1
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. Pharmacol Res 2024; 208:107356. [PMID: 39216838 PMCID: PMC11457296 DOI: 10.1016/j.phrs.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
3
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537383. [PMID: 37131660 PMCID: PMC10153171 DOI: 10.1101/2023.04.18.537383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α 1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α 1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α 1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lucie Y. Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
4
|
Das SK, Roy S, Chattopadhyay B. Transition-Metal-Catalyzed Denitrogenative Annulation to Access High-Valued N-Heterocycles. Angew Chem Int Ed Engl 2023; 62:e202210912. [PMID: 36227158 DOI: 10.1002/anie.202210912] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/05/2022]
Abstract
Over the past few years, the development of efficient methods to construct high-valued N-heterocyclic molecules have received massive attention owing to their extensive application in the areas of medicinal chemistry, drug discovery, natural product synthesis and so on. To access those high-valued N-heterocycles, many methods have been developed. In this context, transition-metal-catalyzed denitrogenative annulation of 1,2,3-triazoles and 1,2,3,4-tetrazoles has appeared as a powerful synthetic tool because it offers a step- and atom-economical route for the preparation of the nitrogen-rich molecules. Compared with the denitrogenative annulation of various 1,2,3-triazole frameworks, annulation of 1,2,3,4-tetrazole remains more challenging due to the inertness of the tetrazole moiety. This Review summarizes the significant achievements made in the field of denitrogenative annulation of various 1,2,3-triazoles and 1,2,3,4-tetrazoles including some pioneering examples in this area of research. We anticipate that this denitrogenative annulation reaction will find broad applications in the pharmaceutical industry, drug discovery and other fields of medicinal chemistry.
Collapse
Affiliation(s)
- Sandip Kumar Das
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Satyajit Roy
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| |
Collapse
|
5
|
Kelly L, Seifi M, Ma R, Mitchell SJ, Rudolph U, Viola KL, Klein WL, Lambert JJ, Swinny JD. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47:488-505. [PMID: 33119191 DOI: 10.1111/nan.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
AIMS Amyloid β-oligomers (AβO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AβO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AβO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aβ production (APP-PSEN1). METHODS AND RESULTS Immunohistochemistry and confocal microscopy, using AβO-specific antibodies, confirmed LC AβO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AβO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AβO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aβ-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS The data suggest a close association between AβO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohsen Seifi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ruolin Ma
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Scott J Mitchell
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Neumann E, Küpfer L, Zeilhofer HU. The α2/α3GABAA receptor modulator TPA023B alleviates not only the sensory but also the tonic affective component of chronic pain in mice. Pain 2021; 162:421-431. [PMID: 32773599 PMCID: PMC7808355 DOI: 10.1097/j.pain.0000000000002030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to pathological pain syndromes of neuropathic or inflammatory origin. Drugs that enhance the activity of dorsal horn α2/α3GABAARs normalize exaggerated nociceptive responses in rodents with neuropathic nerve lesions or peripheral inflammation but lack most of the typical side effects of less specific GABAergic drugs. It is however still unknown whether such drugs also reduce the clinically more relevant conscious perception of pain. Here, we investigated the effects of the α2/α3GABAAR subtype-selective modulator TPA023B on the tonic aversive component of pain in mice with peripheral inflammation or neuropathy. In neuropathic mice with a chronic constriction injury of the sciatic nerve, TPA023B not only reversed hyperalgesia to tactile and heat stimuli but also was highly effective in the conditioned place preference test. In the formalin test, TPA023B not only reduced licking of the injected paw but also reversed facial pain expression scores in the mouse grimace scale assay. Taken together, our results demonstrate that α2/α3GABAA receptor subtype-selective modulators not only reduce nociceptive withdrawal responses but also alleviate the tonic aversive components of chronic pain.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Laura Küpfer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Drug Discovery Network Zurich (DDNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Meng Z, Berro LF, Sawyer EK, Rüedi-Bettschen D, Cook JE, Li G, Platt DM, Cook JM, Rowlett JK. Evaluation of the anti-conflict, reinforcing, and sedative effects of YT-III-31, a ligand functionally selective for α3 subunit-containing GABA A receptors. J Psychopharmacol 2020; 34:348-357. [PMID: 31670615 PMCID: PMC8011597 DOI: 10.1177/0269881119882803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In recent years, pharmacological strategies have implicated α3 subunit-containing GABAA (α3GABAA) receptor subtypes in the anxiety-reducing effects of benzodiazepines, whereas transgenic mouse approaches have implicated α2 or α5 subunit-containing GABAA receptors. AIMS We investigated the role of α3GABAA subtypes in benzodiazepine-induced behaviors by evaluating the anti-conflict, reinforcing, and sedative-motor effects of the novel compound YT-III-31, which has functional selectivity for α3GABAA receptors. METHODS Female and male rhesus monkeys were trained under a conflict procedure (n = 3), and a progressive-ratio schedule of reinforcement with midazolam as the training drug (n = 4). Sedative-like behavior was assessed using a quantitative behavioral observation procedure (n = 4). A range of doses of YT-III-31 was administered in all tests using the i.v. route of administration. RESULTS In the conflict procedure, increasing doses of YT-III-31 resulted only in dose-dependent attenuation of non-suppressed responding. In the progressive-ratio model of self-administration, YT-III-31 maintained average injections/session above vehicle levels at 0.1 and 0.18 mg/kg/injection. In quantitative observation procedures, YT-III-31 engendered mild sedative effects ("rest/sleep posture"), and deep sedation at the highest dose tested (5.6 mg/kg, i.v.), along with a suppression of tactile/oral exploration and increased observable ataxia. In contrast to other benzodiazepine-like ligands, YT-III-31 uniquely engendered a biphasic dose-response function for locomotion and suppressed self-groom. CONCLUSIONS The finding that YT-III-31 lacked anti-conflict properties is in accordance with transgenic mouse research indicating no role for α3GABAA subtypes in benzodiazepine-mediated anxiety reduction. Instead, our results raise the possibility of a role for α3GABAA receptors in the abuse potential and sedative effects of benzodiazepine-type drugs.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA,Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, CHINA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eileen K Sawyer
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jemma E Cook
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| |
Collapse
|
8
|
Vega Alanis BA, Iorio MT, Silva LL, Bampali K, Ernst M, Schnürch M, Mihovilovic MD. Allosteric GABA A Receptor Modulators-A Review on the Most Recent Heterocyclic Chemotypes and Their Synthetic Accessibility. Molecules 2020; 25:E999. [PMID: 32102309 PMCID: PMC7070463 DOI: 10.3390/molecules25040999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
GABAA receptor modulators are structurally almost as diverse as their target protein. A plethora of heterocyclic scaffolds has been described as modulating this extremely important receptor family. Some made it into clinical trials and, even on the market, some were dismissed. This review focuses on the synthetic accessibility and potential for library synthesis of GABAA receptor modulators containing at least one heterocyclic scaffold, which were disclosed within the last 10 years.
Collapse
Affiliation(s)
- Blanca Angelica Vega Alanis
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Maria Teresa Iorio
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Luca L. Silva
- Department of Anesthesiology and Intensive Care Medicine, Charité–Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria;
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria;
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| |
Collapse
|