1
|
Sufianov A, Agaverdiev M, Mashkin A, Ilyasova T. The functions of immune system-derived miRNAs in cardiovascular diseases. Noncoding RNA Res 2025; 11:91-103. [PMID: 39736852 PMCID: PMC11683256 DOI: 10.1016/j.ncrna.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Cardiovascular diseases (CVD) are the foremost cause of mortality worldwide, with recent advances in immunology underscoring the critical roles of immune cells in their onset and progression. MicroRNAs (miRNAs), particularly those derived from the immune system, have emerged as vital regulators of cellular functions within the cardiovascular landscape. This review focuses on "immuno-miRs," a class of miRNAs that are highly expressed in immune cells, including T cells, B cells, NK cells, neutrophils, and monocytes/macrophages, and their significant role in controlling immune signaling pathways. Highlighting recent studies in human and animal models, this review examines how miRNAs influence both innate and adaptive immune responses and explores their potential as therapeutic targets for CVD. Special emphasis is placed on miRNAs that regulate T cells, suggesting that targeted manipulation of these miRNA pathways could offer new strategies for CVD treatment. As research in cardiovascular immunology advances, this review aims to provide a thorough overview of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major global health challenge.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Murad Agaverdiev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| |
Collapse
|
2
|
Huang J, Deng H, Xiao S, Lin Y, Yu Z, Xu X, Peng L, Chao H, Zeng T. CAB39 modulates epithelial-mesenchymal transition through NF-κB signaling activation, enhancing invasion, and metastasis in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4791-4802. [PMID: 39171884 DOI: 10.1002/tox.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024]
Abstract
Bladder cancer (BC), the predominant urological malignancy in men, exhibits complex molecular underpinnings contributing to its progression. This investigation aims to elucidate the expression dynamics of calcium-binding protein 39 (CAB39) in both healthy and cancerous tissues and to explore its functional role in the epithelial-mesenchymal transition (EMT) within human bladder cancer contexts. Utilizing immunohistochemistry and quantitative reverse transcription analyses, we assessed CAB39 expression across BC specimens and cell lines. Further, we implemented wound healing, cell invasion, and CCK-8 proliferation assays in CAB39-knockdown cell lines, alongside a nude mouse xenograft model, to gauge the impact of diminished CAB39 expression on the invasive, migratory, and proliferative capacities of BC cells. Our gene set enrichment analysis probed into the repertoire of genes augmented by increased CAB39 expression in BC cells, with subsequent validation via western blotting. Our findings reveal a pronounced overexpression of CAB39 in both BC tissues and cellular models, inversely correlated with disease prognosis. Remarkably, the oncogenic trajectory of bladder cancer was mitigated upon the establishment of shRNA-mediated CAB39 knockdown in vitro and in vivo, effectively reversing the cancer's invasive and metastatic behaviors and curbing tumorigenesis in xenograft models. Hence, CAB39 emerges as a critical biomarker for bladder cancer progression, significantly implicated in facilitating EMT via the upregulation of neural cadherin (N-cadherin) and the suppression of epithelial cadherin through NF-κB signaling pathways. CU-T12-9 effectively overturned the downregulation of p65-NF-kB and N-cadherin, key elements involved in EMT and cell motility, induced by CAB39 knockdown. This study underscores CAB39's pivotal role in bladder cancer pathophysiology and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jianbiao Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huanhuan Deng
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuaiyun Xiao
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuanzhen Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhaojun Yu
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiangda Xu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Lifen Peng
- Department of Otolaryngology, Jiangxi Provincial People's Hospital Affiliated Nanchang, People's Republic of China
| | - Haichao Chao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
3
|
