1
|
Keady JV, Hessing MC, Songrady JC, McLaurin K, Turner JR. Sex differences in contextual fear conditioning and extinction after acute and chronic nicotine treatment. Biol Sex Differ 2024; 15:88. [PMID: 39482781 PMCID: PMC11529327 DOI: 10.1186/s13293-024-00656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic cigarette smokers report withdrawal symptomology, including affective dysfunction and cognitive deficits. While there are studies demonstrating sex specific withdrawal symptomology in nicotine-dependent individuals, literature examining the underlying biological mediators of this is scant and not in complete agreement. Therefore, in this study, we evaluated the sex specific effects of nicotine and withdrawal on contextual fear memory, a hippocampally dependent aspect of cognition that is disrupted in nicotine withdrawal. METHODS Male and female B6/129F1 mice (8-13 weeks old) were used in all experiments. For the acute nicotine experiment, mice received intraperitoneal saline or nicotine (0.5 mg/kg) prior to contextual fear conditioning and test. For the chronic nicotine experiment, mice received nicotine (18 mg/kg/day) or saline for 11 days, then underwent contextual fear conditioning and test. Following the test, mice underwent minipump removal to elicit withdrawal or sham surgery, followed by the fear extinction assay. Bulk cortical tissue was used to determine nicotinic acetylcholine receptor levels via single point [3H]Epibatidine binding assay. Gene expression levels in the dorsal and ventral hippocampus were quantified via RT-PCR. RESULTS We found that female mice had a stronger expression of contextual fear memory than their male counterparts. Further, following acute nicotine treatment, male, but not female, subjects demonstrated augmented contextual fear memory expression. In contrast, no significant effects of chronic nicotine treatment on fear conditioning were observed in either sex. When examining extinction of fear learning, we observed that female mice withdrawn from nicotine displayed impaired extinction learning, but no effect was observed in males. Nicotine withdrawal caused similar suppression of fosb, cfos, and bdnf, our proxy for neuronal activation and plasticity changes, in the dorsal and ventral hippocampus of both sexes. Additionally, we found that ventral hippocampus erbb4 expression, a gene implicated in smoking cessation outcomes, was elevated in both sexes following nicotine withdrawal. CONCLUSIONS Despite the similar impacts of nicotine withdrawal on gene expression levels, fosb, cfos, bdnf and erbb4 levels in the ventral hippocampus were predictive of delays in female extinction learning alone. This suggests sex specific dysfunction in hippocampal circuitry may contribute to female specific nicotine withdrawal induced deficits in extinction learning.
Collapse
Affiliation(s)
- Jack V Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Marissa C Hessing
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Judy C Songrady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Kristen McLaurin
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
2
|
Zeid D, Gould TJ. Chronic nicotine exposure alters sperm small RNA content in C57BL/6J mouse model. Dev Psychobiol 2023; 65:e22367. [PMID: 36811365 PMCID: PMC9978956 DOI: 10.1002/dev.22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Multigenerational inheritance is a nongenomic form of heritability characterized by altered phenotypes in the first generation born from the exposed parent. Multigenerational factors may account for inconsistencies and gaps in heritable nicotine addiction vulnerability. Our lab previously found that F1 offspring of male C57BL/6J mice chronically exposed to nicotine exhibited altered hippocampus functioning and related learning, nicotine-seeking, nicotine metabolism, and basal stress hormones. In an effort to identify germline mechanisms underlying these multigenerational phenotypes, the current study sequenced small RNA extracted from sperm of males chronically administered nicotine using our previously established exposure model. We identified 16 miRNAs whose expression in sperm was dysregulated by nicotine exposure. A literature review of previous research on these transcripts suggested an enrichment for regulation of psychological stress and learning. mRNAs predicted to be regulated by differentially expressed sperm small RNAs were further analyzed using exploratory enrichment analysis, which suggested potential modulation of pathways related to learning, estrogen signaling, and hepatic disease, among other findings. Overall, our findings point to links between nicotine-exposed F0 sperm miRNA and altered F1 phenotypes in this multigenerational inheritance model, particularly F1 memory, stress, and nicotine metabolism. These findings provide a valuable foundation for future functional validation of these hypotheses and characterization of mechanisms underlying male-line multigenerational inheritance.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology, Temple University, Philadelphia PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park PA, USA
| |
Collapse
|
3
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
4
|
