1
|
Zhou L, Wu Z, Li Y, Xiao L, Wang H, Wang G. Perinatal running training reversed postnatal anxiety and depressive-like behavior and cognitive impairment in mice following prenatal subchronic variable stress. Pharmacol Biochem Behav 2024; 245:173898. [PMID: 39489185 DOI: 10.1016/j.pbb.2024.173898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Pregnancy is a very complex and highly stressful time in women. Despite the high prevalence of postpartum depression, more than 50 % of mothers are undiagnosed or untreated, showing an urgent need to explore an effective preventive strategy. Regular physical activity has been suggested to be associated with an increased quality of life in pregnant and postpartum women. The purpose of this study was to determine whether perinatal running training can affect maternal care stress-related anxiety, depressive-like behavior, and cognitive changes in postpartum dams and to explore the possible underlying mechanism. METHODS 40 female C57BL/6J mice were divided into four groups: prenatal control (NC) and running training (EX) group (NC+EX), prenatal control and nonrunning training (RE) group (NC+RE), prenatal subchronic variable stress (SCVS) and running training group (SCVS+EX) and prenatal SCVS and non-running training group (SCVS+RE). Mice in prenatal stress groups were subjected to SCVS after pregnancy confirmed. Mice in running training groups subjected to running training throughout pregnancy and lactation. Then after the delivery, maternal behavior, cognitive changes, anxiety and depressive-like behaviors were tested. Then we measured the serum prolactin (PRL), hypothalamic-pituitary adrenal (HPA) axis activity, and adult hippocampus neurogenesis (AHN) in dams. RESULTS Compared to NC+RE, prenatal SCVS caused cognitive impairments, the decrease in maternal behavior, and anxiety and depressive-like behavior in SCVS+RE dams, accompanying increase in HPA axis activity and decreased the PRL levels and AHN in postpartum period. Then compared to SCVS+RE, perinatal running training mitigates cognitive impairments, increased maternal behavior, and alleviates anxiety and depressive-like behavior in SCVS+EX dams, accompanying the decreased HPA axis activity, and the increased PRL levels and AHN in postpartum period. CONCLUSION Overall, this study suggests that perinatal running training might improve maternal care and reverse prenatal stress-related cognitive impairment and anxiety and depressive-like behavior in postpartum dams.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
2
|
Brennan PA, Dunlop AL, Croen LA, Avalos LA, Salisbury AL, Hipwell AE, Nozadi SS, Sathyanarayana S, Crum RM, Musci R, Li M, Li X, Mansolf M, O'Connor TG, Elliott AJ, Ghildayal N, Lin PID, Sprowles JLN, Stanford JB, Bendixsen C, Ozonoff S, Lester BM, Shuster CL, Huddleston KC, Posner J, Paneth N. Prenatal Antidepressant Exposures and Autism Spectrum Disorder or Traits: A Retrospective, Multi-Cohort Study. Res Child Adolesc Psychopathol 2023; 51:513-527. [PMID: 36417100 PMCID: PMC10150657 DOI: 10.1007/s10802-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Prenatal antidepressant exposure has been associated with increased risk for neurodevelopmental disorders in childhood, including autism spectrum disorder (ASD). The current study utilized multi-cohort data from the Environmental influences on Child Health Outcomes (ECHO) program (N = 3129) to test for this association, and determine whether the association remained after adjusting for maternal prenatal depression and other potential confounders. Antidepressants and a subset of selective serotonin reuptake inhibitors (SSRIs) were examined in relation to binary (e.g., diagnostic) and continuous measures of ASD and ASD related traits (e.g., social difficulties, behavior problems) in children 1.5 to 12 years of age. Child sex was tested as an effect modifier. While prenatal antidepressant exposure was associated with ASD related traits in univariate analyses, these associations were statistically non-significant in models that adjusted for prenatal maternal depression and other maternal and child characteristics. Sex assigned at birth was not an effect modifier for the prenatal antidepressant and child ASD relationship. Overall, we found no association between prenatal antidepressant exposures and ASD diagnoses or traits. Discontinuation of antidepressants in pregnancy does not appear to be warranted on the basis of increased risk for offspring ASD.
Collapse
Affiliation(s)
- Patricia A Brennan
- Psychology Department, Emory University, 36 Eagle Row, 30322, Atlanta, GA, USA.