YB-1 Expression Is Associated with Lymph Node Metastasis and Drug Resistance to Adriamycin in Breast Cancer. DISEASE MARKERS 2023; 2023:4667089. [PMID: 36785738 PMCID: PMC9922184 DOI: 10.1155/2023/4667089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Breast cancer (BC) is the most common malignant tumor among females. Although there are multiple treatments for breast cancer, many patients still face the dilemma of drug resistance after multiline treatment. It would be greatly helpful for clinical work to identify additional and improved prognostic predictors. Y-box binding protein-1 (YB-1) is a member of the cold shock protein family, and patients with overexpression of YB-1 have a worse prognosis. Methods This study collected 48 specimens from 48 patients with breast cancer and analyzed the clinicopathological characteristics of the patients. Immunohistochemistry, immunofluorescence, cell viability analysis, tumor spheroid formation and cell morphology, cell invasion, cycle analysis, qRT-PCR, Western blot, and tumorigenicity in BALB/c nude mice were performed to verify the results. Results We found that patients with overexpression of YB-1 were related to lymph node metastasis and the patients' age tended to be young. Because of the short follow-up time, a survival analysis could not be performed. Based on the results of in vitro and in vivo experiments, this study indicated that breast cancer cells with overexpression of YB-1 had stronger proliferation, migration, and invasion abilities than cells with low expression of YB-1. Compared with cells with low expression of YB-1, the proliferation, migration, and invasion abilities of YB-1 overexpressed cells were not significantly affected by adriamycin. Conclusion This suggested that breast cancer cells with overexpression of YB-1 were resistant to adriamycin. Therefore, YB-1 is associated with lymph node metastasis of breast cancer cell. YB-1 could be a prognostic, predictive factor and a novel therapeutic target of BC.
Collapse
|
4
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
5
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
6
|
Cho H, Park HJ, Choi JH, Nam MH, Jeong JS, Seo YK. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Tang Y, Tang Y, Xiang Y, Yan J, Guo K. AK003290 Protects Myocardial Cells Against Apoptosis and Promotes Cardiac Function Recovery Via miR-539-3p/ ErbB4 Axis in Ischemic-Reperfusion Injury. DNA Cell Biol 2021; 40:1528-1538. [PMID: 34931871 DOI: 10.1089/dna.2021.0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction is the leading cause of death and disability worldwide. Reperfusion is the main treatment method. However, ischemia-reperfusion (I/R) injury aggravates tissue and cell damage. In this study, we aim to find a strategy to reduce I/R injury and promote cardiac function recovery. The expression of AK003290 was downregulated in I/R injury both in vitro and in vivo. Overexpression of AK003290 reduced infarction area, oxidative stress, cell apoptosis, and promoted cardiac function recovery. AK003290 was observed to sponge miR-539-3p. Moreover, the expression of miR-539-3p was upregulated in I/R injury. Overexpression of miR-539-3p reversed the beneficial role of AK003290 in I/R injury. The target gene of miR-539-3p was proved to be ErbB4, as identified by database prediction, dual-luciferase reporter assay, and pull-down assay. The expression of ErbB4 was negatively correlated with the expression of miR-539-3p, but positively correlated with the expression of AK003290. Subsequently, the key downstream proteins were determined. AK003290 promoted p-AKT and bcl-2 expression and inhibited p-ERK1/2, Bax, cytoplasmic cyto-c, and c-caspase-3 expression. The application of ErbB4 siRNA significantly reversed the effect of AK003290 on the expression of these proteins. These results suggest that ErbB4 is the key downstream gene, which regulates myocardial cell apoptosis by influencing the miR-539-3p expression. To the best of knowledge, this study is the first to demonstrate that the AK003290/miR-539-3p/ErbB4 axis regulates myocardial cell apoptosis. These findings provide a potential novel target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Xia H, Wang D, Guo X, Wu K, Huang F, Feng Y. