1
|
Demir EA, Gonder O. Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity. Respir Physiol Neurobiol 2025; 331:104349. [PMID: 39293566 DOI: 10.1016/j.resp.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Ticagrelor, a P2Y12 receptor antagonist, has been demonstrated to induce dyspnea, which is not associated with cardiac or pulmonary alterations, or metabolic disturbances. The attribution of ticagrelor-related dyspnea to excess adenosine has been widely proposed, yet is not supported by experimental data. In this paper, we put forth a novel hypothesis that the hyperactivity of the retrotrapezoid nucleus, a group of ventral medullary neurons involved in respiratory modulation, is the underlying cause of ticagrelor-related dyspnea. This hypothesis offers a theoretical resolution to the discrepancies and controversies present in previous theories.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey.
| | - Okan Gonder
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey
| |
Collapse
|
2
|
Purnell B, Bhasin J, Rust B, George S, Bah K, Lu T, Fedele D, Boison D. Disruption of adenosine metabolism increases risk of seizure-induced death despite decreased seizure severity. Epilepsia 2024; 65:2798-2811. [PMID: 39018000 PMCID: PMC11534556 DOI: 10.1111/epi.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Respiratory arrest plays an important role in sudden unexpected death in epilepsy (SUDEP). Adenosine is of interest in SUDEP pathophysiology due to its influence on seizures and breathing. The objective of this investigation was to examine the role of adenosine in seizure severity, seizure-induced respiratory disruption, and seizure-induced death using mouse models. Understanding adenosinergic contributions to seizure cessation and seizure-induced death may provide insights into how SUDEP can be prevented while avoiding increased seizure severity. METHODS Our approach was to examine: (1) seizure severity and seizure-induced death after 15 mA electroshock seizures and during repeated pentylenetetrazol (PTZ) administration in wild-type mice (Adk +/+) and transgenic mice with reduced adenosine metabolism (Adk +/-); (2) the postictal hypercapnic ventilatory response (HCVR) in wild-type mice (the postictal HCVR could not be examined in Adk +/- mice due to their high mortality rate); and (3) the effects of adenosinergic drugs on seizure severity and seizure-induced death following maximal electroshock (MES). RESULTS Adk +/- mice were more vulnerable to seizure-induced death in the 15 mA electroshock and repeated PTZ models. Despite increased mortality, Adk +/- mice had comparable seizure severity in the PTZ model and reduced seizure severity in the 15 mA electroshock model. Breathing and HCVR were suppressed by 15 mA electroshock seizures in wild-type mice. Pharmacological inhibition of adenosine metabolism decreased MES seizure severity but did not increase mortality. A1 selective and nonselective adenosine receptor antagonists increased seizure-induced death following MES. SIGNIFICANCE Adenosine has opposing effects on seizure severity and seizure-induced death. On the one hand, our seizure severity data highlight the importance of adenosine in seizure suppression. On the other hand, our mortality data indicate that excessive extracellular adenosine signaling can increase the risk of seizure-induced respiratory arrest.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Kadiatou Bah
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Tracy Lu
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
3
|
Purnell BS, Thompson S, Bowman T, Bhasin J, George S, Rust B, Murugan M, Fedele D, Boison D. The role of adenosine in alcohol-induced respiratory suppression. Neuropharmacology 2023; 222:109296. [PMID: 36377091 PMCID: PMC10208026 DOI: 10.1016/j.neuropharm.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Sydney Thompson
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Tenise Bowman
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
4
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
5
|
Stojanovska V, Atta J, Kelly SB, Zahra VA, Matthews-Staindl E, Nitsos I, Moxham A, Pham Y, Hooper SB, Herlenius E, Galinsky R, Polglase GR. Increased Prostaglandin E2 in Brainstem Respiratory Centers Is Associated With Inhibition of Breathing Movements in Fetal Sheep Exposed to Progressive Systemic Inflammation. Front Physiol 2022; 13:841229. [PMID: 35309054 PMCID: PMC8928579 DOI: 10.3389/fphys.2022.841229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Background Preterm newborns commonly experience apnoeas after birth and require respiratory stimulants and support. Antenatal inflammation is a common antecedent of preterm birth and inflammatory mediators, particularly prostaglandin E2 (PGE2), are associated with inhibition of vital brainstem respiratory centers. In this study, we tested the hypothesis that exposure to antenatal inflammation inhibits fetal breathing movements (FBMs) and increases inflammation and PGE2 levels in brainstem respiratory centers, cerebrospinal fluid (CSF) and blood