1
|
Serra M, Marongiu J, Simola N, Costa G. Emission of 50-kHz ultrasonic vocalizations stimulated by antiparkinsonian dopaminomimetic drugs in hemiparkinsonian rats is associated with neuronal activation in subcortical regions that regulate the affective state. Exp Neurol 2024; 381:114939. [PMID: 39191345 DOI: 10.1016/j.expneurol.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Dopamine replacement therapy (DRT) of Parkinson's disease (PD) may trigger non-motor complications, some of which affect hedonic homeostatic regulation. Management of iatrogenic alterations in the affective state in PD is unsatisfactory, partly because of the limitations in the experimental models that are used in the preclinical investigation of the neurobiology and therapy of these alterations. In this connection, we recently employed a new experimental approach consisting in measuring the emission of 50-kHz ultrasonic vocalizations (USVs), a marker of positive affect, in hemiparkinsonian rats treated with drugs used in the DRT of PD. To further strengthen our approach, we here evaluated how the acute and repeated (× 5, on alternate days) administration of apomorphine (2 mg/kg, i.p.) or L-3,4-dihydroxyphenilalanine (L-DOPA, 12 mg/kg, i.p.) modified the immunoreactivity for Zif-268, a marker of neuronal activation, in the nucleus accumbens (NAc), caudate-putamen (CPu) and medial prefrontal cortex (mPFC), which are brain regions that regulate emotional states and drugs' affective properties. Acute and repeated treatment with either apomorphine or L-DOPA stimulated the emission of 50-kHz USVs in hemiparkinsonian rats, and this effect was paired with increased Zif-268 immunoreactivity in the NAc and CPu, but not mPFC. These findings indicate that subcortical and cortical regions may differently regulate the emission of 50-kHz USVs in hemiparkinsonian rats treated with dopaminergic drugs used in the DRT of PD. Moreover, they provide further evidence that measuring 50-kHz USV emissions in hemiparkinsonian rats may be a relevant approach to investigate at the preclinical level the affective properties of antiparkinsonian drugs.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Piras G, Cadoni C, Caria F, Pintori N, Spano E, Vanejevs M, Ture A, Tocco G, Simola N, De Luca MA. Characterization of the Neurochemical and Behavioral Effects of the Phenethylamine 2-Cl-4,5-MDMA in Adolescent and Adult Male Rats. Int J Neuropsychopharmacol 2024; 27:pyae016. [PMID: 38546531 PMCID: PMC11120233 DOI: 10.1093/ijnp/pyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proliferation of novel psychoactive substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and rewarding properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate the emission of 50-kHz USVs. CONCLUSIONS This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA by increasing awareness on possible health damage in users.
Collapse
Affiliation(s)
- Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Cadoni
- Institute of Neuroscience, National Research Council of Italy, Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
3
|
Tassan Mazzocco M, Serra M, Maspero M, Coliva A, Presotto L, Casu MA, Morelli M, Moresco RM, Belloli S, Pinna A. Positive relation between dopamine neuron degeneration and metabolic connectivity disruption in the MPTP plus probenecid mouse model of Parkinson's disease. Exp Neurol 2024; 374:114704. [PMID: 38281587 DOI: 10.1016/j.expneurol.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.
Collapse
Affiliation(s)
- Margherita Tassan Mazzocco
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy; Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marco Maspero
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Angela Coliva
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Milan, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy; School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| |
Collapse
|
4
|
Bratzu J, Ciscato M, Pisanu A, Talani G, Frau R, Porcu P, Diana M, Fumagalli F, Romualdi P, Rullo L, Trezza V, Ciccocioppo R, Sanna F, Fattore L. Communal nesting differentially attenuates the impact of pre-weaning social isolation on behavior in male and female rats during adolescence and adulthood. Front Behav Neurosci 2023; 17:1257417. [PMID: 37915532 PMCID: PMC10616881 DOI: 10.3389/fnbeh.2023.1257417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.