Goldberg LR, Zeid D, Kutlu MG, Cole RD, Lallai V, Sebastian A, Albert I, Fowler CD, Parikh V, Gould TJ. Paternal nicotine enhances fear memory, reduces nicotine administration, and alters hippocampal genetic and neural function in offspring. Addict Biol 2021; 26:e12859. [PMID: 31782218 DOI: 10.1111/adb.12859] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Nicotine use remains highly prevalent with tobacco and e-cigarette products consumed worldwide. However, increasing evidence of transgenerational epigenetic inheritance suggests that nicotine use may alter behavior and neurobiology in subsequent generations. We tested the effects of chronic paternal nicotine exposure in C57BL6/J mice on fear conditioning in F1 and F2 offspring, as well as conditioned fear extinction and spontaneous recovery, nicotine self-administration, hippocampal cholinergic functioning, RNA expression, and DNA methylation in F1 offspring. Paternal nicotine exposure was associated with enhanced contextual and cued fear conditioning and spontaneous recovery of extinguished fear memories. Further, nicotine reinforcement was reduced in nicotine-sired mice, as assessed in a self-administration paradigm. These behavioral phenotypes were coupled with altered response to nicotine, upregulated hippocampal nicotinic acetylcholine receptor binding, reduced evoked hippocampal cholinergic currents, and altered methylation and expression of hippocampal genes related to neural development and plasticity. Gene expression analysis suggests multigenerational effects on broader gene networks potentially involved in neuroplasticity and mental disorders. The changes in fear conditioning similarly suggest phenotypes analogous to anxiety disorders similar to post-traumatic stress.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Department of Biobehavioral Health Penn State University University Park Pennsylvania
| | - Dana Zeid
- Department of Biobehavioral Health Penn State University University Park Pennsylvania
| | - Munir Gunes Kutlu
- Department of Pharmacology Vanderbilt School of Medicine Nashville Tennessee
| | - Robert D. Cole
- College of Pharmacy University of Kentucky Lexington Kentucky
| | - Valeria Lallai
- Department of Neurobiology and Behavior University of California Irvine Irvine California
| | - Aswathy Sebastian
- Bioinformatics, Biochemistry and Molecular Biology Penn State University University Park PA
| | - Istvan Albert
- Bioinformatics, Biochemistry and Molecular Biology Penn State University University Park PA
| | - Christie D. Fowler
- Department of Neurobiology and Behavior University of California Irvine Irvine California
| | - Vinay Parikh
- Department of Psychology Temple University Philadelphia Pennsylvania
| | - Thomas J. Gould
- Department of Biobehavioral Health Penn State University University Park Pennsylvania
| |
Collapse
|
5
|
Geste JR, Levin B, Wilks I, Pompilus M, Zhang X, Esser KA, Febo M, O'Dell L, Bruijnzeel AW. Relationship Between Nicotine Intake and Reward Function in Rats With Intermittent Short Versus Long Access to Nicotine. Nicotine Tob Res 2020; 22:213-223. [PMID: 30958557 DOI: 10.1093/ntr/ntz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Tobacco use improves mood states and smoking cessation leads to anhedonia, which contributes to relapse. Animal studies have shown that noncontingent nicotine administration enhances brain reward function and leads to dependence. However, little is known about the effects of nicotine self-administration on the state of the reward system. METHODS To investigate the relationship between nicotine self-administration and reward function, rats were prepared with intracranial self-stimulation electrodes and intravenous catheters. The rats were trained on the intracranial self-stimulation procedure and allowed to self-administer 0.03 mg/kg/infusion of nicotine. All rats self-administered nicotine daily for 10 days (1 hour/day) and were then switched to an intermittent short access (ShA, 1 hour/day) or long access (LgA, 23 hour/day) schedule (2 days/week, 5 weeks). RESULTS During the first 10 daily, 1-hour sessions, nicotine self-administration decreased the reward thresholds, which indicates that nicotine potentiates reward function. After switching to the intermittent LgA or ShA schedule, nicotine intake was lower in the ShA rats than the LgA rats. The LgA rats increased their nicotine intake over time and they gradually consumed a higher percentage of their nicotine during the light phase. The nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine induced a larger increase in reward thresholds (ie, anhedonia) in the LgA rats than the ShA rats. In the LgA rats, nAChR blockade with mecamylamine decreased nicotine intake for 2 hours and this was followed by a rebound increase in nicotine intake. CONCLUSIONS A brief period of nicotine self-administration enhances reward function and a high level of nicotine intake leads to dependence. IMPLICATIONS These animal studies indicate that there is a strong relationship between the level of nicotine intake and brain reward function. A high level of nicotine intake was more rewarding than a low level of nicotine intake and nicotine dependence was observed after long, but not short, access to nicotine. This powerful combination of nicotine reward and withdrawal makes it difficult to quit smoking. Blockade of nAChRs temporarily decreased nicotine intake, but this was followed by a large rebound increase in nicotine intake. Therefore, nAChR blockade might not decrease the use of combustible cigarettes or electronic cigarettes.