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Amy L Salisbury
- Virginia Commonwealth University School of Nursing, Richmond, VA, USA
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara S Nozadi
- Health Sciences Center University of New Mexico, Albuquerque, NM, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Rosa M Crum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mingyi Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiuhong Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maxwell Mansolf
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Amy J Elliott
- Avera Research Institute, Dept of Pediatrics, University of South Dakota School of Medicine, Vermillion, SD, USA
| | - Nidhi Ghildayal
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jenna L N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana- Champaign, ICF, Urbana, Durham, IL, NC, USA
| | - Joseph B Stanford
- Department of Family and Preventive Medicine, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Casper Bendixsen
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, USA
| | - Sally Ozonoff
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, CA, USA
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Coral L Shuster
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Kathi C Huddleston
- College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Nigel Paneth
- Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
d'Isa R, Gerlai R. Designing animal-friendly behavioral tests for neuroscience research: The importance of an ethological approach. Front Behav Neurosci 2023; 16:1090248. [PMID: 36703720 PMCID: PMC9871504 DOI: 10.3389/fnbeh.2022.1090248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
4
|
Boudjafad Z, Lguensat A, Elmardadi K, Dahi A, Bennis M, Ba-M'hamed S, Garcia R. The socially enriched environment test: a new approach to evaluate social behavior in a mouse model of social anxiety disorder. Learn Mem 2022; 29:390-400. [PMID: 36253006 PMCID: PMC9578375 DOI: 10.1101/lm.053627.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Social anxiety disorder (SAD) is a common anxiety disorder characterized by a marked fear of social situations. Treatments for SAD, including exposure therapy and medication, are not satisfactory for all patients. This has led to the development of several paradigms to study social fear in rodents. However, there are still some social impairments observed in SAD patients that have never been examined in rodent models. Indeed, social situations avoided by SAD patients include not only social interactions but also public performances and being observed by others. Nevertheless, tests used to assess sociability in rodents evaluate mostly social interaction in pairs. Thus, we developed a new test-a socially enriched environment test-that evaluates sociability within a group of three unfamiliar conspecifics in an enriched environment. In this study, we induced a SAD-like behavior (i.e., social fear) in male mice using social fear conditioning (SFC) and then tested social fear using the socially enriched environment test and the three-chamber test. Finally, we tested the effects of fear extinction and acute diazepam treatment in reversing social fear. Results revealed, in conditioned mice, decreased object exploration in proximity to conspecifics, social interaction, and mouse-like object exploration. Extinction training, but not acute diazepam treatment, reversed SFC-induced behavioral changes. These findings demonstrate that the socially enriched environment test provides an appropriate behavioral approach to better understand the etiology of SAD. This test may also have important implications in the exploration of new treatments.
Collapse
Affiliation(s)
- Zineb Boudjafad
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - Asmae Lguensat
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - Kenza Elmardadi
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - Asma Dahi
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - Mohamed Bennis
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - Saadia Ba-M'hamed
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie, et Environnement, Université Cadi Ayyad, Marrakech 40000, Marocco
| | - René Garcia
- Laboratoire Interdisciplinaire Récits Cultures et Sociétés, Université Côte d'Azur, 06204 Nice, France
| |
Collapse
|
5
|
Acikgoz B, Dalkiran B, Dayi A. An overview of the currency and usefulness of behavioral tests used from past to present to assess anxiety, social behavior and depression in rats and mice. Behav Processes 2022; 200:104670. [DOI: 10.1016/j.beproc.2022.104670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 03/14/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023]
|
6
|
Guedes Linhares SS, da Silva Rodrigues Meurer Y, Aquino A, Aquino Câmara D, Mateus Brandão LE, Dierschnabel AL, Porto Fiuza F, Hypólito Lima R, Engelberth RC, Cavalcante JS. Effects of prenatal exposure to fluoxetine on circadian rhythmicity in the locomotor activity and neuropeptide Y and 5-HT expression in male and female adult Wistar rats. Int J Dev Neurosci 2022; 82:407-422. [PMID: 35481929 DOI: 10.1002/jdn.10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation, and organization of neural circuitries related to emotional, cognitive, and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalization. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over four weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, and as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL, and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.