Collapse
Affiliation(s)
- Jessica Bratzu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Maria Ciscato
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Augusta Pisanu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Marco Diana
- G.Minardi’ Cognitive Neuroscience Laboratory, CPMB Science Department, University of Sassari, Sassari, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Liana Fattore
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
5
|
Schifano F, Vento A, Scherbaum N, Guirguis A. Stimulant and hallucinogenic novel psychoactive substances; an update. Expert Rev Clin Pharmacol 2023; 16:1109-1123. [PMID: 37968919 DOI: 10.1080/17512433.2023.2279192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION The renewed interest in considering a range of stimulants, psychedelics and dissociatives as therapeutics emphasizes the need to draft an updated overview of these drugs' clinical and pharmacological issues. AREAS COVERED The focus here was on: stimulants (e.g. amphetamines, methamphetamine, and pseudoephedrine; phenethylamines; synthetic cathinones; benzofurans; piperazines; aminoindanes; aminorex derivatives; phenmetrazine derivatives; phenidates); classical (e.g. ergolines; tryptamines; psychedelic phenethylamines), and atypical (e.g. PCP/ketamine-like dissociatives) psychedelics.Stimulant and psychedelics are associated with: a) increased central DA levels (psychedelic phenethylamines, synthetic cathinones and stimulants); b) 5-HT receptor subtypes' activation (psychedelic phenethylamines; recent tryptamine and lysergamide derivatives); and c) antagonist activity at NMDA receptors, (phencyclidine-like dissociatives). EXPERT OPINION Clinicians should be regularly informed about the range of NPS and their medical, psychobiological and psychopathological risks both in the acute and long term. Future research should focus on an integrative model in which pro-drug websites' analyses are combined with advanced research approaches, including computational chemistry studies so that in vitro and in vivo preclinical studies of index novel psychoactives can be organized. The future of psychedelic research should focus on identifying robust study designs to convincingly assess the potential therapeutic benefits of psychedelics, molecules likely to present with limited dependence liability levels.
Collapse
Affiliation(s)
- F Schifano
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
| | - A Vento
- Mental Health Department, Addiction Observatory (Osservatorio sulle dipendenze)- NonProfit Association - Rome, Rome, Italy
| | - N Scherbaum
- LVR-University Hospital, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - A Guirguis
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
- Pharmacy, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Wales, UK
| |
Collapse
|
6
|
Li Q, Kang X, Liu L, Xiao Y, Xu D, Zhuang H, Liu H, Zhao J, Zou H, Yang J, Zhan X, Li T, Wang X, Liu L. Adult mice with noise-induced hearing loss exhibited temporal ordering memory deficits accompanied by microglia-associated neuroplastic changes in the medial prefrontal cortex. Neurobiol Dis 2023:106181. [PMID: 37271287 DOI: 10.1016/j.nbd.2023.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Acquired peripheral hearing loss in midlife is considered the primary modifiable risk factor for dementia, while the underlying pathological mechanism remains poorly understood. Excessive noise exposure is the most common cause of acquired peripheral hearing loss in modern society. This study was designed to investigate the impact of noise-induced hearing loss (NIHL) on cognition, with a focus on the medial prefrontal cortex (mPFC), a brain region that is involved in both auditory and cognitive processes and is highly affected in patients with cognitive impairment. Adult C57BL/6 J mice were randomly assigned to a control group and seven noise groups: 0HPN, 12HPN, 1DPN, 3DPN, 7DPN, 14DPN, and 28DPN, which were exposed to broadband noise at a 123 dB sound pressure level (SPL) for 2 h and sacrificed immediately (0 h), 12 h, or 1, 3, 7, 14, or 28 days post-noise exposure (HPN, DPN), respectively. Hearing assessment, behavioral tests, and neuromorphological studies in the mPFC were performed in control and 28DPN mice. All experimental animals were included in the time-course analysis of serum corticosterone (CORT) levels and mPFC microglial morphology. The results illustrated that noise exposure induced early-onset transient serum CORT elevation and permanent moderate-to-severe hearing loss in mice. 28DPN mice, in which permanent NIHL has been verified, exhibited impaired performance in temporal order object recognition tasks concomitant with reduced structural complexity of mPFC pyramidal neurons. The time-course immunohistochemical analysis in the mPFC revealed significantly higher morphological microglial activation at 14 and 28 DPN, preceded by a remarkably higher amount of microglial engulfed postsynaptic marker PSD95 at 7 DPN. Additionally, lipid accumulation in microglia was observed in 7DPN, 14DPN and 28DPN mice, suggesting a driving role of lipid handling deficits following excessive phagocytosis of synaptic elements in delayed and sustained microglial abnormalities. These findings provide fundamentally novel information concerning mPFC-related cognitive impairment in mice with NIHL and empirical evidence suggesting the involvement of microglial malfunction in the mPFC neurodegenerative consequences of NIHL.