plasma. Methods Chronically instrumented late preterm fetal sheep at 0.85 of gestation were randomly assigned to receive repeated intravenous saline (n = 8) or lipopolysaccharide (LPS) infusions (experimental day 1 = 300 ng, day 2 = 600 ng, day 3 = 1200 ng, n = 8). Fetal breathing movements were recorded throughout the experimental period. Sheep were euthanized 4 days after starting infusions for assessment of brainstem respiratory center histology. Results LPS infusions increased circulating and cerebrospinal fluid PGE2 levels, decreased arterial oxygen saturation, increased the partial pressure of carbon dioxide and lactate concentration, and decreased pH (p < 0.05 for all) compared to controls. LPS infusions caused transient reductions in the % of time fetuses spent breathing and the proportion of vigorous fetal breathing movements (P < 0.05 vs. control). LPS-exposure increased PGE2 expression in the RTN/pFRG (P < 0.05 vs. control) but not the pBÖTC (P < 0.07 vs. control) of the brainstem. No significant changes in gene expression were observed for PGE2 enzymes or caspase 3. LPS-exposure reduced the numbers of GFAP-immunoreactive astrocytes in the RTN/pFRG, NTS and XII of the brainstem (P < 0.05 vs. control for all) and increased microglial activation in the RTN/pFRG, preBÖTC, NTS, and XII brainstem respiratory centers (P < 0.05 vs. control for all). Conclusion Chronic LPS-exposure in late preterm fetal sheep increased PGE2 levels within the brainstem, CSF and plasma, and was associated with inhibition of FBMs, astrocyte loss and microglial activation within the brainstem respiratory centers. Further studies are needed to determine whether the inflammation-induced increase in PGE2 levels plays a key role in depressing respiratory drive in the perinatal period.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - John Atta
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Sharmony B. Kelly
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Eva Matthews-Staindl
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Moxham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B. Hooper
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Galinsky
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Robert Galinsky,
| | - Graeme R. Polglase
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Graeme R. Polglase,
| |
Collapse
|
6
|
Patodia S, Somani A, Thom M. Review: Neuropathology findings in autonomic brain regions in SUDEP and future research directions. Auton Neurosci 2021; 235:102862. [PMID: 34411885 PMCID: PMC8455454 DOI: 10.1016/j.autneu.2021.102862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Autonomic dysfunction is implicated from clinical, neuroimaging and experimental studies in sudden and unexpected death in epilepsy (SUDEP). Neuropathological analysis in SUDEP series enable exploration of acquired, seizure-related cellular adaptations in autonomic and brainstem autonomic centres of relevance to dysfunction in the peri-ictal period. Alterations in SUDEP compared to control groups have been identified in the ventrolateral medulla, amygdala, hippocampus and central autonomic regions. These involve neuropeptidergic, serotonergic and adenosine systems, as well as specific regional astroglial and microglial populations, as potential neuronal modulators, orchestrating autonomic dysfunction. Future research studies need to extend to clinically and genetically characterized epilepsies, to explore if common or distinct pathways of autonomic dysfunction mediate SUDEP. The ultimate objective of SUDEP research is the identification of disease biomarkers for at risk patients, to improve post-mortem recognition and disease categorisation, but ultimately, for exposing potential treatment targets of pharmacologically modifiable and reversible cellular alterations.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alyma Somani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
7
|
Van Horn MR, Benfey NJ, Shikany C, Severs LJ, Deemyad T. Neuron-astrocyte networking: astrocytes orchestrate and respond to changes in neuronal network activity across brain states and behaviors. J Neurophysiol 2021; 126:627-636. [PMID: 34259027 DOI: 10.1152/jn.00062.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Astrocytes are known to play many important roles in brain function. However, research underscoring the extent to which astrocytes modulate neuronal activity is still underway. Here we review the latest evidence regarding the contribution of astrocytes to neuronal oscillations across the brain, with a specific focus on how astrocytes respond to changes in brain state (e.g., sleep, arousal, stress). We then discuss the general mechanisms by which astrocytes signal to neurons to modulate neuronal activity, ultimately driving changes in behavior, followed by a discussion of how astrocytes contribute to respiratory rhythms in the medulla. Finally, we contemplate the possibility that brain stem astrocytes could modulate brainwide oscillations by communicating the status of oxygenation to higher cortical areas.
