s41398-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.
Collapse
Affiliation(s)
- Robin Magnard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Yvan M Vachez
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Yifeng Cheng
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thibault Dufourd
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Carole Carcenac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Sabrina Boulet
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc Savasta
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Sebastien Carnicella
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| |
Collapse
|
5
|
Premorbid performances determine the deleterious effects of nigrostriatal degeneration and pramipexole on behavioural flexibility. NPJ Parkinsons Dis 2023; 9:31. [PMID: 36859454 PMCID: PMC9977907 DOI: 10.1038/s41531-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Subtle cognitive impairment can occur early in the course of Parkinson's disease (PD) and may manifest under different forms of executive dysfunction such as impaired cognitive flexibility. The precise contribution of nigrostriatal dopaminergic neurodegeneration to these non-motor features of the disease is poorly known. Whether such cognitive impairment associated with the disease process may also predate and contribute to the development of neuropsychiatric side-effects following dopamine replacement therapy remains largely unknown. To address these issues, we investigated the respective contributions of nigrostriatal degeneration and chronic treatment with the dopamine D3-preferring agonist pramipexole on behavioral flexibility in a rat model of PD. Flexible, intermediate and inflexible rats were identified based on baseline assessment of behavioral flexibility using an operant set-shifting task. Nigrostriatal degeneration was induced by bilateral viral-mediated expression of A53T mutated human α-synuclein in the substantia nigra pars compacta and behavioral flexibility was assessed after induction of nigrostriatal degeneration, and during chronic pramipexole treatment. Nigrostriatal degeneration impaired behavioral flexibility in flexible but not in inflexible rats. Pramipexole induced a decrease of behavioral flexibility that was exacerbated in lesioned rats and in the most flexible individuals. Furthermore, the deficits induced by pramipexole in lesioned rats affected different components of the task between flexible and inflexible individuals. This study demonstrates that nigrostriatal degeneration and pramipexole unequally impair behavioral flexibility, suggesting that the susceptibility to develop non-motor impairments upon treatment initiation could primarily depend on premorbid differences in behavioral flexibility.
Collapse
|
6
|
Cheng RK, Liao RM. Investigating Temporal Memory Strength and Time-Based Impulse Control Using the DRL Task. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Differential reinforcement of low rate (DRL) responding is a schedule-controlled behavior sometimes used in timing research, but also received critics of not providing a pure measure of timing due to the influence of the subject’s motivation or inhibitory control. Nevertheless, we argue that the DRL task provides a unique approach to study how timing and emotion interact with each other. Here, we review evidence showing that male rats prenatally treated with choline supplementation had difficulty in acquiring longer criterion times in the DRL task. This was possibly due to the stronger memory strength of their previously learned shorter criterion times. Female rats, in contrast, performed better than male rats in the same task, but those receiving prenatal choline supplementation were the best performers in this task with longer criterion times because they required less training. Like all female rats, male rats treated with prenatal choline supplementation made very few burst responses, suggesting that the treatment improved male rats’ emotional regulation when facing ‘frustrating’ outcomes. The differential impulse control plus different memory strength of the rats trained in the DRL task revealed the potential interaction of sex hormones and prenatal choline supplementation, a rare combination in a single animal study on timing and time perception. In summary, although the DRL task is certainly not the best timing task, it may be useful in assisting us in better understanding how time perception participates in emotional regulation, especially relevant when the emotion is triggered by a failure in timing.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Ruey-Ming Liao
- Department of Psychology, National Cheng-Chi University, Taipei 11605, Taiwan
- Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
- Department of Psychology, Asian University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Canonica T, Zalachoras I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:940672. [PMID: 36051635 PMCID: PMC9426724 DOI: 10.3389/fnbeh.2022.940672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Motivated behavior is integral to the survival of individuals, continuously directing actions toward rewards or away from punishments. The orchestration of motivated behavior depends on interactions among different brain circuits, primarily within the dopaminergic system, that subserve the analysis of factors such as the effort necessary for obtaining the reward and the desirability of the reward. Impairments in motivated behavior accompany a wide range of neuropsychiatric disorders, decreasing the patients’ quality of life. Despite its importance, motivation is often overlooked as a parameter in neuropsychiatric disorders. Here, we review motivational impairments in rodent models of schizophrenia, depression, and Parkinson’s disease, focusing on studies investigating effort-related behavior in operant conditioning tasks and on pharmacological interventions targeting the dopaminergic system. Similar motivational disturbances accompany these conditions, suggesting that treatments aimed at ameliorating motivation levels may be beneficial for various neuropsychiatric disorders.