Collapse
Affiliation(s)
- Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Linchen Liu
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Han Zou
- Medical College, Southeast University, Nanjing 210009, China
| | - Jianing Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xindi Zhan
- Medical College, Southeast University, Nanjing 210009, China
| | - Tianxiao Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinchen Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Costa G, Serra M, Maccioni R, Casu MA, Kasture SB, Acquas E, Morelli M. Withania somnifera influences MDMA-induced hyperthermic, cognitive, neurotoxic and neuroinflammatory effects in mice. Biomed Pharmacother 2023; 161:114475. [PMID: 36905810 DOI: 10.1016/j.biopha.2023.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Withania somnifera (WS) is utilized in Ayurvedic medicine owing to its central and peripheral beneficial properties. Several studies have accrued indicating that the recreational amphetamine-related drug (+/-)- 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) targets the nigrostriatal dopaminergic system in mice, inducing neurodegeneration and gliosis, causing acute hyperthermia and cognitive impairment. This study aimed to investigate the effect of a standardized extract of W. somnifera (WSE) on MDMA-induced neurotoxicity, neuroinflammation, memory impairment and hyperthermia. Mice received a 3-day pretreatment with vehicle or WSE. Thereafter, vehicle- and WSE-pretreated mice were randomly divided into four groups: saline, WSE, MDMA alone, WSE plus MDMA. Body temperature was recorded throughout treatment, and memory performance was assessed by a novel object recognition (NOR) task at the end of treatment. Thereafter, immunohistochemistry was performed to evaluate in the substantia nigra pars compacta (SNc) and striatum the levels of tyrosine hydroxylase (TH), as marker of dopaminergic degeneration, and of glial fibrillary acidic protein (GFAP) and TMEM119, as markers of astrogliosis or microgliosis, respectively. MDMA-treated mice showed a decrease in TH-positive neurons and fibers in the SNc and striatum respectively, an increase in gliosis and body temperature, and a decrease in NOR performance, irrespective of vehicle or WSE pretreatment. Acute WSE plus MDMA counteracted the modifications in TH-positive cells in SNc, GFAP-positive cells in striatum, TMEM in both areas and NOR performance, as compared to MDMA alone, while no differences were observed as compared to saline. Results indicate that WSE acutely administered in combination with MDMA, but not as pretreatment, protects mice against the noxious central effects of MDMA.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sanjay B Kasture
- Rajarshi Shahu College of Pharmacy, Buldhana, Maharashtra, India
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
8
|
Marti M, Talani G, Miliano C, Bilel S, Biggio F, Bratzu J, Diana M, De Luca MA, Fattore L. New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT 2 receptors in pharmacological and behavioral effects in the rat. Exp Neurol 2021; 345:113836. [PMID: 34384790 DOI: 10.1016/j.expneurol.2021.113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - Giuseppe Talani
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Bratzu
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Marco Diana
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
9
|
Nicola C, Dubois M, Campart C, Al Sagheer T, Desrues L, Schapman D, Galas L, Lange M, Joly F, Castel H. The Prostate Cancer Therapy Enzalutamide Compared with Abiraterone Acetate/Prednisone Impacts Motivation for Exploration, Spatial Learning and Alters Dopaminergic Transmission in Aged Castrated Mice. Cancers (Basel) 2021; 13:cancers13143518. [PMID: 34298734 PMCID: PMC8304001 DOI: 10.3390/cancers13143518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Cognitive side effects and fatigue after cancer treatment now constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are next-generation therapies improving metastatic castration-resistant prostate cancer (mCRPC) patient survival, but also associated with neurological disturbances. We developed a behavioral 17 months-aged and castrated mouse model receiving AAP or ENZ for 5 days per week for six weeks. We establish that ENZ impacts locomotor and explorative behaviors, and strength capacity likely by preventing binding of central synthetized androgens to androgen receptors expressed by dopamine neurons of the Substantia Nigra and the Ventral Tegmentum. ENZ also reduces the cognitive score, associated with less neuronal activity in dorsal hippocampal areas. This demonstrates ENZ-specific consequences on motivation to exploration and cognition, being of particular