Collapse
Affiliation(s)
- Marion R Van Horn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nicholas J Benfey
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Colleen Shikany
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Physiology and Biophysics, The University of Washington, Seattle, Washington
| | - Tara Deemyad
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Purnell B, Murugan M, Jani R, Boison D. The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy. Front Neurosci 2021; 15:708304. [PMID: 34321997 PMCID: PMC8311182 DOI: 10.3389/fnins.2021.708304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Raja Jani
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
9
|
Ashraf O, Huynh T, Purnell BS, Murugan M, Fedele DE, Chitravanshi V, Boison D. Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP). Neuropharmacology 2021; 184:108405. [PMID: 33212114 PMCID: PMC8199795 DOI: 10.1016/j.neuropharm.2020.108405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.
Collapse
Affiliation(s)
- Omar Ashraf
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Trong Huynh
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vineet Chitravanshi
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Bourgeois-Vionnet J, Jung J, Bouet R, Leclercq M, Catenoix H, Bezin L, Ryvlin P, Rheims S. Relation between coffee consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy. Epilepsia 2021; 62:765-777. [PMID: 33586176 DOI: 10.1111/epi.16837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Caffeine is an antagonist of the adenosine pathway, which is involved in regulation of breathing. Extracellular concentrations of adenosine are increased in the immediate aftermath of a seizure. Seizure-related overstimulation of adenosine receptors might promote peri-ictal apnea. However, the relation between caffeine consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy remains unknown. METHODS We performed a cross-sectional analysis of data collected in patients included in the SAVE study in Lyon's epilepsy monitoring unit at the Adult Epilepsy Department of the Lyon University Hospital between February 2016 and October 2018. The video-electroencephalographic recordings of 156 patients with drug-resistant focal epilepsy included in the study were reviewed to identify those with ≥1 focal seizure (FS), valid pulse oximetry (SpO2 ) measurement, and information about usual coffee consumption. This latter was collected at inclusion using a standardized self-questionnaire and further classified into four groups: none, rare (≤3 cups/week), moderate (4 cups/week to 3 cups/day), and high (≥4 cups/day). Peri-ictal hypoxemia (PIH) was defined as SpO2 < 90% for at least 5 s occurring during the ictal period, the post-ictal period, or both. RESULTS Ninety patients fulfilled inclusion criteria, and 323 seizures were analyzed. Both the level of usual coffee consumption (p = .033) and the level of antiepileptic drug withdrawal (p = .004) were independent risk factors for occurrence of PIH. In comparison with FS in patients with no coffee consumption, risk of PIH was four times lower in FS in patients with moderate consumption (odds ratio [OR] = .25, 95% confidence interval [CI] = .07-.91, p = .036) and six times lower in FS in patients with high coffee consumption (OR = .16, 95% CI = .04-.66, p = .011). However, when PIH occurred, its duration was longer in patients with moderate or high consumption than in those with no coffee consumption (p = .042). SIGNIFICANCE Coffee consumption may be a protective factor for seizure-related respiratory dysfunction, with a dose-dependent effect.
Collapse
Affiliation(s)
- Julie Bourgeois-Vionnet
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Mathilde Leclercq
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaudois University Hospital Center, Lausanne, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
11
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
12
|
Rodrigues LTC, Salata B, Horta-Júnior JDAC, Gargaglioni LH, Dias MB. Adenosine in the lateral hypothalamus/perifornical area does not participate on the CO 2 chemoreflex. Respir Physiol Neurobiol 2020; 276:103368. [PMID: 32061712 DOI: 10.1016/j.resp.2020.103368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022]
Abstract
The Lateral Hypothalamus/Perifornical Area (LH/PFA) has been shown to be involved with the hypercapnic ventilatory response, in a state-dependent manner. We have demonstrated that purinergic signaling through ATP in the LH/PFA has an excitatory effect in ventilatory response to CO2 in awake rats in the dark phase of the diurnal cycle, but it is unknown whether the ATP metabolite adenosine, acting in the LH/PFA, modulates the ventilatory responses to hypercapnia. Here, we studied the effects of the microdialysis of adenosine (A1/A2 adenosine receptors agonist; 17 mM) and an A1 receptor antagonist (DPCPX; 0.1 mM) into the LH/PFA of conscious rats on ventilation in room air and in 7% CO2 during the light and the dark phases of the diurnal cycle. The microdialysis of adenosine and DPCPX caused no change in the CO2 ventilatory responses of rats during wakefulness or NREM sleep in either the dark or light period. Our data suggest that adenosine in the LH/PFA does not contribute to the hypercapnic ventilatory response in conscious rats.