Collapse
Affiliation(s)
- Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antonio Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Aline Lima Dierschnabel
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Ramon Hypólito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
7
|
Naghibi S, Barzegari A, Shariatzadeh M, Vatandoost M, Ahmadi M, Mahdinia E, Neghabi F, Rajabpour A, Sadat Aleahmad A, Sadat Balaghati F, Sadat Naserimanesh S, Saeedipour M, Sadeghi O, Yeganeh F, Salari AA. Voluntary physical activity increases maternal care and reduces anxiety- and depression-related behaviours during the postpartum period in mice. Brain Res 2022; 1784:147880. [DOI: 10.1016/j.brainres.2022.147880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/21/2023]
|
8
|
Heinla I, Chu X, Ågmo A, Snoeren E. Rat ultrasonic vocalizations and novelty-induced social and non-social investigation behavior in a seminatural environment. Physiol Behav 2021; 237:113450. [PMID: 33957149 DOI: 10.1016/j.physbeh.2021.113450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
Although rats are known to emit ultrasonic vocalizations (USVs), it remains unclear whether these calls serve an auditory communication purpose. For USVs to be part of communication, the vocal signals will need to be a transfer of information between two or more conspecifics, and with the possibility to induce changes in the behavior of the recipient. Therefore, the aim of our study was to investigate the role of USVs in adult rats' social and non-social investigation strategies when introduced into a large novel environment with unfamiliar conspecifics. We quantified a wide range of social and non-social behaviors in the seminatural environment, which could be affected by subtle signals, including USVs. We found that during the first hour in the seminatural environment the ability to vocalize did not affect how quickly adult rats met each other, their overall social investigation behavior, their passive social behavior nor their aggressive behavior. Furthermore, the non-social exploratory behaviors and behaviors reflecting anxiety/stress-like states were also unaffected. These results demonstrated that a disability to vocalize did not result in significant disadvantages (or changes) compared to intact conspecifics regarding social and non-social behaviors. This suggests that other (multi)sensory cues are more relevant in social interactions than USVs.
Collapse
Affiliation(s)
- Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Xi Chu
- Department of Psychology, Norwegian University of Science and Technology, Norway
| | - Anders Ågmo
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Eelke Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Norway.
| |
Collapse
|
9
|
Amani M, Houwing DJ, Homberg JR, Salari AA. Perinatal fluoxetine dose-dependently affects prenatal stress-induced neurobehavioural abnormalities, HPA-axis functioning and underlying brain alterations in rat dams and their offspring. Reprod Toxicol 2021; 104:27-43. [PMID: 34186199 DOI: 10.1016/j.reprotox.2021.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Both untreated and SSRI antidepressant treated maternal depression during the perinatal period can pose both short-and long-term health risks to the offspring. Therefore, it is essential to have an effective SSRI treatment consisting of the lowest effective dose beneficial to the mother, without causing adverse effects on offspring development. The effects of prenatal stress on neurobehavioral outcomes were studied in the pregnant and lactating rat dam, and her offspring. Furthermore, stressed dams were treated with different doses of fluoxetine (FLX; 5, 10and 25 mg/kg) during pregnancy and the postpartum period. We found that prenatal stress-induced anxiety-and depressive-like behaviour and increased HPA-axis function in pregnant and postpartum dams, and in offspring. Maternal stress impaired object recognition but did not affect spatial memory in offspring. Prenatal stress decreased whole-brain serotonin and brain-derived-neurotrophic-factor, and increased interleukin-17 and malondialdehyde, but did not affect oxytocin and interleukin-6 in the brains of offspring. Maternal treatment with 5 mg/kg FLX during the perinatal period did not rescue any stress-induced anxiety/depressive-like behaviour in the pregnant and postpartum dam and had only a few rescuing effects in offspring. Maternal FLX treatment with 10 mg/kg did rescue most stress-induced anxiety-and depressive-like behaviour or HPA-axis-function in dams and offspring. The highest dose tested, 25 mg/kg FLX, had the rescuing properties in dams while having the same, or an even greater, detrimental effect as prenatal stress on offspring behaviour and molecular alterations in the brain. Our results show prenatal stress rescuing properties for FLX treatment in the pregnant and postpartum dam, with dose-dependent effects on the offspring.