Collapse
|
8
|
Gür E, Erdağı A, Balcı F. Mice are Near Optimal Timers. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Many conventional interval timing tasks do not contain asymmetric cost (loss) functions and thereby favor high temporal accuracy. On the other hand, asymmetric cost functions that differentially penalize/reinforce the early or late responses result in adaptive biases (shift) in timed responses due to timing uncertainty. Consequently, optimal performance in these tasks entails the normative parametrization of adaptive timing biases by the level of timing uncertainty. Differential reinforcement of response duration (DRRD) is one of these tasks that require mice to actively respond (e.g., continuously depressing a lever) for a minimum amount of time to be reinforced. The active production of a time interval by mice in DRRD differentiates this task from the differential reinforcement of low rates of responding (DRL) task as a passive waiting task that was used in earlier studies to investigate the optimality of adaptive biases in timing behavior. We tested 21 Th-Cre male mice (9 weeks old) in a DRRD task with a minimum requirement of 2 s. Mean response durations were positively biased (longer than the minimum requirement), and the extent of bias was predicted by the level of endogenous timing uncertainty. Mice nearly maximized the reward rate in this task. These results contribute to the accumulating evidence supporting optimal temporal risk assessment in non-human animals.
Collapse
Affiliation(s)
- Ezgi Gür
- Research Center for Translational Medicine & Department of Psychology, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Alihan Erdağı
- Research Center for Translational Medicine & Department of Psychology, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
| | - Fuat Balcı
- Research Center for Translational Medicine & Department of Psychology, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Comparative effects of cannabinoid CB1 receptor agonist and antagonist on timing impulsivity induced by d-amphetamine in a differential reinforcement of low-rate response task in male rats. Psychopharmacology (Berl) 2022; 239:1459-1473. [PMID: 34741633 DOI: 10.1007/s00213-021-06018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.
Collapse
|
10
|
Liao RM, Pattij T. Neural basis of operant behaviors maintained on the differential-reinforcement-of-low-rate (DRL) schedule in rodents. Brain Res Bull 2022; 185:1-17. [DOI: 10.1016/j.brainresbull.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
|
11
|
Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration. Biomedicines 2022; 10:biomedicines10030542. [PMID: 35327343 PMCID: PMC8945858 DOI: 10.3390/biomedicines10030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Treatment with dopamine agonists in Parkinson’s disease (PD) is associated with debilitating neuropsychiatric side-effects characterized by impulsive and compulsive behaviors. The vulnerability to develop such impairments is thought to involve interactions between individual vulnerability traits, types of antiparkinsonian medications, and the neurodegenerative process. We investigated the effect of the dopamine D3/D2 agonist pramipexole (PPX) and selective nigrostriatal degeneration achieved by viral-mediated expression of alpha-synuclein on the expression of repetitive and compulsive-like behaviors in rats. In a task assessing spontaneous food hoarding behavior, PPX increased the time spent interacting with food pellets at the expense of hoarding. This disruption of hoarding behavior was identical in sham and lesioned rats. In an operant post-training signal attenuation task, the combination of nigrostriatal lesion and PPX decreased the number of completed trials and increased the number of uncompleted trials. The lesion led to an increased compulsive behavior after signal attenuation, and PPX shifted the overall behavioral output towards an increased proportion of compulsive lever-presses. Given the magnitude of the behavioral effects and the lack of strong interaction between PPX and nigral degeneration, these results suggest that extra-nigral pathology may be critical to increase the vulnerability to develop compulsive behaviors following treatment with D3/D2 agonists.
Collapse
|
12
|
Martinez MC, Zold CL, Coletti MA, Murer MG, Belluscio MA. Dorsal striatum coding for the timely execution of action sequences. eLife 2022; 11:74929. [PMID: 36426715 PMCID: PMC9699698 DOI: 10.7554/elife.74929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.
