1
|
Fang K, Ouyang X, Cheng W, Yu B. Kilohertz High-Frequency Electrical Stimulation Effectively Mitigates Hyperalgesia in Mice With Neuropathic Pain Through Regulation of the Calcium/Calmodulin-Dependent Protein Kinase II/N-Methyl-D-Aspartate 2B Signaling Pathway. Neuromodulation 2025:S1094-7159(25)00135-7. [PMID: 40243981 DOI: 10.1016/j.neurom.2025.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Kilohertz high-frequency electrical stimulation (KHES), an avant-garde neuromodulation strategy, is progressively emerging in the field of neuropathic pain management, showing its unique therapeutic potential. This study delves into the mechanisms by which KHES exerts therapeutic effects on neuropathic pain induced by chronic constriction injury (CCI) in mice through modulation of the calcium/calmodulin-dependent protein kinase II (CaMKII)/N-methyl-D-aspartate receptor 2B (NMDAR2B) signaling pathway. MATERIALS AND METHODS In this study, mice were randomly assigned to groups and received intrathecal injections of CaMKII activator BayK8644, CaMKII inhibitor KN93, and N-methyl-D-aspartate (NMDA). Subsequently, mice underwent a week-long KHES treatment, with each session lasting 30 minutes. The impact of KHES on mechanical allodynia and thermal hyperalgesia in mice was assessed through paw withdrawal threshold and thermal withdrawal latency measurements, respectively. In addition, anxiety and depressive-like behaviors in mice were evaluated using pole climbing, open field, and forced swim tests. Quantitative reverse transcription polymerase chain reaction, Western blot, and immunofluorescence techniques were used to detect the expression levels of CaMKII, phosphorylated CaMKII (p-CaMKII), and NMDAR2B in the spinal cord. RESULTS Results indicated that KHES not only significantly reduced mechanical allodynia in CCI mice, with a sustained analgesic effect lasting up to six hours, but also somewhat alleviated anxiety and depressive-like symptoms. KHES inhibited the expression of p-CaMKII and NMDAR2B in the spinal cord. This inhibitory effect was reversed in the presence of BayK8644 and NMDA, suggesting that activation of CaMKII and NMDAR2B may contribute to the maintenance of neuropathic pain. Conversely, KN93 enhanced the analgesic effect of KHES by reducing mechanical allodynia and downregulating p-CaMKII and NMDAR2B expression, further confirming the significance of the CaMKII/NMDAR2B signaling pathway in KHES-mediated neuropathic pain relief. CONCLUSION This study not only unveils the potential therapeutic value of KHES in treating neuropathic pain induced by CCI in mice but also provides insights into its molecular mechanisms of action through inhibition of the CaMKII/NMDAR2B signaling pathway.
Collapse
Affiliation(s)
- Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Shen J, Gao J, Wang X, Yan D, Wang Y, Li H, Chen D, Wu J. Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling. Food Chem Toxicol 2025; 196:115243. [PMID: 39788477 DOI: 10.1016/j.fct.2025.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure. Moreover, nuclear shuttling of CaMKⅡγ with CaM, as well as downstream nuclear p-CaMKIV and p-CREB-dependent genes (Bdnf, c-Fos, Arc) expression were all causally down-regulated. These resulted in less dendritic spines in CA1 area and poor spatial learning and memory. Importantly, elevated miR-219a-5p in transcriptome sequencing was identified together with its targets Grin2b and Camk2g mRNA, further elucidated the reduction in GluN2B and CaMKⅡγ protein. These changes on synaptic plasticity caused by BDE-209 were reversed correspondingly under pretreatment of melatonin, partially via miR-219a inhibition. Collectively, our findings suggest that synaptonuclear signaling alterations potentially mediated neurobehavioral deficits induced by early-life BDE-209 exposure and the neuroprotection from melatonin, therefore provided a novel perspective for prevention.