Collapse
Affiliation(s)
| | - Bruno Salata
- Department of Physiology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, Brazil.
| | | | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil.
| | - Mirela Barros Dias
- Department of Physiology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
13
|
Zavhorodnia VA, Androshchuk OI, Kharchenko TH, Kudii LI, Kovalenko SO. Haemodynamic effects of hyperventilation on healthy men with different levels of autonomic tone. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The topicality of the research is stipulated by insufficient study of the correlation between the functional state of the cardiorespiratory system and autonomic tone. The goal of the research was to analyze the changes of central haemodynamics with 10-minute regulated breathing at the rate of 30 cycles per minute and within 40 minutes of recovery after the test in healthy young men with different levels of autonomic tone. Records of the chest rheoplethysmogram were recorded on a rheograph KhAI-medica standard (KhAI-medica, Kharkiv, Ukraine), a capnogram - in a lateral flow on a infrared capnograph (Datex, Finland), and the duration of R-R intervals was determined by a Polar WIND Link in the program of Polar Protrainer 5.0 (Polar Electro OY, Finland). Systolic and diastolic blood pressure were measured by Korotkov’s auscultatory method by mercury tonometer (Riester, Germany). The indicator of the normalized power of the spectrum in the range of 0.15–0.40 Hz was evaluated by 5-minute records; three groups of persons were distinguished according to its distribution at rest by the method of signal deviation, namely, sympathicotonic, normotonic and parasympathicotonic. The initial level of autonomic tone was found to impact the dynamics of СО2 level in alveolar air during hyperventilation and during recovery thereafter. Thus, PetCО2 was higher (41.3 mm Hg) in parasympathicotonic than in sympathicotonic (39.3 mm Hg) and normotonic (39.5 mm Hg) persons. During the test, R-R interval duration decreased being more expressed in normotonic persons. At the same time, the heart index was found to increase in three groups, and general peripheral resistance – to decrease mostly in normo- and parasympathicotonic persons. In addition, the reliable increase of stroke index and heart index was found in these groups. In the recovery period after hyperventilation, the decrease of tension index and ejection speed was found in normo- and, particularly, parasympathicotonic compared with sympathicotonic men and the increase of tension phase and ejection phase duration.
Collapse
|
14
|
Patodia S, Paradiso B, Ellis M, Somani A, Sisodiya SM, Devinsky O, Thom M. Characterisation of medullary astrocytic populations in respiratory nuclei and alterations in sudden unexpected death in epilepsy. Epilepsy Res 2019; 157:106213. [PMID: 31610338 DOI: 10.1016/j.eplepsyres.2019.106213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Abstract
Central failure of respiration during a seizure is one possible mechanism for sudden unexpected death in epilepsy (SUDEP). Neuroimaging studies indicate volume loss in the medulla in SUDEP and a post mortem study has shown reduction in neuromodulatory neuropeptidergic and monoaminergic neurones in medullary respiratory nuclear groups. Specialised glial cells identified in the medulla are considered essential for normal respiratory regulation including astrocytes with pacemaker properties in the pre-Botzinger complex and populations of subpial and perivascular astrocytes, sensitive to increased pCO2, that excite respiratory neurones. Our aim was to explore niches of medullary astrocytes in SUDEP cases compared to controls. In 48 brainstems from three groups, SUDEP (20), epilepsy controls (10) and non-epilepsy controls (18), sections through the medulla were labelled for GFAP, vimentin and functional markers, astrocytic gap junction protein connexin43 (Cx43) and adenosine A1 receptor (A1R). Regions including the ventro-lateral medulla (VLM; for the pre-Bötzinger complex), Median Raphe (MR) and lateral medullary subpial layer (MSPL) were quantified using image analysis for glial cell populations and compared between groups. Findings included morphologically and regionally distinct vimentin/Cx34-positive glial cells in the VLM and MR in close proximity to neurones. We noted a reduction of vimentin-positive glia in the VLM and MSPL and Cx43 glia in the MR in SUDEP cases compared to control groups (p < 0.05-0.005). In addition, we identified vimentin, Cx43 and A1R positive glial cells in the MSPL region which likely correspond to chemosensory glia identified experimentally. In conclusion, altered medullary glial cell populations could contribute to impaired respiratory regulatory capacity and vulnerability to SUDEP and warrant further investigation.