Collapse
Affiliation(s)
- Maria Cecilia Martinez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado”Buenos AiresArgentina,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina
| | - Camila Lidia Zold
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Marcos Antonio Coletti
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Mariano Andrés Belluscio
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| |
Collapse
|
13
|
Bassil F, Delamarre A, Canron MH, Dutheil N, Vital A, Négrier-Leibreich ML, Bezard E, Fernagut PO, Meissner WG. Impaired brain insulin signalling in Parkinson's disease. Neuropathol Appl Neurobiol 2021; 48:e12760. [PMID: 34405431 DOI: 10.1111/nan.12760] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
AIMS Brain insulin resistance (i.e., decreased insulin/insulin-like growth factor-1 [IGF-1] signalling) may play a role in the pathophysiology of Parkinson's disease (PD), and several anti-diabetic drugs have entred clinical development to evaluate their potential disease-modifying properties in PD. A measure of insulin resistance is the amount of the downstream messenger insulin receptor substrate-1 that is phosphorylated at serine residues 312 (IRS-1pS312) or 616 (IRS-1pS616). We assessed IRS-1pS312 and IRS-1pS616 expression in post-mortem brain tissue of PD patients and a preclinical rat model based on viral-mediated expression of A53T mutated human α-synuclein (AAV2/9-h-α-synA53T). METHODS IRS-1pS312 and IRS-1pS616 staining intensity were determined by immunofluorescence in both neurons and glial cells in the substantia nigra pars compacta (SNc) and putamen of PD patients and controls without known brain disease. We further explored a possible relation between α-synuclein aggregates and brain insulin resistance in PD patients. Both insulin resistance markers were also measured in the SNc and striatum of AAV2/9-h-α-synA53T rats. RESULTS We found higher IRS-1pS312 staining intensity in nigral dopaminergic neurons and a trend for higher IRS-1pS312 staining intensity in putaminal neurons of PD patients. We observed no differences for IRS-1pS616 staining intensity in neurons or IRS-1pS312 staining intensity in glial cells. IRS-1pS312 showed high co-localisation within the core of nigral Lewy bodies. Like PD patients, AAV2/9-h-α-synA53T rats showed higher IRS-1pS312 staining intensity in the SNc and striatum than controls, whereas IRS-1pS616 was not different between groups. CONCLUSIONS Our results provide evidence for brain insulin resistance in PD and support the rationale for repurposing anti-diabetic drugs for PD treatment.
Collapse
Affiliation(s)
- Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anna Delamarre
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Hélène Canron
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anne Vital
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service d'Anatomie Pathologique, CHU de Bordeaux, Bordeaux, France
| | - Marie-Laure Négrier-Leibreich
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service d'Anatomie Pathologique, CHU de Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université de Poitiers, INSERM UMR 1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service de Neurologie - Maladies Neurodégénératives, CHU de Bordeaux, Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
14
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
15
|
Augustine A, Winstanley CA, Krishnan V. Impulse Control Disorders in Parkinson's Disease: From Bench to Bedside. Front Neurosci 2021; 15:654238. [PMID: 33790738 PMCID: PMC8006437 DOI: 10.3389/fnins.2021.654238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by symptoms that impact both motor and non-motor domains. Outside of motor impairments, PD patients are at risk for impulse control disorders (ICDs), which include excessively disabling impulsive and compulsive behaviors. ICD symptoms in PD (PD + ICD) can be broadly conceptualized as a synergistic interaction between dopamine agonist therapy and the many molecular and circuit-level changes intrinsic to PD. Aside from discontinuing dopamine agonist treatment, there remains a lack of consensus on how to best address ICD symptoms in PD. In this review, we explore recent advances in the molecular and neuroanatomical mechanisms underlying ICD symptoms in PD by summarizing a rapidly accumulating body of clinical and preclinical studies, with a special focus on the utility of rodent models in gaining new insights into the neurochemical basis of PD + ICD. We also discuss the relevance of these findings to the broader problem of impulsive and compulsive behaviors that impact a range of neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Andrea Augustine
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Comparison of the expression and toxicity of AAV2/9 carrying the human A53T α-synuclein gene in presence or absence of WPRE. Heliyon 2021; 7:e06302. [PMID: 33665452 PMCID: PMC7903312 DOI: 10.1016/j.heliyon.2021.e06302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE) is thought to enhance transgene expression of target genes delivered by adeno-associated viral (AAV) vectors. This study assessed the protein expression of α-synuclein, phosphorylated α-synuclein at Serine 129, extent of nigrostriatal degeneration as well as subsequent behavioral deficits induced by unilateral intranigral stereotactic injection in male adult C57BL/6J mice of an AAV2/9 expressing A53T human α-synuclein under the control of the synapsin promoter in presence or absence of the WPRE. The presence of WPRE enabled to achieve greater nigrostriatal degeneration and synucleinopathy which was concomitant with worsened forelimb use asymmetry. This work refines a mouse Parkinson's disease model in which anatomo-pathology is related to behavioral deficits.