importance for future management of elderly prostate cancer patients and their quality of life. Abstract Cognitive side effects after cancer treatment threatening quality of life (QoL) constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are examples of next-generation therapy (NGT) administered to metastatic castration-resistant prostate cancer (mCRPC) patients. NGT significantly improved mCRPC overall survival but neurological side effects such as fatigue and cognitive impairment were reported. We developed a behavioral 17 months-aged and castrated mouse model receiving per os AAP or ENZ for 5 days per week for six consecutive weeks. ENZ exposure reduced spontaneous activity and exploratory behavior associated with a decreased tyrosine hydroxylase (TH)-dopaminergic activity in the substantia nigra pars compacta and the ventral tegmental area. A decrease in TH+-DA afferent fibers and Phospho-DARPP32-related dopaminergic neuronal activities in the striatum and the ventral hippocampus highlighted ENZ-induced dopaminergic regulation within the nigrostriatal and mesolimbocortical pathways. ENZ and AAP treatments did not substantially modify spatial learning and memory performances, but ENZ led to a thygmotaxis behavior impacting the cognitive score, and reduced c-fos-related activity of NeuN+-neurons in the dorsal hippocampus. The consequences of the mCRPC treatment ENZ on aged castrated mouse motivation to exploration and cognition should make reconsider management strategy of elderly prostate cancer patients.
Collapse
Affiliation(s)
- Celeste Nicola
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Martine Dubois
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Cynthia Campart
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Tareq Al Sagheer
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Damien Schapman
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Ludovic Galas
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Marie Lange
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
| | - Florence Joly
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
- University Hospital of Caen, 14000 Caen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Normandie University, UNIROUEN, INSERM, DC2N, Team Astrocyte and Vascular Niche, Place Emile Blondel, CEDEX, 76821 Mont-Saint-Aignan, France
- Correspondence: ; Tel.: +33-2-35-14-66-23
| |
Collapse
|
10
|
Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson's disease are counteracted by combined administration of a 5-HT 1A/1B receptor agonist and A 2A receptor antagonist. Neuropharmacology 2021; 196:108693. [PMID: 34229013 DOI: 10.1016/j.neuropharm.2021.108693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Several lines of evidence have strongly implicated neuroinflammation in Parkinson's disease (PD) progression and l-dopa-induced dyskinesia. The present study investigated whether early subchronic pretreatment with the serotonin 5-HT1A/1B receptor agonist eltoprazine plus the adenosine A2A receptor antagonist preladenant counteracted l-dopa-induced abnormal involuntary movements (AIMs, index of dyskinesia), and neuroinflammation, in unilateral 6-hydroxydopamine(6-OHDA)-lesioned rat model of PD. The immunoreactivity of glial fibrillary acidic protein (GFAP), and the colocalization of ionized calcium binding adaptor molecule-1 (IBA-1), with interleukin (IL)-1β, tumor-necrosis-factor-α (TNF-α) and IL-10 were evaluated in the denervated caudate-putamen (CPu) and substantia nigra pars-compacta (SNc). The combined subchronic pretreatment with l-dopa plus eltoprazine and preladenant reduced AIMs induced by acute l-dopa challenge in these rats and decreased GFAP and IBA-1 immunoreactivity induced by the drug in both CPu and SNc, with reduction in IL-1β in IBA-1-positive cells in both CPu and SNc, and in TNF-α in IBA-1-positive cells in SNc. Moreover, a significant increase in IL-10 in IBA-1-positive cells was observed in SNc. Evaluation of immediate early-gene zif-268 (index of neuronal activation) after l-dopa challenge, showed an increase in its expression in denervated CPu of rats pretreated with l-dopa or l-dopa plus preladenant compared with vehicle, whereas rats pretreated with eltoprazine, with or without preladenant, had lower zif-268 expression. Finally, tyrosine hydroxylase and dopamine transporter examined to evaluate neurodegeneration, showed a significant equal decrease in all experimental groups. The present findings suggest that combination of l-dopa with eltoprazine and preladenant may be promising therapeutic strategy for delaying the onset of dyskinesia, preserving l-dopa efficacy and reducing neuroinflammation markers in nigrostriatal system of 6-OHDA-lesioned rats.