Collapse
Affiliation(s)
- Jean R Geste
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Brandon Levin
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| | - Laura O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Sharp BM. Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. Eur J Neurosci 2018; 50:2247-2254. [PMID: 29802666 DOI: 10.1111/ejn.13970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus, and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder, and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors, and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
7
|
Zeid D, Gould TJ. Chronic nicotine exposure in preadolescence enhances later spontaneous recovery of fear memory. Behav Neurosci 2018; 132:240-246. [PMID: 29975080 DOI: 10.1037/bne0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preadolescent mice have been shown to be differentially susceptible to the effects of both acute and chronic nicotine exposure on contextual fear learning relative to adults. For this study, we tested the effects of chronic nicotine exposure in preadolescence on adulthood extinction and spontaneous recovery of fear memory in a model in which contextual fear acquisition occurred prior to nicotine exposure. Preadolescent (postnatal day 23) and adult (postnatal day 53) male C57BL/6J mice underwent contextual fear conditioning and were then exposed to chronic nicotine at 12.6 mg/kg/day for 12 days via osmotic minipump. Eighteen days following the removal of nicotine, both groups of mice underwent fear extinction, followed by a spontaneous recovery session a week later. History of chronic nicotine did not affect later extinction of fear memory in adult-trained mice, whereas adolescent-trained mice exhibited a global impairment in retention of fear memory that precluded detection of effects of early nicotine on later fear extinction. However, it was found that adult spontaneous recovery of fear memory was impaired in mice exposed to nicotine as adults and enhanced in mice exposed to nicotine as preadolescents. These results may indicate greater vulnerability to recurrence of traumatic memory as well as compromised inhibitory control in young smokers. (PsycINFO Database Record
Collapse
|
8
|
Kutlu MG, Marin MF, Tumolo JM, Kaur N, VanElzakker MB, Shin LM, Gould TJ. Nicotine exposure leads to deficits in differential cued fear conditioning in mice and humans: A potential role of the anterior cingulate cortex. Neurosci Lett 2018. [PMID: 29518543 DOI: 10.1016/j.neulet.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stress and anxiety disorders such as posttraumatic stress disorder (PTSD) are characterized by disrupted safety learning. Tobacco smoking has been strongly implicated in stress and anxiety disorder symptomatology, both as a contributing factor and as a vulnerability factor. Rodent studies from our lab have recently shown that acute and chronic nicotine exposure disrupts safety learning. However, it is unknown if these effects of nicotine translate to humans. The present studies addressed this gap by administering a translational differential cued fear conditioning paradigm to both mice and humans. In mice, we found that chronic nicotine exposure reduced discrimination between a conditioned stimulus (CS) that signals for danger (CS+) and another CS that signals for safety (CS-) during both acquisition and testing. We then employed a similar differential cued fear conditioning paradigm in human smokers and non-smokers undergoing functional magnetic resonance imaging (fMRI). Smokers showed reduced CS+/CS- discrimination during fear conditioning compared to non-smokers. Furthermore, using fMRI, we found that subgenual and dorsal anterior cingulate cortex activations were lower in smokers than in non-smokers during differential cued fear conditioning. These results suggest a potential biological mechanism underlying a dysregulated ability to discriminate between danger and safety cues. Our results indicate a clear parallel between the effects of nicotine exposure on safety learning in mice and humans and therefore suggest that smoking might represent a risk factor for inability to process information related to danger and safety related cues.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA.