Collapse
|
17
|
Chuang CY, Tsai SY, Chen SF, Yang YH, Chao CC, Yen NS, Liao RM. Neurobiological changes in striatal glutamate are associated with trait impulsivity of differential reinforcement of low-rate-response behavior in male rats. Neurobiol Learn Mem 2020; 177:107352. [PMID: 33253826 DOI: 10.1016/j.nlm.2020.107352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Impulsive action can be measured using rat's responses on a differential reinforcement of low-rate-response (DRL) task in which performance may be varied between rats. Nevertheless, neurobiological profiles underlying the trait impulsivity of DRL behavior remain largely unknown. Here, in vivo non-invasive proton magnetic resonance spectroscopy (1H-MRS) and Western blot assay were performed to assess neurobiological changes in the dorsal striatum (DS) and nucleus accumbens (NAc) in relation to individual differences in DRL behavior. A cohort of rats was subjected to acquire a DRL task over 14 daily sessions. High impulsive (HI) and low impulsive (LI) rats were screened by behavioral measures displaying a lower response efficiency and performing more nonreinforced responses in HI rats and vice versa. MRS measurements indicated that the HI group had a lower NAc glutamate (Glu) level than did the LI group, whereas no such difference was found in the other five metabolites in this area. Moreover, no intergroup difference was observed in any metabolite in the DS. The results of Western blot assay revealed that protein expressions of GluN1 (but not GluN2B) subunit of N-methyl-D-aspartate receptors in the DS and NAc were higher in the HI group than in the LI group. This inherent timing impulsivity was not attributed to risky behavioral propensity because both Hl and LI rats could acquire a risk-dependent choice. The findings of this study, supported by certain correlations among behavioral, brain imaging, and neuroreceptor indices, provide evidence of the neurobiological changes of striatal Glu underlying trait impulsive action of DRL behavior.
Collapse
Affiliation(s)
- Chuen-Yu Chuang
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
| | - Shang-Yueh Tsai
- Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan; Graduate Institute of Applied Physics, National Cheng-Chi University, Taipei, Taiwan
| | - Shuo-Fu Chen
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
| | - Yi-Hua Yang
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| | - Nai-Shing Yen
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan.
| |
Collapse
|
18
|
Cerri S, Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson's disease. Expert Opin Pharmacother 2020; 21:2279-2291. [PMID: 32804544 DOI: 10.1080/14656566.2020.1805432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Long-term treatment of Parkinson's disease (PD) with levodopa is hampered by motor complications related to the inability of residual nigrostriatal neurons to convert levodopa to dopamine (DA) and use it appropriately. This generated a tendency to postpone levodopa, favoring the initial use of DA agonists, which directly stimulate striatal dopaminergic receptors. Use of DA agonists, however, is associated with multiple side effects and their efficacy is limited by suboptimal bioavailability. AREAS COVERED This paper reviewed the latest preclinical and clinical findings on the efficacy and adverse effects of non-ergot DA agonists, discussing the present and future of this class of compounds in PD therapy. EXPERT OPINION The latest findings confirm the effectiveness of DA agonists as initial treatment or adjunctive therapy to levodopa in advanced PD, but a more conservative approach to their use is emerging, due to the complexity and repercussions of their side effects. As various factors may increase the individual risk to side effects, assessing such risk and calibrating the use of DA agonists accordingly may become extremely important in the clinical management of PD, as well as the availability of new DA agonists with better profiles of safety and efficacy.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation , Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation , Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia , Pavia, Italy