Collapse
Affiliation(s)
- Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danielle J Houwing
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
10
|
Van der Knaap N, Wiedermann D, Schubert D, Hoehn M, Homberg JR. Perinatal SSRI exposure affects brain functional activity associated with whisker stimulation in adolescent and adult rats. Sci Rep 2021; 11:1680. [PMID: 33462357 PMCID: PMC7814075 DOI: 10.1038/s41598-021-81327-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI), such as fluoxetine, are used as first-line antidepressant medication during pregnancy. Since SSRIs cross the placenta the unborn child is exposed to the maternal SSRI medication, resulting in, amongst others, increased risk for autism in offspring. This likely results from developmental changes in brain function. Studies employing rats lacking the serotonin transporter have shown that elevations in serotonin levels particularly affect the development of the whisker related part of the primary somatosensory (barrel) cortex. Therefore, we hypothesized that serotonin level disturbances during development alter brain activity related to whisker stimulation. We treated female dams with fluoxetine or vehicle from gestational day 11 onwards for 21 days. We investigated offspring's brain activity during whisker stimulation using functional magnetic resonance imaging (fMRI) at adolescence and adulthood. Our results indicate that adolescent offspring displayed increased activity in hippocampal subareas and the mammillary body in the thalamus. Adult offspring exhibited increased functional activation of areas associated with (higher) sensory processing and memory such as the hippocampus, perirhinal and entorhinal cortex, retrospinal granular cortex, piriform cortex and secondary visual cortex. Our data imply that perinatal SSRI exposure leads to complex alterations in brain networks involved in sensory perception and processing.
Collapse
Affiliation(s)
- Noortje Van der Knaap
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Wiedermann
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Judith R Homberg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
12
|
Transient serotonin depletion at adolescence, but not at early infancy, reduced subsequent anxiety-like behavior and alcohol intake in female mice. Psychopharmacology (Berl) 2021; 238:215-225. [PMID: 33011817 DOI: 10.1007/s00213-020-05670-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
RATIONALE Serotonin (5-HT) plays an important role in the organization of the central nervous system and in the development of social interaction deficits and psychiatric disorders, including anxiety, depression, and addiction disorders. Notably, disruption of the 5-HT system during sensitive periods of development exerts long-term consequences, including altered anxiety response and problematic use of alcohol. OBJECTIVE we analyzed, in mice, the effects of transient 5-HT depletion at infancy or adolescence on subsequent anxiety-like behavior and alcohol intake during adolescence. METHODS C57/BL6 male and female mice were administered a 5-HT synthesis inhibitor (PCPA; 4-chloro-DL-phenylalanine methyl ester hydrochloride) at infancy (postnatal days 14-16 [PD14-16]) or adolescence (PD40-42). Eleven (± 1) days after treatment, mice were assessed for ethanol intake in daily two-bottle choice tests and for anxiety response via the elevated plus maze. RESULTS Female, but not male, mice transiently depleted of 5-HT at adolescence (but not those depleted at the perinatal stage) exhibited a significant reduction in anxiety response, which was accompanied by a significant reduction on alcohol intake. CONCLUSION Transient 5-HT inhibition at adolescence may act, in females, as a protective factor for the emergence of anxiety disorders and problematic use of alcohol during adolescence.
Collapse
|
13
|
Sylte OC, Johansen JS, Heinla I, Houwing DJ, Olivier JDA, Heijkoop R, Snoeren EMS. Effects of perinatal fluoxetine exposure on novelty-induced social and non-social investigation behaviors in a seminatural environment. Psychopharmacology (Berl) 2021; 238:3653-3667. [PMID: 34557946 PMCID: PMC8629781 DOI: 10.1007/s00213-021-05984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed as medication for various affective disorders during pregnancy. SSRIs cross the placenta and affect serotonergic neurotransmission in the fetus, but the neurobehavioral consequences for the offspring remain largely unclear. Recent rodent research has linked perinatal SSRI exposure to alterations in both social and non-social aspects of behavior. However, this research has mainly focused on behavior within simplified environments. The current study investigates the effects of perinatal SSRI exposure on social and non-social investigation behaviors of adult rat offspring upon introduction to a novel seminatural environment with unknown conspecifics. During the perinatal period (gestational day 1 until postnatal day 21), rat dams received daily treatment with either an SSRI (fluoxetine, 10 mg/kg) or vehicle. Adult male and female offspring were observed within the first hour after introduction to a seminatural environment. The results showed that perinatal fluoxetine exposure altered aspects of non-social investigation behaviors, while not altering social investigation behaviors. More specifically, both fluoxetine-exposed males and females spent more total time on locomotor activity than controls. Furthermore, fluoxetine-exposed females spent less time exploring objects and specific elements in the environment. The data suggest that perinatal exposure to SSRIs leads to a quicker, less detailed investigation strategy in novel environments and that the alteration is mostly pronounced in females.