Collapse
Affiliation(s)
- Jinghua Shen
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Jingjing Gao
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Xinyi Wang
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Dongying Yan
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Ying Wang
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China
| | - Jie Wu
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China.
| |
Collapse
|
3
|
Luo ZH, Guo JS, Pang S, Dong W, Ma JX, Zhang L, Qi XL, Guan FF, Gao S, Gao X, Liu N, Pan S, Chen W, Zhang X, Zhang LF, Yang YJ. Discovery of FO-4-15, a novel 1,2,4-oxadiazole derivative, ameliorates cognitive impairments in 3×Tg mice by activating the mGluR1/CaMKIIα pathway. Acta Pharmacol Sin 2025; 46:66-80. [PMID: 39152295 PMCID: PMC11696799 DOI: 10.1038/s41401-024-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aβ accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jiang-Shan Guo
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Dong
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jia-Xin Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Kong L, Yang J, Yang H, Xu B, Yang T, Liu W. Research advances on CaMKs-mediated neurodevelopmental injury. Arch Toxicol 2024; 98:3933-3947. [PMID: 39292234 DOI: 10.1007/s00204-024-03865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are important proteins in the calcium signaling cascade response pathway, which can broadly regulate biological functions in vivo. Multifunctional CaMKs play key roles in neural development, including neuronal circuit building, synaptic plasticity establishment, and neurotrophic factor secretion. Currently, four familial proteins, calcium/calmodulin-dependent protein kinase I (CaMKI), calcium/calmodulin-dependent protein kinase II (CaMKII), eukaryotic elongation factor 2 kinase (eEF2K, popularly known as CaMKIII) and calcium/calmodulin-dependent protein kinase IV (CaMKIV), are thought to have been the most extensively studied during neurodevelopment. Although their spatial structures are extremely similar, as well as the initial starting point of activation, both require the activation of calcium and calmodulin (CaM) complexes to be involved in the process, and the phosphorylation sites and modes of each member are different. Furthermore, due to the high structural similarity of CaMKs, their members may play synergistic roles in the regulation of neural development, but different CaMKs also have their own means of regulating neural development. In this review, we first describe the visualized protein structural forms of CaMKI, CaMKII, eEF2K and CaMKIV, and then describe the functions of each kinase in neurodevelopment. After that, we focus on four main mechanisms of neurodevelopmental damage caused by CaMKs: CaMKI/ERK/CREB pathway inhibition leading to dendritic spine structural damage; Ca2+/CaM/CaMKII through induction of mitochondrial kinetic disorders leading to neurodevelopmental damage; CaMKIII/eEF2 hyperphosphorylation affects the establishment of synaptic plasticity; and CaMKIV/JNK/NF-κB through induction of an inflammatory response leading to neurodevelopmental damage. In conclusion, we briefly discuss the pathophysiological significance of aberrant CaMK family expression in neurodevelopmental disorders, as well as the protective effects of conventional CaMKII and CaMKIII antagonists against neurodevelopmental injury.