Collapse
Affiliation(s)
- Smriti Patodia
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Beatrice Paradiso
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Matthew Ellis
- Departments of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Alyma Somani
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Sanjay M Sisodiya
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Orrin Devinsky
- New York University School of Medicine, Comprehensive Epilepsy Center, New York, United States
| | - Maria Thom
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Departments of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
15
|
Lima JD, Sobrinho CR, Santos LK, Takakura AC, Moreira TS. M4-muscarinic acetylcholine receptor into the pedunculopontine tegmental nucleus mediates respiratory modulation of conscious rats. Respir Physiol Neurobiol 2019; 269:103254. [PMID: 31325565 DOI: 10.1016/j.resp.2019.103254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has been shown to have important functions relevant to the regulation of behavioral states and various motor control systems, including breathing control. The PPTg is considered an important nucleus in the mesopontine region with considerably cholinergic input to the ventral respiratory column. In addition, recent studies indicate that cholinergic innervation of the ventral respiratory column may play an important role in modulation of breathing. Here, we investigated the cholinergic stimulation of the PPTg and the changes in breathing output in conscious rats. Male Wistar rats (280-350 g, N = 5-12/group) with unilateral stainless steel cannula implanted into the PPTg were used. Respiratory parameters (tidal volume (VT), respiratory frequency (fR) and ventilation (VE)) were analyzed by whole body plethysmography. In unrestrained awake rats, unilateral injection of the cholinergic muscarinic agonist carbachol (10 mM-100 nL) in the PPTg decreased fR, and increase VT, without changing VE. The changes in fR and VT elicited by carbachol into the PPTg are abolished by previous blockade of the M4 muscarinic cholinergic receptors tropicamide into the PPTg. No significant changes in fR and VT elicited by carbachol were observed after blockade of the M1 and/or M3 muscarinic cholinergic receptors pirenzepine or 4-DAMP into the PPTg. Our data suggest that the changes in fR and VT produced by muscarinic cholinergic stimulation of PPTg is presumably mediated through a Gi-coupled M4 muscarinic receptors.
Collapse
Affiliation(s)
- Janayna D Lima
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Cleyton R Sobrinho
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Leonardo K Santos
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Ana C Takakura
- Dept. of Pharmacology, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Thiago S Moreira
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil.
| |
Collapse
|
16
|
Adenosine Signaling through A1 Receptors Inhibits Chemosensitive Neurons in the Retrotrapezoid Nucleus. eNeuro 2018; 5:eN-NWR-0404-18. [PMID: 30627640 PMCID: PMC6325544 DOI: 10.1523/eneuro.0404-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
A subset of neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating depth and frequency of breathing in response to changes in tissue CO2/H+. The activity of chemosensitive RTN neurons is also subject to modulation by CO2/H+-dependent purinergic signaling. However, mechanisms contributing to purinergic regulation of RTN chemoreceptors are not entirely clear. Recent evidence suggests adenosine inhibits RTN chemoreception in vivo by activation of A1 receptors. The goal of this study was to characterize effects of adenosine on chemosensitive RTN neurons and identify intrinsic and synaptic mechanisms underlying this response. Cell-attached recordings from RTN chemoreceptors in slices from rat or wild-type mouse pups (mixed sex) show that exposure to adenosine (1 µM) inhibits chemoreceptor activity by an A1 receptor-dependent mechanism. However, exposure to a selective A1 receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine, DPCPX; 30 nM) alone did not potentiate CO2/H+-stimulated activity, suggesting activation of A1 receptors does not limit chemoreceptor activity under these reduced conditions. Whole-cell voltage-clamp from chemosensitive RTN neurons shows that exposure to adenosine activated an inward rectifying K+ conductance, and at the network level, adenosine preferentially decreased frequency of EPSCs but not IPSCs. These results show that adenosine activation of A1 receptors inhibits chemosensitive RTN neurons by direct activation of a G-protein-regulated inward-rectifier K+ (GIRK)-like conductance, and presynaptically, by suppression of excitatory synaptic input to chemoreceptors.
Collapse
|