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:630222. [PMID: 33628189 PMCID: PMC7898164 DOI: 10.3389/fphar.2020.630222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a devastating condition that leads to paralysis, disability and even death in severe cases. Inflammation, apoptosis and oxidative stress in neurons are key pathogenic processes in SCI. Catalpol (CTP), an iridoid glycoside extracted from Rehmannia glutinosa, has many pharmacological activities, such as anti-inflammatory, anti-oxidative and anti-apoptotic properties. Purpose: Here, we investigated whether CTP could exert neuroprotective effects against SCI, and explored the underlying mechanism involved. Methods: SCI was induced by a weight-drop device and treated with CTP (10 mg and 60 mg/kg). Then the locomotor function of SCI mice was evaluated by the BBB scores, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers and inflammatory factors were detected by commercial kits and neuronal death was measured by TUNEL staining. Moreover, the microRNA expression profile in spinal cords from mice following SCI was analyzed using miRNA microarray. In addition, reactive oxygen species (ROS) generation, inflammatory response and cell apoptosis were detected in murine microglia BV2 cells under oxygen-glucose deprivation (OGD) and CTPtreatment. Results: Our data showed that CTP treatment could improve the functional recovery, as well as suppress the apoptosis, alleviate inflammatory and oxidative response in SCI mice. In addition, CTP was found to be up-regulated miR-142 and the protective effects of CTP on apoptosis, inflammatory and oxidative response may relate to its regulation of HMGB1/TLR4/NF-κB pathway through miR-142. Conclusion: Our findings suggest that CTP may protect the spinal cord from SCI by suppression of apoptosis, oxidative stress and inflammatory response via miR-142/HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Hougang Xia
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Dandan Wang
- Department of Nursing, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Xiaohui Guo
- Department of Spinal Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Kaidi Wu
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Fuwei Huang
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Yanjiang Feng
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| |
Collapse
|
9
|
Zhang H, Piao M, Guo M, Meng L, Yu H. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6. Tissue Cell 2021; 68:101459. [PMID: 33238217 DOI: 10.1016/j.tice.2020.101459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
The recovery of spinal cord injury (SCI) involves multiple factors, of which miRNAs take an important part. In this study, we evaluated the function of microRNA-211-5p (miR-211-5p) on SCI in a rat model. SCI model was established using modified Allen's weight-drop method and Basso-Bcattie-Bresnahan score was applied to assess the locomotor function. MiR-211-5p agomir was utilized to increase miR-211-5p expression and endoplasmic reticulum (ER) stress inhibitor, 4-PBA (4-phenylbutyric acid), was utilized to suppress ER stress. Neuron apoptosis and the expressions of miR-211-5p, activating transcription factor 6 (ATF6), apoptosis-related proteins, pro-inflammatory cytokines and endoplasmic reticulum stress-related proteins were detected. Dual luciferase reporter gene assay was performed to verify the binding between miR-211-5p and ATF6. The results showed that miR-211-5p directly targeted ATF6. MiR-211-5p was down-regulated and ATF6 was up-regulated in SCI rats. Both interferences with miR-211-5p agomir and 4-PBA effectively attenuated neuron apoptosis and reversed the expressions of apoptosis, inflammation and endoplasmic reticulum stress-related molecules post SCI in rats. These findings demonstrated that miR-211-5p could effectively alleviate SCI-induced neuron apoptosis and inflammation via directly targeting ATF-6 and regulating ER stress.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
10
|
Li X, Wang S, Yang X, Chu H. miR‑142‑3p targets AC9 to regulate sciatic nerve injury‑induced neuropathic pain by regulating the cAMP/AMPK signalling pathway. Int J Mol Med 2020; 47:561-572. [PMID: 33416140 PMCID: PMC7797458 DOI: 10.3892/ijmm.2020.4824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-142-3p on neuropathic pain caused by sciatic nerve injury in chronic compression injury (CCI) rats, and further investigate its mechanism. Rat experiments were divided into four parts in the study. In the first part, the rats were divided into the Sham and CCI groups. The expression of miR-142-3p, AC9 and cAMP were detected. In the second part, the rats were divided into the Sham, CCI, miR-142-3p mimic, mimic-negative control (NC), miR-142-3p small interfering RNA (siRNA) and siRNA-NC groups. The expression of cAMP and the levels of AMPK pathway-related proteins were detected. In the third part, the rats were randomly divided into Sham, CCI, AC9 mimic, mi-NC, AC9 siRNA and si-NC groups. Double luciferase reporter assay was used to analyse the targeting relationship between miR-142-3p and AC9. In the fourth part, the rats were divided into the Sham, CCI, miR-142-3p siRNA, AC9 mimic, miR-142-3p siRNA + AC9 siRNA, cAMP activator (Forskolin) and