1
|
Baumbach JL, Leonetti AM, Martin LJ. Inflammatory injury induces pain sensitization that is expressed beyond the site of injury in male (and not in female) mice. Behav Brain Res 2024; 475:115215. [PMID: 39191370 DOI: 10.1016/j.bbr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Pain is a crucial protective mechanism for the body. It alerts us to potential tissue damage or injury and promotes the avoidance of harmful stimuli. Injury-induced inflammation and tissue damage lead to pain sensitization, which amplifies responses to subsequent noxious stimuli even after an initial primary injury has recovered. This phenomenon, commonly referred to as hyperalgesic priming, was investigated in male and female mice to determine whether it is specific to the site of previous injury. We used 10μl of 50 % Freund's complete adjuvant (CFA) administered to the left hind paw as a model of peripheral injury. Both male and female mice exhibited robust site-specific mechanical hypersensitivity after CFA, which resolved within one-week post-injection. After injury resolution, only male CFA-primed mice showed enhanced and prolonged mechanical sensitivity in response to a chemical challenge or a single 0.5 mA electric footshock. Among CFA-primed male mice, shock-induced mechanical hypersensitivity was expressed in both the left (previously injured) and the right (uninjured) hind paws, suggesting a pivotal role for altered centralized processes in the expression of pain sensitization. These findings indicate that pain history regulates sensory responses to subsequent mechanical and chemical pain stimuli in a sex-specific manner-foot-shock-induced hyperalgesic priming expression among male mice generalized beyond the initial injury site.
Collapse
Affiliation(s)
| | | | - Loren J Martin
- Department of Psychology, University of Toronto, Canada; Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
2
|
Frasier RM, De Oliveira Sergio T, Starski PA, Grippo AJ, Hopf FW. Heart rate variability measures indicating sex differences in autonomic regulation during anxiety-like behavior in rats. Front Psychiatry 2023; 14:1244389. [PMID: 38025424 PMCID: PMC10644002 DOI: 10.3389/fpsyt.2023.1244389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Mental health conditions remain a substantial and costly challenge to society, especially in women since they have nearly twice the prevalence of anxiety disorders. However, critical mechanisms underlying sex differences remain incompletely understood. Measures of cardiac function, including heart rate (HR) and HR variability (HRV), reflect balance between sympathetic (SNS) and parasympathetic (PNS) systems and are potential biomarkers for pathological states. Methods To better understand sex differences in anxiety-related autonomic mechanisms, we examined HR/HRV telemetry in food-restricted adult rats during novelty suppression of feeding (NSF), with conflict between food under bright light in the arena center. To assess HRV, we calculated the SDNN (reflective of both SNS and PNS contribution) and rMSSD (reflective of PNS contribution) and compared these metrics to behaviors within the anxiety task. Results Females had greater HR and lower SNS indicators at baseline, as in humans. Further, females (but not males) with higher basal HR carried this state into NSF, delaying first approach to center. In contrast, males with lower SNS measures approached and spent more time in the brightly-lit center. Further, females with lower SNS indicators consumed significantly more food. In males, a high-SNS subpopulation consumed no food. Among consumers, males with greater SNS ate more food. Discussion Together, these are congruent with human findings suggesting women engage PNS more, and men SNS more. Our previous behavior-only work also observed female differences from males during initial movement and food intake. Thus, high basal SNS in females reduced behavior early in NSF, while subsequent reduced SNS allowed greater food intake. In males, lower SNS increased engagement with arena center, but greater SNS predicted higher consumption. Our findings show novel and likely clinically relevant sex differences in HRV-behavior relationships.
Collapse
Affiliation(s)
- Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Phillip A. Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - F. Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
3
|
Effects of endocannabinoid system modulation on social behaviour: A systematic review of animal studies. Neurosci Biobehav Rev 2022; 138:104680. [PMID: 35513169 DOI: 10.1016/j.neubiorev.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.