| |
Collapse
|
19
|
Jiménez-Urbieta H, Gago B, Quiroga-Varela A, Rodríguez-Chinchilla T, Merino-Galán L, Delgado-Alvarado M, Navalpotro-Gómez I, Belloso-Iguerategui A, Marin C, Rodríguez-Oroz MC. Motor impulsivity and delay intolerance are elicited in a dose-dependent manner with a dopaminergic agonist in parkinsonian rats. Psychopharmacology (Berl) 2020; 237:2419-2431. [PMID: 32440779 DOI: 10.1007/s00213-020-05544-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Impulse control disorders (ICD) and other impulsive-compulsive behaviours are frequently found in Parkinson's disease (PD) patients treated with dopaminergic agonists. To date, there are no available animal models to investigate their pathophysiology and determine whether they can be elicited by varying doses of dopaminergic drugs. In addition, there is some controversy regarding the predispositional pattern of striatal dopaminergic depletion. OBJECTIVES To study the effect of two doses of pramipexole (PPX) on motor impulsivity, delay intolerance and compulsive-like behaviour. METHODS Male rats with mild dopaminergic denervation in the dorsolateral striatum (bilateral injections of 6-hydroxidopamine (6-OHDA)) treated with two doses of PPX (0.25 mg/kg and 3 mg/kg) and tested in the variable delay-to-signal paradigm. RESULTS Partial (50%) dopaminergic depletion did not induce significant changes in motor impulsivity or delay intolerance. However, 0.25 mg/kg of PPX increased motor impulsivity, while 3 mg/kg of PPX increased both motor impulsivity and delay intolerance. These effects were independent of the drug's antiparkinsonian effects. Importantly, impulsivity scores before and after dopaminergic lesion were positively associated with the impulsivity observed after administering 3 mg/kg of PPX. No compulsive-like behaviour was induced by PPX administration. CONCLUSIONS We described a rat model, with a moderate dorsolateral dopaminergic lesion resembling that suffered by patients with early PD, that develops different types of impulsivity in a dose-dependent manner dissociated from motor benefits when treated with PPX. This model recapitulates key features of abnormal impulsivity in PD and may be useful for deepening our understanding of the pathophysiology of ICD.
Collapse
Affiliation(s)
| | - Belén Gago
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Ana Quiroga-Varela
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | | | - Leyre Merino-Galán
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Manuel Delgado-Alvarado
- Neurology Department, Sierrallana Hospital, Torrelavega, Spain.,Psychiatry Research Area, IDIVAL, University Hospital Marqués de Valdecilla, Santander, Spain.,Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Spain
| | | | | | - Concepció Marin
- IRCE, Institut d' investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María C Rodríguez-Oroz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain. .,Ikerbasque Foundation, Bilbao, Spain. .,Basque Center on Cognition, Brain and Language (BCBL), San Sebastián, Spain. .,Servicio de Neurología, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Dujardin K, Sgambato V. Neuropsychiatric Disorders in Parkinson's Disease: What Do We Know About the Role of Dopaminergic and Non-dopaminergic Systems? Front Neurosci 2020; 14:25. [PMID: 32063833 PMCID: PMC7000525 DOI: 10.3389/fnins.2020.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Besides the hallmark motor symptoms (rest tremor, hypokinesia, rigidity, and postural instability), patients with Parkinson’s disease (PD) have non-motor symptoms, namely neuropsychiatric disorders. They are frequent and may influence the other symptoms of the disease. They have also a negative impact on the quality of life of patients and their caregivers. In this article, we will describe the clinical manifestations of the main PD-related behavioral disorders (depression, anxiety disorders, apathy, psychosis, and impulse control disorders). We will also provide an overview of the clinical and preclinical literature regarding the underlying mechanisms with a focus on the role of the dopaminergic and non-dopaminergic systems.