miR-142-3p siRNA + cAMP inhibitor groups. The expres-sion of miR-142-3p was significantly increased while AC9 and cAMP expression significantly decreased in CCI rats. However, AC9 overexpression significantly increased the levels of cAMP protein. Luciferase reporter assay also proved that AC9 is the target gene of miR-142-3p. Moreover, miR-142-3p silencing was found to reduce neuropathic pain in CCI rats by upregulating the expression of AC9. It was also found that cAMP activation can relieve neuropathic pain and promote the expression of AMPK-related proteins in CCI rats. Silencing miR-142-3p can target AC9 to reduce the expression of inflammatory factors and neuropathic pain in CCI rats by increasing the expression of cAMP/AMPK pathway-related proteins.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hand Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shoupeng Wang
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| | - Xiaoli Yang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Hongjun Chu
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
11
|
Wang X, Li B, Wang Z, Wang F, Liang J, Chen C, Zhao L, Zhou B, Guo X, Ren L, Yuan X, Chen X, Wang T. miR-30b Promotes spinal cord sensory function recovery via the Sema3A/NRP-1/PlexinA1/RhoA/ROCK Pathway. J Cell Mol Med 2020; 24:12285-12297. [PMID: 32977360 PMCID: PMC7686968 DOI: 10.1111/jcmm.15591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) induces both motor and sensory dysfunctions. We wondered whether miR-30b could promote primary sensory neuron (PSN) axon growth in inhibitory microenvironment. The neurite growth was promoted by miR-30b agomir and inhibited by antagomir. MiR-30b targeted and degraded sema3A mRNA. MiR-30b regulated the formation of sema3A-NRP-1-PlexinA1 complex via targeting sema3A. The neurite length was induced by the miR-30b agomir, and the application of sema3A protein could reverse the effect of agomir. GTP-RhoA and ROCK expression were down-regulated by miR-30b. Neurite outgrowth that inhibited by sema3A and the miR-30b antagomir was increased by Y-27632. Agomir promoted neurite growth in NogoA inhibitory conditions, which indicated miR-30b could both enhance neuronal intrinsic regenerative ability and promote neurite growth against inhibitory microenvironment via Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis. The agomir could also regulate Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis in vivo and restore spinal cord sensory conductive function. In conclusion, miR-30b could be a novel target for sensation recovery after SCI.
Collapse
Affiliation(s)
- Xin Wang
- Chengde Medical University, Chengde, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Fengyan Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Jing Liang
- Department of Nursing, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde, China
| | - Lei Zhao
- Department of Education, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Bo Zhou
- Chengde Medical University, Chengde, China.,Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Xiaoling Guo
- Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Liqun Ren
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical University, Chengde, China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| |
Collapse
|
12
|
Zhang L, Wang Z, Li B, Xia Z, Wang X, Xiu Y, Zhang Z, Chen C, Song H, Li W, Yu M, Zhang M, Wang K, Guo X, Ren L, Wang T. The inhibition of miR-17-5p promotes cortical neuron neurite growth via STAT3/GAP-43 pathway. Mol Biol Rep 2020; 47:1795-1802. [DOI: 10.1007/s11033-020-05273-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
|
13
|
Wang Y, Li Y, Shao P, Wang L, Bao X, Hu M. IL1β inhibits differentiation of cementoblasts via microRNA‐325‐3p. J Cell Biochem 2019; 121:2606-2617. [DOI: 10.1002/jcb.29482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yuzhuo Wang
- Department of Orthodontics, School of Stomatology Jilin University Changchun China
| | - Ying Li
- Department of Orthodontics, School of Stomatology Jilin University Changchun China
| | - Pu Shao
- Department of Orthopedics China‐Japan Union Hospital of Jilin University Changchun China
| | - Liuyi Wang
- Department of Orthodontics, School of Stomatology Jilin University Changchun China
| | - Xingfu Bao
- Department of Orthodontics, School of Stomatology Jilin University Changchun China
| | - Min Hu
- Department of Orthodontics, School of Stomatology Jilin University Changchun China
| |
Collapse
|
14
|