Collapse
|
4
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
5
|
Social Instability Stress in Adolescence and Social Interaction in Female Rats. Neuroscience 2021; 477:1-13. [PMID: 34619317 DOI: 10.1016/j.neuroscience.2021.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023]
Abstract
Adolescence is a critical time of brain development for regions governing social behaviour and social learning. Social experiences influence the ongoing maturation of the neural structures and ultimately modify the social behaviour of adults in response to social cues. Social instability stress in adolescence (SS; daily 1-hour isolation + change of cage partner in postnatal days [PND] 30-45) leads to a long-lasting reduction in social interaction in SS rats compared with non-stressed (CTL) rats in males; here we investigate females. In a first experiment, we found that female rats exposed to adolescent SS also showed the decrement in social interaction irrespective of age at which tested, and replicated the effects previously found in males. In experiment 2, which involved females only, SS and CTL rats did not differ in anxiety-like behaviour in the elevated plus maze (EPM) and the reduction in social interaction was not significant. Nevertheless, when tested in adolescence at P47 (and not at P71), SS female rats had higher corticosterone release during the social interaction test than did CTL rats, and they exhibited a different pattern of neural activation as measured by immunoreactivity to the protein products of zif268 and c-fos (SS < CTL in medial prefrontal cortex and SS > CTL in hippocampus), and reduced oxytocin immunoreactivity in the paraventricular nucleus of the hypothalamus than did CTL rats. These results extend our previous findings of effects of SS in adolescent female rats on behavioural responses to psychostimulants to social behaviour, and point to directions for investigations of the neural mechanisms involved.
Collapse
|
6
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
7
|
Maldonado R, Cabañero D, Martín-García E. The endocannabinoid system in modulating fear, anxiety, and stress
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:229-239. [PMID: 33162766 PMCID: PMC7605023 DOI: 10.31887/dcns.2020.22.3/rmaldonado] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid system is widely expressed in the limbic system, prefrontal
cortical areas, and brain structures regulating neuroendocrine stress responses, which
explains the key role of this system in the control of emotions. In this review, we
update recent advances on the function of the endocannabinoid system in determining the
value of fear-evoking stimuli and promoting appropriate behavioral responses for stress
resilience. We also review the alterations in the activity of the endocannabinoid system
during fear, stress, and anxiety, and the pathophysiological role of each component of
this system in the control of these protective emotional responses that also trigger
pathological emotional disorders. In spite of all the evidence, we have not yet taken
advantage of the therapeutic implications of this important role of the endocannabinoid
system, and possible future strategies to improve the treatment of these emotional
disorders are discussed.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Zamberletti E, Rubino T. Impact of Endocannabinoid System Manipulation on Neurodevelopmental Processes Relevant to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:616-626. [PMID: 32855107 DOI: 10.1016/j.bpsc.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The neurodevelopmental hypothesis of schizophrenia has received much support from epidemiological and neuropathological studies and provides a framework to explain how early developmental abnormalities might manifest as psychosis in early adulthood. According to this theory, the onset of schizophrenia is likely the result of a complex interplay between a genetic predisposition and environmental factors whose respective influence might contribute to the etiology and progression of the disorder. The two most sensitive windows for neurodevelopment are the prenatal/perinatal and the adolescent windows, both of which are characterized by specific processes impinging upon brain structure and functionality, whose alterations may contribute to the onset of schizophrenia. An increasing number of articles suggest the involvement of the endocannabinoid system in the modulation of at least some of these processes, especially in the prenatal/perinatal window. Thus, it is not surprising that disturbing the physiological role of endocannabinoid signaling in these sensitive windows might alter the correct formation of neuronal networks, eventually predisposing to neuropsychiatric diseases later in life. We review the most recent preclinical studies that evaluated the impact of endocannabinoid system modulation in the two sensitive developmental windows on neurodevelopmental processes that possess a specific relevance to schizophrenia.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy.
| |
Collapse
|
9
|
Tirado-Muñoz J, Lopez-Rodriguez AB, Fonseca F, Farré M, Torrens M, Viveros MP. Effects of cannabis exposure in the prenatal and adolescent periods: Preclinical and clinical studies in both sexes. Front Neuroendocrinol 2020; 57:100841. [PMID: 32339546 DOI: 10.1016/j.yfrne.2020.100841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
Cannabis is the most commonly used illicit drug among adolescents and young adults, including pregnant women. There is substantial evidence for a significant association between prenatal cannabis exposure and lower birth weight in offspring, and mixed results regarding later behavioural outcomes in the offspring. Adolescent cannabis use, especially heavy use, has been associated with altered executive function, depression, psychosis and use of other drugs later in life. Human studies have limitations due to several confounding factors and have provided scarce information about sex differences. In general, animal studies support behavioural alterations reported in humans and have revealed diverse sex differences and potential underlying mechanisms (altered mesolimbic dopaminergic and hippocampal glutamatergic systems and interference with prefrontal cortex maturation). More studies are needed that analyse sex and gender influences on cannabis-induced effects with great clinical relevance such as psychosis, cannabis use disorder and associated comorbidities, to achieve more personalized and accurate treatments.