Collapse
Affiliation(s)
- Ole Christian Sylte
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Jesper Solheim Johansen
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Indrek Heinla
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Danielle J. Houwing
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway ,grid.4830.f0000 0004 0407 1981Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jocelien D. A. Olivier
- grid.4830.f0000 0004 0407 1981Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Roy Heijkoop
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Eelke M. S. Snoeren
- grid.10919.300000000122595234Department of Psychology, UiT the Arctic University of Norway, 9037 Tromsø, Norway ,Regional Health Authority of North Norway, Bodø, Norway
| |
Collapse
|
14
|
Ni RJ, Tian Y, Dai XY, Zhao LS, Wei JX, Zhou JN, Ma XH, Li T. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zool Res 2020; 41:258-272. [PMID: 32212430 PMCID: PMC7231478 DOI: 10.24272/j.issn.2095-8137.2020.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Adult male tree shrews vigorously defend against intruding male conspecifics. However, the characteristics of social behavior have not been entirely explored in these males. In this study, male wild-type tree shrews (Tupaia belangeri chinensis) and C57BL/6J mice were first allowed to familiarize themselves with an open-field apparatus. The tree shrews exhibited a short duration of movement (moving) in the novel environment, whereas the mice exhibited a long duration of movement. In the 30 min social preference-avoidance test, target animals significantly decreased the time spent by the experimental tree shrews in the social interaction (SI) zone, whereas experimental male mice exhibited the opposite. In addition, experimental tree shrews displayed a significantly longer latency to enter the SI zone in the second 15 min session (target-present) than in the first 15 min session (target-absent), which was different from that found in mice. Distinct behavioral patterns in response to a conspecific male were also observed in male tree shrews and mice in the first, second, and third 5 min periods. Thus, social behaviors in tree shrews and mice appeared to be time dependent. In summary, our study provides results of a modified social preference-avoidance test designed for the assessment of social behavior in tree shrews. Our findings demonstrate the existence of social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics. The tree shrew may be a new animal model, which differs from mice, for the study of social avoidance and prosocial behaviors.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin-Ye Dai
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lian-Sheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Xue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao-Hong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Hegstad J, Huijgens PT, Houwing DJ, Olivier JDA, Heijkoop R, Snoeren EMS. Female rat sexual behavior is unaffected by perinatal fluoxetine exposure. Psychoneuroendocrinology 2020; 120:104796. [PMID: 32711369 DOI: 10.1016/j.psyneuen.2020.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Serotonin plays an important role in adult female sexual behavior, however little is known about the influence of serotonin during early development on sexual functioning in adulthood. During early development, serotonin acts as neurotrophic factor, while it functions as a modulatory neurotransmitter in adulthood. The occurrence of serotonin release, could thus have different effects on behavioral outcomes, depending on the developmental period in which serotonin is released. Because serotonin is involved in the development of the HPG axis which is required for puberty establishment, serotonin could also alter expression patterns of for instance the estrogen receptor ɑ (ERɑ). The aim of our study was to investigate the effects of increased serotonin levels during early development on adult female rat sexual behavior during the full behavioral estrus in a seminatural environment. To do so, rats were perinatally exposed with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10 mg/kg FLX) and sexual performance was tested during adulthood. All facets of female sexual behavior between the first and last lordosis (behavioral estrus), and within each copulation bout of the behavioral estrus were analyzed. Besides the length and onset of the behavioral estrus and the sexual behaviors patterns, other social and conflict behavior were also investigated. In addition, we studied the effects of perinatal FLX exposure on ERɑ expression patterns in the medial preoptic nucleus, ventromedial nucleus of the hypothalamus, medial amygdala, bed nucleus of the stria terminalis, and the dorsal raphé nucleus. The results showed that perinatal fluoxetine exposure has no effect on adult female sexual behavior. The behavioral estrus of FLX-females had the same length and pattern as CTR-females. In addition, FLX- and CTR-females showed the same amount of paracopulatory behavior and lordosis, both during the full behavioral estrus and the "most active bout". Furthermore, no differences were found in the display of social and conflict behaviors, nor in ERɑ expression patterns in the brain. We conclude that increases in serotonin levels during early development do not have long-term consequences for female sexual behavior in adulthood.