Li B, Wang Z, Yu M, Wang X, Wang X, Chen C, Zhang Z, Zhang M, Sun C, Zhao C, Li Q, Wang W, Wang T, Zhang L, Ning G, Feng S. miR-22-3p enhances the intrinsic regenerative abilities of primary sensory neurons via the CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis. J Cell Physiol 2019; 235:4605-4617. [PMID: 31663116 DOI: 10.1002/jcp.29338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a devastating disease. Strategies that enhance the intrinsic regenerative ability are very important for the recovery of SCI to radically prevent the occurrence of sensory disorders. Epidermal growth factor (EGF) showed a limited effect on the growth of primary sensory neuron neurites due to the degradation of phosphorylated-epidermal growth factor receptor (p-EGFR) in a manner dependent on Casitas B-lineage lymphoma (CBL) (an E3 ubiquitin-protein ligase). MiR-22-3p predicted from four databases could target CBL to inhibit the expression of CBL, increase p-EGFR levels and neurites length via STAT3/GAP43 pathway rather than Erk1/2 axis. EGF, EGFR, and miR-22-3p were downregulated sharply after injury. In vivo miR-22-3p Agomir application could regulate CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis, and restore spinal cord sensory conductive function. This study clarified the mechanism of the limited promotion effect of EGF on adult primary sensory neuron neurite and targeting miR-22-3p could be a novel strategy to treat sensory dysfunction after SCI.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mei Yu
- Department of Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin, 30020, China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xin Wang
- Department of Graduate School, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde, 067000, Hebei, China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei, China
| | - Meiling Zhang
- Department of Graduate School, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Wei Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei, China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Translational Medicine, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Translational Medicine, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
15
|
Wang T, Li B, Wang Z, Yuan X, Chen C, Zhang Y, Xia Z, Wang X, Yu M, Tao W, Zhang L, Wang X, Zhang Z, Guo X, Ning G, Feng S, Chen X. miR-155-5p Promotes Dorsal Root Ganglion Neuron Axonal Growth in an Inhibitory Microenvironment via the cAMP/PKA Pathway. Int J Biol Sci 2019; 15:1557-1570. [PMID: 31337984 PMCID: PMC6643145 DOI: 10.7150/ijbs.31904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Sensory dysfunction post spinal cord injury causes patients great distress. Sciatic nerve conditioning injury (SNCI) has been shown to restore sensory function after spinal cord dorsal column injury (SDCL); however, the underlying mechanism of this recovery remains unclear. We performed a microarray assay to determine the associated miRNAs that might regulate the process of SNCI promoting SDCL repair. In total, 13 miRNAs were identified according to our inclusion criteria, and RT-qPCR was used to verify the microarray results. Among the 13 miRNAs, the miR-155-5p levels were decreased at 9 h, 3 d, 7 d, 14 d, 28 d, 2 m and 3 m timepoints in the SDCL group, while the SNCI group had a smaller decrease. Thus, miR-155-5p was chosen for further study after a literature review and an analysis with the TargetScan online tool. Specifically, miR-155-5p targets PKI-α, and the expression pattern of PKI-α was opposite that of miR-155-5p in both the SDCL and SNCI groups. Interestingly, miR-155-5p could promote dorsal root ganglion (DRG) neuron axon growth via the cAMP/PKA pathway and in a TNF-α, IL-1β or MAG inhibitory microenvironment in vitro. Furthermore, miR-155-5p could regulate the cAMP/PKA pathway and promote sensory conduction function recovery post dorsal column injury as detected by NF-200 immunohistochemistry, somatosensory-evoked potentials, BBB scale and tape removal test. Collectively, our results demonstrated that miR-155-5p participates in the molecular mechanism by which SNCI promotes the repair of SDCL and that upregulated miR-155-5p can repair SDCL by enhancing DRG neuron axon growth via the cAMP/PKA pathway. These findings suggest a novel treatment target for spinal cord injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde 067000, Hebei Province, P.R. China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Ziwei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Wang
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Mei Yu
- Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin 30020, P.R. China
| | - Wen Tao
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Xiaoling Guo
- Department of Neurology, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|