Collapse
Affiliation(s)
- Judith Tirado-Muñoz
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Francina Fonseca
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Magi Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germas Trias (HUGTP-IGTP), Badalona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Torrens
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
10
|
Simone JJ, Baumbach JL, McPherson J, McCormick CM. Adolescent CB1 receptor antagonism influences subsequent social interactions and neural activity in female rats. Int J Dev Neurosci 2020; 80:319-333. [PMID: 32220094 DOI: 10.1002/jdn.10028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that repeated exposure to the CB1 receptor antagonist/inverse agonist AM251 in adolescence (PND 30-44) increased social interactions in female rats when tested 48 h after the final exposure to the antagonist. Here, we investigated whether the increased sociality would be present after a longer drug washout period (5 days) in both male and female rats (experiment 1), and sought to identify candidate brain regions that may explain the observed differences in social behaviours between AM251 and vehicle-treated female rats (experiment 2). While drug-free, adolescent AM251 treatment increased social interactions in females and not in males. AM251 female rats had increased neural activity (as measured by the expression of early growth response protein-1; EGR-1) in the nucleus accumbens shell and cingulate gyrus of the medial prefrontal cortex, with no observed differences in EGR-1 expression in the dorsal hippocampus, nucleus accumbens core, or prelimbic and infralimbic subdivisions of the medial prefrontal cortex relative to vehicle rats. Together, these results demonstrate a sex-specific role of adolescent endocannabinoid signalling in the normative development of social behaviours and provide further support for adolescence as a vulnerable period for the effects of altered endocannabinoid signalling.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | | | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.,Department of Psychology, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
11
|
Peng Y, Zheng X, Fan Z, Zhou H, Zhu X, Wang G, Liu Z. Paeonol alleviates primary dysmenorrhea in mice via activating CB2R in the uterus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153151. [PMID: 32058234 DOI: 10.1016/j.phymed.2019.153151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND PURPOSE Primary dysmenorrhea is the most common gynaecologic problem in menstruating women and is characterized by spasmodic uterine contraction and pain symptoms associated with inflammatory disturbances. Paeonol is an active phytochemical component that has shown anti-inflammatory and analgesic effects in several animal models. The aim of this study was to explore whether paeonol is effective against dysmenorrhea and to investigate the potential mechanism of cannabinoid receptor signalling. EXPERIMENTAL APPROACH Dysmenorrhea was established by injecting oestradiol benzoate into female mice. The effects of paeonol on writhing time and latency, uterine pathology and inflammatory mediators were explored. Isolated uterine smooth muscle was used to evaluate the direct effect of paeonol on uterine contraction. KEY RESULTS The oral administration of paeonol reduced dysmenorrhea pain and PGE2 and TNF-α expression in the uterine tissues of mice, and paeonol was found to be distributed in lesions of the uterus. Paeonol almost completely inhibited oxytocin-, high potassium- and Ca2+-induced contractions in isolated uteri. Antagonists of CB2R (AM630) and the MAPK pathway (U0126), but not of CB1R (AM251), reversed the inhibitory effect of paeonol on uterine contraction. Paeonol significantly blocked L-type Ca2+ channels and calcium influx in uterine smooth muscle cells via CB2R. Molecular docking results showed that paeonol fits well with the binding site of CB2R. CONCLUSIONS AND IMPLICATIONS Paeonol partially acts through CB2R to restrain calcium influx and uterine contraction to alleviate dysmenorrhea in mice. These results suggest that paeonol has therapeutic potential for the treatment of dysmenorrhea.
Collapse
Affiliation(s)
- Yi Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210029, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210029, China
| | - Zhiyi Fan
- Department of Pharmacy, Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Hongliang Zhou
- Department of Pharmacy, Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Xuanxuan Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210029, China.
| | - Zhihui Liu
- Department of Pharmacy, Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology 2019; 144:345-357. [DOI: 10.1016/j.neuropharm.2018.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/17/2018] [Accepted: 11/10/2018] [Indexed: 01/21/2023]
|
13
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|