Collapse
Affiliation(s)
- Jan Hegstad
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Patty T Huijgens
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Danielle J Houwing
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway; Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jocelien D A Olivier
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Roy Heijkoop
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
16
|
Houwing DJ, Schuttel K, Struik EL, Arling C, Ramsteijn AS, Heinla I, Olivier JDA. Perinatal fluoxetine treatment and dams' early life stress history alter affective behavior in rat offspring depending on serotonin transporter genotype and sex. Behav Brain Res 2020; 392:112657. [PMID: 32339551 DOI: 10.1016/j.bbr.2020.112657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/06/2023]
Abstract
Many women diagnosed with a major depression continue or initiate antidepressant treatment during pregnancy. Both maternal stress and selective serotonin inhibitor (SSRI) antidepressant treatment during pregnancy have been associated with changes in offspring behavior, including increased anxiety and depressive-like behavior. Our aim was to investigate the effects of the SSRI fluoxetine (FLX), with and without the presence of a maternal depression, on affective behavior in male and female rat offspring. As reduced serotonin transporter (SERT) availability has been associated with altered behavioral outcome, both offspring with normal (SERT+/+) and reduced (SERT+/-) SERT expression were included. For our animal model of maternal depression, SERT+/- dams exposed to early life stress were used. Perinatal FLX treatment and early life stress in dams (ELSD) had sex- and genotype-specific effects on affective behavior in the offspring. In female offspring, perinatal FLX exposure interacted with SERT genotype to increase anxiety and depressive-like behavior in SERT+/+, but not SERT+/-, females. In male offspring, ELSD reduced anxiety and interacted with SERT genotype to decrease depressive-like behavior in SERT+/-, but not SERT+/+, males. Altogether, SERT+/+ female offspring appear to be more sensitive than SERT+/- females to the effects of perinatal FLX exposure, while SERT+/- male offspring appear more sensitive than SERT+/+ males to the effects of ELSD on affective behavior. Our data suggest a role for offspring SERT genotype and sex in FLX and ELSD-induced effects on affective behavior, thereby contributing to our understanding of the effects of perinatal SSRI treatment on offspring behavior later in life.
Collapse
Affiliation(s)
- Danielle J Houwing
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kirsten Schuttel
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Eline L Struik
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chantal Arling
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anouschka S Ramsteijn
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - I Heinla
- Department of Psychology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Jocelien D A Olivier
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
17
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
18
|
Heinla I, Heijkoop R, Houwing DJ, Olivier JDA, Snoeren EMS. Third-party prosocial behavior in adult female rats is impaired after perinatal fluoxetine exposure. Physiol Behav 2020; 222:112899. [PMID: 32348809 DOI: 10.1016/j.physbeh.2020.112899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
SSRIs are commonly used to treat pregnant women with depression. However, SSRIs can cross the placenta and affect the development of the fetus. The effects of perinatal SSRI exposure, and especially the effects on social behavior, are still incompletely documented. This study first aims to investigate whether rats show prosocial behavior in the form of consolation behavior. Secondly, it aims to investigate whether perinatal SSRI exposure affects this prosocial behavior. At last, we investigate whether the behavior changed after the rats had been exposed to an additional white-noise stressor. Rat dams received 10 mg/kg/d fluoxetine (FLX) or vehicle (CTR) via oral gavage from gestational day 1 until postnatal day 21. At adulthood, the rat offspring were housed in four cohorts of 4 females and 4 males in a seminatural environment. As prosocial behaviors are more prominent after stressful situations, we investigated the behavioral response of rats immediately after natural aggressive encounters (fights). Additionally, we studied whether a stressful white-noise exposure would alter this response to the aggressive encounters. Our study indicates that CTR-female rats are able to show third party prosocial behavior in response to witnessing aggressive encounters between conspecifics in a seminatural environment. In addition, we showed that perinatal FLX exposure impairs the display of prosocial behavior in female rats. Moreover, we found no signs of prosocial behavior in CTR- and FLX-males after natural aggressive encounters. After white-noise exposure the effects in third party prosocial behavior of CTR-females ceased to exist. We conclude that female rats are able to show prosocial behavior, possibly in the form of consolation behavior. In addition, the negative effects of perinatal fluoxetine exposure on prosocial behavior could provide additional evidence that SSRI treatment during pregnancy could contribute to the risk for social impairments in the offspring.
Collapse
Affiliation(s)
- Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Roy Heijkoop
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Danielle J Houwing
- Department of Psychology, UiT The Arctic University of Norway, Norway; Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Jocelien D A Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Norway; Regional Health Authority of North Norway.
| |
Collapse
|