Collapse
Affiliation(s)
- Kathy Dujardin
- Inserm U1171 Degenerative and Vascular Cognitive Disorders, Lille University Medical Center, Lille, France
| | - Véronique Sgambato
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Lyon University, Bron, France
| |
Collapse
|
21
|
Magnard R, Vachez Y, Carcenac C, Boulet S, Houeto JL, Savasta M, Belin D, Carnicella S. Nigrostriatal Dopaminergic Denervation Does Not Promote Impulsive Choice in the Rat: Implication for Impulse Control Disorders in Parkinson's Disease. Front Behav Neurosci 2018; 12:312. [PMID: 30618665 PMCID: PMC6300586 DOI: 10.3389/fnbeh.2018.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022] Open
Abstract
Impulse control disorders (ICDs) are frequent behavioral complications of dopaminergic (DA) replacement therapies (DRTs) in Parkinson’s disease (PD). Impulsive choice, which refers to an inability to tolerate delays to reinforcement, has been identified as a core pathophysiological process of ICDs. Although impulsive choices are exacerbated in PD patients with ICDs under DRTs, some clinical and preclinical studies suggest that the DA denervation of the dorsal striatum induced by the neurodegenerative process as well as a pre-existing high impulsivity trait, may both contribute to the emergence of ICDs in PD. We therefore investigated in a preclinical model in rats, specifically designed to study PD-related non-motor symptoms, the effect of nigrostriatal DA denervation on impulsive choice, in relation to pre-existing levels of impulsivity, measured in a Delay Discounting Task (DDT). In this procedure, rats had the choice between responding for a small sucrose reinforcer delivered immediately, or a larger sucrose reinforcer, delivered after a 0, 5, 10 or 15 s delay. In two different versions of the task, the preference for the large reinforcer decreased as the delay increased. However, and in contrast to our initial hypothesis, this discounting effect was neither exacerbated by, or related to, the extent of the substantia nigra pars compacta (SNc) DA lesion, nor it was influenced by pre-existing variability in impulsive choice. These results therefore question the potential implication of the nigrostriatal DA system in impulsive choice, as well as the DA neurodegenerative process as a factor contributing significantly to the development of ICDs in PD.
Collapse
Affiliation(s)
- Robin Magnard
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| | - Yvan Vachez
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| | - Carole Carcenac
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| | - Sabrina Boulet
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| | - Jean-Luc Houeto
- CIC-INSERM 1402, Service de Neurologie, CHU de Poitiers, Université de Poitiers, Poitiers, France
| | - Marc Savasta
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| | - David Belin
- Department of Psychology, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Sebastien Carnicella
- INSERM U1216 and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
| |
Collapse
|
22
|
Pramipexole-induced impulsivity in mildparkinsonian rats: a model of impulse control disorders in Parkinson's disease. Neurobiol Aging 2018; 75:126-135. [PMID: 30572183 DOI: 10.1016/j.neurobiolaging.2018.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/20/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022]
Abstract
Treatment with dopaminergic agonists such as pramipexole (PPX) contributes to the development of impulse control disorders (ICDs) in patients with Parkinson's disease (PD). As such, animal models of abnormal impulse control in PD are needed to better study the pathophysiology of these behaviors. Thus, we investigated impulsivity and related behaviors using the 5-choice serial reaction time task, as well as FosB/ΔFosB expression, in rats with mild parkinsonism induced by viral-mediated substantia nigra overexpression of human A53T mutated α-synuclein, and following chronic PPX treatment (0.25 mg/kg/d) for 4 weeks. The bilateral loss of striatal dopamine transporters (64%) increased the premature response rate of these rats, indicating enhanced waiting impulsivity. This behavior persisted in the OFF state after the second week of PPX treatment and it was further exacerbated in the ON state throughout the treatment period. The enhanced rate of premature responses following dopaminergic denervation was positively correlated with the premature response rate following PPX treatment (both in the ON and OFF states). Moreover, the striatal dopaminergic deficit was negatively correlated with the premature response rate at all times (pretreatment, ON and OFF states) and it was positively correlated with the striatal FosB/ΔFosB expression. By contrast, PPX treatment was not associated with changes in compulsivity (perseverative responses rate). This model recapitulates some features of PD with ICD, namely the dopaminergic deficit of early PD and the impulsivity traits provoked by dopaminergic loss in association with PPX treatment, making this model a useful tool to study the pathophysiology of ICDs.