Collapse
|
11
|
Simola N, Serra M, Marongiu J, Costa G, Morelli M. Increased emissions of 50-kHz ultrasonic vocalizations in hemiparkinsonian rats repeatedly treated with dopaminomimetic drugs: A potential preclinical model for studying the affective properties of dopamine replacement therapy in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110184. [PMID: 33242502 DOI: 10.1016/j.pnpbp.2020.110184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Dopamine replacement therapy used in Parkinson's disease (PD) may induce alterations in the emotional state that can underlie the manifestation of iatrogenic psychiatric-like disturbances. The preclinical investigation of these disturbances is limited, also because few reliable paradigms are available to study the affective properties of dopaminomimetic drugs in parkinsonian animals. To provide a relevant experimental tool in this respect, we evaluated whether dopaminomimetic drugs modified the emission of 50-kHz ultrasonic vocalizations (USVs), a behavioral marker of positive affect, in rats bearing a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle. Apomorphine (2 or 4 mg/kg, i.p.), L-3,4-dihydroxyphenilalanine (L-DOPA, 6 or 12 mg/kg, i.p.), or pramipexole (2 or 4 mg/kg, i.p.) were administered in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, rats were re-exposed to the test cage to measure conditioned calling behavior and thereafter received a drug challenge. Hemiparkinsonian rats treated with either apomorphine or L-DOPA, but not pramipexole, markedly vocalized during repeated treatment and after challenge, and showed conditioned calling behavior. Moreover, apomorphine, L-DOPA and pramipexole elicited different patterns of 50-kHz USV emissions and rotational behavior, indicating that calling behavior in hemiparkinsonian rats treated with dopaminomimetic drugs is not a byproduct of motor activation. Taken together, these results suggest that measuring 50-kHz USV emissions may be a relevant experimental tool for studying how dopaminomimetic drugs modify the affective state in parkinsonian rats, with possible implications for the preclinical investigation of iatrogenic psychiatric-like disturbances in PD.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
12
|
Costa G, Spulber S, Paci E, Casu MA, Ceccatelli S, Simola N, Morelli M. In utero exposure to dexamethasone causes a persistent and age-dependent exacerbation of the neurotoxic effects and glia activation induced by MDMA in dopaminergic brain regions of C57BL/6J mice. Neurotoxicology 2021; 83:1-13. [PMID: 33338551 DOI: 10.1016/j.neuro.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerbation of the central noxious effects induced by psychoactive drugs consumed later in life. To this end, pregnant C57BL6/J dams were treated with dexamethasone (DEX, 0.05 mg/kg per day) from gestational day 14 until delivery. Thereafter, the male offspring were evaluated to ascertain the magnitude of dopaminergic damage, astrogliosis and microgliosis elicited in the nigrostriatal tract by the amphetamine-related drug 3,4--methylenedioxymethamphetamine (MDMA, 4 × 20 mg/kg, 2 h apart, sacrificed 48 h later) administered at either adolescence or adulthood. Immunohistochemistry was performed in the substantia nigra pars compacta (SNc) and striatum, to evaluate dopaminergic degeneration by measuring tyrosine hydroxylase (TH), as well as astrogliosis and microgliosis by measuring glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1), respectively. Moreover, immunohistochemistry was used to ascertain the co-localization of IBA-1 with either the pro-inflammatory interleukin (IL) IL-1β or the anti-inflammatory IL IL-10, in order to determine the microglial phenotype. In utero administration of DEX induced dopaminergic damage by decreasing the density of TH-positive fibers in the striatum, although only in adult mice. MDMA administration induced dopaminergic damage and glia activation in the nigrostriatal tract of adolescent and adult mice. Mice exposed to DEX in utero and treated with MDMA later in life showed a more pronounced loss of dopaminergic neurons (adolescent mice) and astrogliosis (adolescent and adult mice) in the SNc, compared with control mice. These results suggest that prenatal exposure to glucocorticoids may induce an age-dependent and persistent increase in the susceptibility to central toxicity of amphetamine-related drugs used later in life.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elena Paci