Collapse
Affiliation(s)
- Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Xie D, Zhang P, You S, Shen Y, Xu W, Zhan C, Zhang J. Salidroside derivative SHPL-49 attenuates glutamate excitotoxicity in acute ischemic stroke via promoting NR2A-CAMKⅡα-Akt /CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155583. [PMID: 39173548 DOI: 10.1016/j.phymed.2024.155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ischemic stroke is a significant cause of death and disability with a limited treatment time window. The reduction of early glutamate excitotoxicity using neuroprotective agents targeting N-methyl-d-aspartic acid (NMDA) receptors have attracted recent research attention. SHPL-49, a structurally modified derivative of salidroside, was synthesized by our team. Previous studies have confirmed the neuroprotective efficacy of SHPL-49 in rats with ischemic stroke. However, the underlying mechanisms need to be clarified. METHODS We conducted in vivo experiments using the permanent middle cerebral artery occlusion rat model to investigate the role of SHPL-49 in glutamate release at different time points and treatment durations. Glutamate transporters and receptor proteins and neural survival proteins in the brain were also examined at the same time points. In vitro, primary neurons and the coculture system of primary neurons-astrocytes were subjected to oxygen-glucose deprivation and glutamate injury. Proteomics and parallel reaction monitoring analyses were performed to identify potential therapeutic targets of SHPL-49, which were further confirmed through in vitro experiments on the inhibition and mutation of the target. RESULTS SHPL-49 significantly reduced glutamate release caused by hypoxia-ischemia. One therapeutic pathway of SHPL-49 was promoting the expression of glutamate transporter-1 to increase glutamate reuptake and further reduce the occurrence of subsequent neurotoxicity. In addition, we explored the therapeutic targets of SHPL-49 and its regulatory effects on glutamate receptors for the first time. SHPL-49 enhanced neuroprotection by activating the NMDA subunit NR2A, which upregulated the cyclic-AMP response binding protein (CREB) neural survival pathway and Akt phosphorylation. Since calcium/calmodulin-dependent kinase IIα (CaMKIIα) is necessary for synaptic transmission of NMDA receptors, we explored the interaction between CaMKIIα and SHPL-49, which protected CaMKIIα from hypoxia-ischemia-induced autophosphorylation damage. CONCLUSION Overall, SHPL-49 enhanced neuronal survival and attenuated acute ischemic stroke by promoting the NR2A-CAMKⅡα-Akt/CREB pathway. Our study provides the first evidence demonstrating that the neuroprotective effect of SHPL-49 is achieved by promoting the NR2A subunit to extend the treatment time window, making it a promising drug for ischemic stroke.
Collapse
Affiliation(s)
- Dong Xie
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yue Shen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
6
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
7
|
Sun Y, Zhang H, Liu R, Wang Y, Zhang X, Huang R, Zhu B, Wu H. Zexieyin formula alleviates Alzheimer's disease via post-synaptic CaMKII modulating AMPA receptor: Involved in promoting neurogenesis to strengthen synaptic plasticity in mice hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155802. [PMID: 38852473 DOI: 10.1016/j.phymed.2024.155802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China.
| | - Ruiyi Liu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Yanqing Wang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Xiangrui Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Rumin Huang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Xu J, Liang S, Wang Q, Zheng Q, Wang M, Qian J, Yu T, Lou S, Luo W, Zhou H, Liang G. JOSD2 mediates isoprenaline-induced heart failure by deubiquitinating CaMKIIδ in cardiomyocytes. Cell Mol Life Sci 2024; 81:18. [PMID: 38195959 PMCID: PMC11072575 DOI: 10.1007/s00018-023-05037-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024]
Abstract
Prolonged stimulation of β-adrenergic receptor (β-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.