Collapse
|
23
|
De Micco R, Russo A, Tedeschi G, Tessitore A. Impulse Control Behaviors in Parkinson's Disease: Drugs or Disease? Contribution From Imaging Studies. Front Neurol 2018; 9:893. [PMID: 30410465 PMCID: PMC6209663 DOI: 10.3389/fneur.2018.00893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Impulse control behaviors (ICB) are recognized as non-motor complications of dopaminergic medications in patients with Parkinson's disease (PD). Compelling evidence suggests that ICB are not merely due to the PD-related pathology itself. Several risk factors have been identified, either demographic, clinical, genetic or neuropsychological. Neuroimaging studies have yielded controversial results regarding ICB correlates in PD and still it is not clear whether they can be triggered by the PD biology or the dopaminergic treatment stimulation. We provided an overview of the imaging studies that offered the most relevant insights into the debate about the role of drugs and disease in ICB pathophysiology. Understanding neural correlates and potential predisposing factors of these severe neuropsychiatric symptoms will be crucial to guide clinical practice and to foster preventive strategies.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli, " Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli, " Naples, Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli, " Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli, " Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli, " Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli, " Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli, " Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli, " Naples, Italy
| |
Collapse
|
24
|
Impulse control disorders in Parkinson's disease. J Neural Transm (Vienna) 2018; 125:1299-1312. [PMID: 29511827 DOI: 10.1007/s00702-018-1870-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Impulse control disorders (ICD) are frequent side effects of dopamine replacement therapy (DRT) used in Parkinson's disease (PD) with devastating consequences on the patients and caregivers. ICD are behavioural addictions including compulsive gambling, shopping, sexual behaviour, and binge eating that are mainly associated with dopamine D2/D3 agonists. Their management is a real clinical challenge due to the lack of therapeutic alternative. Clinical studies have identified demographic and clinical risk factors for ICD such as younger age at disease onset, male gender, prior history of depression or substance abuse, REM sleep behaviour disorders and higher rate of dyskinesia. PD patients with ICD may also have a specific pattern of dopaminergic denervation in the ventral striatum. Specific evaluation tools have now been designed to better evaluate the severity and impact of ICD in PD. Patients with ICD display altered processing of reward and loss, and decisional bias associated with altered activity in cortical and subcortical areas such as the orbitofrontal cortex, amygdala, insula, anterior cingular cortex, and ventral striatum. Preclinical studies have demonstrated that D2/D3 agonists induce impairments in behavioural processes likely relevant to ICD such as risk-taking behaviour, preference for uncertainty, perseverative responding and sustained drive to engage in gambling-like behaviour. Whether interactions between dopamine denervation and DRT significantly contribute to the pathogenesis of ICD remains poorly understood so far, although features unique to PD have been identified in patients with ICD. Large-scale longitudinal studies are needed to better identify subjects with increased risk to develop ICD and develop therapeutic options.
Collapse
|
25
|
Giuliano C, Peña-Oliver Y, Goodlett CR, Cardinal RN, Robbins TW, Bullmore ET, Belin D, Everitt BJ. Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats. Neuropsychopharmacology 2018; 43:728-738. [PMID: 28553834 PMCID: PMC5809777 DOI: 10.1038/npp.2017.105] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 01/01/2023]
Abstract
Excessive drinking to intoxication is the major behavioral characteristic of those addicted to alcohol but it is not the only one. Indeed, individuals addicted to alcohol also crave alcoholic beverages and spend time and put much effort into compulsively seeking alcohol, before eventually drinking large amounts. Unlike this excessive drinking, for which treatments exist, compulsive alcohol seeking is therefore another key feature of the persistence of alcohol addiction since it leads to relapse and for which there are few effective treatments. Here we provide novel evidence for the existence in rats of an individual vulnerability to switch from controlled to compulsive, punishment-resistant alcohol seeking. Alcohol-preferring rats given access to alcohol under an intermittent 2-bottle choice procedure to establish their alcohol-preferring phenotype were subsequently trained instrumentally to seek and take alcohol on a chained schedule of reinforcement. When stable seeking-taking performance had been established, completion of cycles of seeking responses resulted unpredictably either in punishment (0.45 mA foot-shock) or the opportunity to make a taking response for access to alcohol. Compulsive alcohol seeking, maintained in the face of the risk of punishment, emerged in only a subset of rats with a predisposition to prefer and drink alcohol, and was maintained for almost a year. We show further that a selective and potent μ-opioid receptor antagonist (GSK1521498) reduced both alcohol seeking and alcohol intake in compulsive and non-compulsive rats, indicating its therapeutic potential to promote abstinence and prevent relapse in individuals addicted to alcohol.