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
13
|
Matey JM, López-Fernández A, García-Ruiz C, Montalvo G, Moreno MD, Martínez MA. Potential Of High-Resolution Mass Spectrometry For The Detection Of Drugs And Metabolites In Hair: Methoxetamine In A Real Forensic Case. J Anal Toxicol 2020; 46:e1-e10. [PMID: 33104803 DOI: 10.1093/jat/bkaa168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The analysis of drugs of abuse in hair and other biological matrices of forensic interest requires great selectivity and sensitivity. This is done traditionally through target analysis, with one or more analytical methods, or with different and specific preanalytical phases, and complex procedures performed by the toxicological laboratories, and there is no exception with ketamine-like compounds, such as methoxetamine, a new psychoactive substance (NPS) whose use has increased in the last decades, and continues to grow quickly year by year. More validated methods of analysis are needed to detect these substances in low concentrations selectively. Reanalyzing the samples of a former case of a polydrug consumer accused of a crime against public health in Spain, five metabolites of methoxetamine (normethoxetamine, O-desmethylmethoxetamine, dehydromethoxetamine, dihydronormethoxetamine and hydroxynormethoxetamine) were tentatively detected using a high-resolution technique that is liquid chromatography coupled to high-resolution mass spectrometry (LC-HR-MS/MS). The most selective analytical LC-HR-MS/MS method together a universal and simpler pretreatment stages has demonstrated to allow faster analysis and more sensitivity than the one performed traditionally at the INTCF laboratories, which was gas chromatography coupled to mass spectrometry (GC-MS).
Collapse
Affiliation(s)
- J M Matey
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain.,University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - Adrián López-Fernández
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering
| | - Carmen García-Ruiz
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - Gemma Montalvo
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - M D Moreno
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain
| | - M A Martínez
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain.,University Institute of Research in Police Sciences (IUICP)
| |
Collapse
|
14
|
Costa G, Sisalli MJ, Simola N, Della Notte S, Casu MA, Serra M, Pinna A, Feliciello A, Annunziato L, Scorziello A, Morelli M. Gender Differences in Neurodegeneration, Neuroinflammation and Na +-Ca 2+ Exchangers in the Female A53T Transgenic Mouse Model of Parkinson's Disease. Front Aging Neurosci 2020; 12:118. [PMID: 32477098 PMCID: PMC7232579 DOI: 10.3389/fnagi.2020.00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Twelve-month-old male mice expressing the human A53T variant of α-synuclein (A53T) develop dopamine neuron degeneration, neuroinflammation, and motor deficits, along with dysfunctions of the mitochondrial Na+-Ca2+ exchanger (NCX) isoforms 1 (NCX1) and 3 (NCX3) in the nigrostriatal system. Since gender is thought to play a role in the etiology of Parkinson's disease (PD), we characterized neurochemical and behavioral alterations in 12-month-old female A53T transgenic mice. We investigated the presence of dopaminergic degeneration, astrogliosis and microgliosis using immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (IBA-1) in both the substantia nigra pars compacta (SNc) and striatum. In the same regions, we also evaluated the co-localization of NCX1 in cells positive for IBA-1 and the co-localization of NCX3 in TH-positive neurons and fibers. Furthermore, in both male and female mice, we performed motor (beam walking and pole tests) and memory [novel object recognition (NOR) and spontaneous alternation] tasks, together with tests to evaluate peripheral deficits (olfactory and stool collection tests). Female A53T transgenic mice displayed degeneration of nigral dopaminergic neurons, but neither microgliosis nor astrogliosis in the SNc and striatum. Moreover, female A53T transgenic mice displayed co-localization between NCX1 and IBA-1 positive cells in the striatum but not SNc, whereas NCX3 did not co-localize with either TH-positive terminals or neuronal bodies in the nigrostriatal system. Furthermore, female A53T transgenic mice showed increased crossing time in the beam walking test, but no impairments in the pole or memory tests, and in tests that evaluated peripheral deficits, whereas male A53T transgenic mice displayed motor, memory and peripheral deficits. Immunohistochemical and behavioral results obtained here in the female mice differ from those previously observed in males, and suggest a dissimilar influence of NCX1 and NCX3 on dopaminergic function in female and male A53T transgenic mice, strengthening the validity of these mice as a model for studying the etiological factors of PD.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Maria Jose Sisalli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Salvatore Della Notte