| | - Marie-France Marin
- Research Center of the Montreal Mental Health University Institute, Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Jessica M Tumolo
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Navneet Kaur
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Michael B VanElzakker
- Department of Psychology, Tufts University, Medford, MA, USA; Department of Psychiatry, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lisa M Shin
- Department of Psychology, Tufts University, Medford, MA, USA; Department of Psychiatry, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Tumolo JM, Kutlu MG, Gould TJ. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice. Behav Brain Res 2018; 341:176-180. [PMID: 29307664 DOI: 10.1016/j.bbr.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear.
Collapse
Affiliation(s)
- Jessica M Tumolo
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Munir Gunes Kutlu
- The Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- The Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
10
|
Zeid D, Kutlu MG, Gould TJ. Differential Effects of Nicotine Exposure on the Hippocampus Across Lifespan. Curr Neuropharmacol 2018; 16:388-402. [PMID: 28714396 PMCID: PMC6018186 DOI: 10.2174/1570159x15666170714092436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Nicotine exposure affects the hippocampus through activation of hippocampal nicotinic acetylcholine receptors (nAChRs), which are present throughout excitatory and inhibitory hippocampal circuitry. The role of cholinergic functioning in the hippocampus varies across developmental stages so that nicotine exposure differentially affects this region depending upon timing of exposure, producing developmentally distinct changes in structure, function, and behavior. METHODS We synthesize findings across literature in this area to comprehensively review current understanding of the unique effects of nicotine exposure on the hippocampus throughout the lifespan with a focus on hippocampal morphology, cholinergic functioning, and hippocampusdependent learning and memory. CONCLUSIONS Chronic and acute nicotine exposure differentially affect hippocampus structure, functioning, and related learning and memory in the perinatal period, adolescence, and aging. Age-related differences in sensitivity to nicotine exposure should be considered in the research of nicotine addiction and the development of nicotine addiction treatments.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| |
Collapse
|
11
|
Oliver CF, Kutlu MG, Zeid D, Gould TJ. Sex differences in the effects of nicotine on contextual fear extinction. Pharmacol Biochem Behav 2017; 165:25-28. [PMID: 29253499 DOI: 10.1016/j.pbb.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/15/2022]
Abstract
Anxiety and stress disorders occur at a higher rate in women compared to men as well as in smokers in comparison to non-smoker population. Nicotine is known to impair fear extinction, which is altered in anxiety disorders. However, nicotine differentially affects fear learning in men and women, which may mean that sex and nicotine-product use can interact to also alter fear extinction. For this study, we examined sex differences in the effects of acute and chronic nicotine administration on fear memory extinction in male and female C57BL/6J mice. To study the acute effects of nicotine, animals trained in a background contextual fear conditioning paradigm were administered nicotine (0.09, 0.18 or 0.36mg/kg) prior to extinction sessions. For chronic nicotine, animals continuously receiving nicotine (12.6, 18, or 24mg/kg/day) were trained in a background contextual fear conditioning paradigm followed by fear extinction sessions. Males exhibited contextual fear extinction deficits following acute and chronic nicotine exposure. Females also exhibited extinction deficits, but only at the highest doses of acute nicotine (0.36mg/kg) while chronic nicotine did not result in extinction deficits in female mice. These results suggest that sex mediates sensitivity to nicotine's effects on contextual fear memory extinction.
Collapse
Affiliation(s)
- Chicora F Oliver
- Department of Biobehavioral Health, 219 Biobehavioral Health Bldg, The Pennsylvania State University, University Park, PA 16802
| | - Munir Gunes Kutlu
- Department of Biobehavioral Health, 219 Biobehavioral Health Bldg, The Pennsylvania State University, University Park, PA 16802
| | - Dana Zeid
- Department of Biobehavioral Health, 219 Biobehavioral Health Bldg, The Pennsylvania State University, University Park, PA 16802
| | - Thomas J Gould
- Department of Biobehavioral Health, 219 Biobehavioral Health Bldg, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
12
|
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol 2017; 31:934-944. [PMID: 28675115 PMCID: PMC5755391 DOI: 10.1177/0269881117695861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Munir G Kutlu
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|