Collapse
Affiliation(s)
- Chiara Giuliano
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK, Tel: +44 0 1223 765292, Fax: +44 0 1223 333564, E-mail:
| | - Yolanda Peña-Oliver
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Edward T Bullmore
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Cambridge, UK,Clinical Unit Cambridge and Academic DPU, GlaxoSmithKline R&D, Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Belin
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Barry J Everitt
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Carvalho MM, Campos FL, Marques M, Soares-Cunha C, Kokras N, Dalla C, Leite-Almeida H, Sousa N, Salgado AJ. Effect of Levodopa on Reward and Impulsivity in a Rat Model of Parkinson's Disease. Front Behav Neurosci 2017; 11:145. [PMID: 28848409 PMCID: PMC5550717 DOI: 10.3389/fnbeh.2017.00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
Abstract
The use of dopamine replacement therapies (DRT) in the treatment of Parkinson’s disease (PD) can lead to the development of dopamine dysregulation syndrome (DDS) and impulse control disorders (ICD), behavioral disturbances characterized by compulsive DRT self-medication and development of impulsive behaviors. However, the mechanisms behind these disturbances are poorly understood. In animal models of PD, the assessment of the rewarding properties of levodopa (LD), one of the most common drugs used in PD, has produced conflicting results, and its ability to promote increased impulsivity is still understudied. Moreover, it is unclear whether acute and chronic LD therapy differently affects reward and impulsivity. In this study we aimed at assessing, in an animal model of PD with bilateral mesostriatal and mesocorticolimbic degeneration, the behavioral effects of LD therapy regarding reward and impulsivity. Animals with either sham or 6-hydroxydopamine (6-OHDA)-induced bilateral lesions in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) were exposed to acute and chronic LD treatment. We used the conditioned place preference (CPP) paradigm to evaluate the rewarding effects of LD, whereas impulsive behavior was measured with the variable delay-to-signal (VDS) task. Correlation analyses between behavioral measurements of reward or impulsivity and lesion extent in SNc/VTA were performed to pinpoint possible anatomical links of LD-induced behavioral changes. We show that LD, particularly when administered chronically, caused the development of impulsive-like behaviors in 6-OHDA-lesioned animals in the VDS. However, neither acute or chronic LD administration had rewarding effects in 6-OHDA-lesioned animals in the CPP. Our results show that in a bilateral rat model of PD, LD leads to the development of impulsive behaviors, strengthening the association between DRT and DDS/ICD in PD.
Collapse
Affiliation(s)
- Miguel M Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - Filipa L Campos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - Mariana Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of AthensAthens, Greece.,First Department of Psychiatry, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de GualtarBraga, Portugal.,ICVS/3B's, PT Government Associate LaboratoryGuimarães, Portugal
| |
Collapse
|
27
|
Cheng RK, Liao RM. Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in rats. Behav Brain Res 2017; 331:177-187. [DOI: 10.1016/j.bbr.2017.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/21/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022]
|
28
|
Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol 2017; 16:238-250. [DOI: 10.1016/s1474-4422(17)30004-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/28/2016] [Accepted: 01/06/2017] [Indexed: 02/03/2023]
|
29
|
Talih F, Ajaltouni J, Kobeissy F. Restless leg syndrome in hospitalized psychiatric patients in Lebanon: a pilot study. Neuropsychiatr Dis Treat 2016; 12:2581-2586. [PMID: 27785035 PMCID: PMC5067055 DOI: 10.2147/ndt.s116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES To characterize and describe the prevalence of restless leg syndrome (RLS) in hospitalized psychiatric patients and to investigate the correlations between patient profile and RLS. METHODS Demographic information, psychiatric diagnoses, psychotropic medication use, and history of substance use were collected from hospitalized psychiatric patients at the American University of Beirut Medical Center; Beirut, Lebanon. A validated questionnaire to evaluate RLS symptomatology was also administered to 126 participants who agreed to participate, as well as questionnaires for insomnia, depression, and anxiety symptoms. Statistical analysis was conducted to detect the prevalence of RLS among the participants and to examine correlations with RLS in a hospitalized psychiatric population. RESULTS Out of the 126 participants who completed the survey, RLS was detected in 18% of the participants. Of interest, RLS was also found to be associated with higher depressive symptomatology, suicidal ideation, and working night shifts.
Collapse
Affiliation(s)
| | | | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|