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
15
|
Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: Effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109797. [PMID: 31669508 DOI: 10.1016/j.pnpbp.2019.109797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Rat ultrasonic vocalizations (USVs) of 50 kHz are increasingly being evaluated as a behavioral marker of the affective properties of drugs. Studies in amphetamine-treated rats have shown that activation of dopamine transmission in the nucleus accumbens (NAc) initiates the emission of 50-kHz USVs, but little is known on how dopamine transmission in other brain regions modulates the effects of drugs on calling behavior. To clarify this issue, we evaluated 50-kHz USV emissions in rats subjected to dopaminergic denervation of either the medial prefrontal cortex (mPFC) or the dorsal striatum (DS) and treated with amphetamine. Rats received amphetamine (1 mg/kg, i.p. × 5) on alternate days in a test cage; 7 days later, they were re-exposed to the test cage, to measure calling behavior that may reflect drug conditioning, and then challenged with amphetamine (1 mg/kg, i.p.). The numbers of total and categorized 50-kHz USVs emitted were evaluated, along with immunofluorescence for Zif-268 in the NAc. Dopamine-denervated and sham-operated rats displayed comparable patterns of calling behavior during amphetamine treatment and after amphetamine challenge. Conversely, rats that were dopamine-denervated in the mPFC, but not DS, emitted low numbers of 50-kHz USVs on test cage re-exposure. Finally, dopamine-denervated rats displayed a less marked increase in Zif-268-positive neurons in the NAc shell after amphetamine challenge, compared with sham-operated rats. These results may be relevant to identify the neuronal circuits that modulate 50-kHz USV emissions in rats treated with amphetamine, as well as the interplay between calling behavior and affective properties of drugs.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
16
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
17
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Lack of Rhes Increases MDMA-Induced Neuroinflammation and Dopamine Neuron Degeneration: Role of Gender and Age. Int J Mol Sci 2019; 20:ijms20071556. [PMID: 30925704 PMCID: PMC6480667 DOI: 10.3390/ijms20071556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ras homolog enriched in striatum (Rhes) is a protein that exerts important physiological functions and modulates psychostimulant drug effects. On this basis, the object of this study was to assess 3,4-methylenedioxymethamphetamine (MDMA) effects on microglial (CD11b) and astroglial (GFAP) activation and on dopamine neuron degeneration (TH) in wild-type (WT) and Rhes knockout (KO) male and female mice of different ages. Motor activity was also evaluated. Adult (3 months) MDMA-treated mice displayed an increase in GFAP-positive cells in striatum (STR), whereas the substantia nigra pars compacta (SNc) was affected only in male mice. In these mice, the increase of CD11b was more extensive including STR, SNc, motor cortex (CTX), ventral tegmental area (VTA), and nucleus accumbens (NAc). MDMA administration also affected TH immunoreactivity in both STR and SNc of male but not female WT and Rhes KO mice. In middle-aged mice (12 months), MDMA administration further increased GFAP and CD11b and decreased TH immunoreactivity in STR and SNc of all mice. Finally, MDMA induced a higher increase of motor activity in adult Rhes KO male, but not female mice. The results show that Rhes protein plays an important role on MDMA-mediated neuroinflammation and neurodegeneration dependent on gender and age, and confirm the important role of Rhes protein in neuroinflammatory and neurodegenerative processes.
Collapse
|
19
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|