Collapse
Affiliation(s)
- Jiachen Xu
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shiqi Liang
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qinyan Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingsong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, 132013, Jilin, China
| | - Jinfu Qian
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wu Luo
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Hao Zhou
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
10
|
Bonnin EA, Golmohammadi A, Rehm R, Tetzlaff C, Rizzoli SO. High-resolution analysis of bound Ca 2+ in neurons and synapses. Life Sci Alliance 2024; 7:e202302030. [PMID: 37833073 PMCID: PMC10575792 DOI: 10.26508/lsa.202302030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Arash Golmohammadi
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Rehm
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Zheng Z, Qiu Z, Xiong X, Nie A, Zhou W, Qiu H, Zhao H, Wu H, Guo J. Co-activation of NMDAR and mGluRs controls protein nanoparticle-induced osmotic pressure in neurotoxic edema. Biomed Pharmacother 2023; 169:115917. [PMID: 38006617 DOI: 10.1016/j.biopha.2023.115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Glutamate stimuli and hyperactivation of its receptor are predominant determinants of ischemia-induced cytotoxic cerebral edema, which is closely associated with protein nanoparticle (PN)-induced increases in osmotic pressure. Herein, we investigated the electrochemical and mechanical mechanisms underlying the neuron swelling induced by PNs via the co-activation of N-methyl-D-aspartate receptor subunit (NMDAR) and excitatory metabotropic glutamate receptors (mGluRs). RESULTS We observed that co-activation of ionic glutamate receptor NMDAR and Group I metabotropic mGluRs promoted alteration of PN-induced membrane potential and increased intracellular osmosis, which was closely associated with calcium and voltage-dependent ion channels. In addition, activation of NMDAR-induced calmodulin (CaM) and mGluR downstream diacylglycerol (DAG)/protein kinase C α (PKCα) were observed to play crucial roles in cytotoxic hyperosmosis. The crosstalk between CaM and PKCα could upregulate the sensitivity and sustained opening of sulfonylurea receptor 1 (SUR1)-transient receptor potential cation channel subfamily M member 4 (TRPM4) and transmembrane protein 16 A (TMEM16A) channels, respectively, maintaining the massive Na+/Cl- influx, and the resultant neuron hyperosmosis and swelling. Intracellular PNs and Na+/Cl- influx were found to be as potential targets for cerebral edema treatment, using the neurocyte osmosis system and a cerebral ischemic rat model. CONCLUSIONS This study highlights PNs as a key factor in "electrochemistry-tension" signal transduction controlling Na+/Cl- ion channels and increased osmotic pressure in ischemia-induced cytotoxic edema. Moreover, enhanced sensitivity in both Na+ and Cl- ion channels also has a crucial role in cerebral edema.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhaoshun Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiyu Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Aobo Nie
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huimin Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huiwen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
12
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
13
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
14
|
Gao X, Lin J, Sun L, Hu J, Gao W, Yu J. Activation of the N-methyl-D-aspartate receptor and calcium/calmodulin-dependent protein kinase IIα signal in the rostral anterior cingulate cortex is involved in pain-related aversion in rats with peripheral nerve injury. Behav Brain Res 2023; 452:114560. [PMID: 37394125 DOI: 10.1016/j.bbr.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The rostral anterior cingulate cortex (rACC) of rat brain is associated with pain-related emotions. However, the underlying molecular mechanism remains unclear. Here, we investigated the effects of the N-methyl-D-aspartate (NMDA) receptor and Ca2+/Calmodulin-dependent protein kinase type II (CaMKII)α signal on pain-related aversion in the rACC of a rat model of neuropathic pain (NP). Mechanical and thermal hyperalgesia were examined using von Frey and hot plate tests in a rat model of NP induced by spared nerve injury (SNI) of the unilateral sciatic nerve. Bilateral rACC pretreatment with the CaMKII inhibitor tat-CN21 (derived from the cell-penetrating tat sequence and CaM-KIIN amino acids 43-63) or tat-Ctrl (the tat sequence and the scrambled sequence of CN21) was performed on postoperative days 29-35 in Sham rats or rats with SNI. Spatial memory performance was tested using an eight-arm radial maze on postoperative days 34-35. Pain-related negative emotions (aversions) were evaluated using the place escape/avoidance paradigm on postoperative day 35 following the spatial memory performance test. The percentage of time spent in the light area was used to assess pain-related negative emotions (i.e., aversion). The expression levels of the NMDA receptor GluN2B subunit, CaMKIIα, and CaMKII-Threonine at position 286 (Thr286) phosphorylation in contralateral rACC specimens were detected by Western blot or real time PCR following the aversion test. Our data showed that pretreatment of the rACC with tat-CN21 increased determinate behavior but did not alter hyperalgesia or spatial memory performance in rats with SNI. In addition, tat-CN21 reversed the enhanced CaMKII-Thr286 phosphorylation and had no effect on the upregulated expression of GluN2B, CaMKIIα protein, and mRNA. Our data suggested that activation of the NMDA receptor-CaMKIIα signal in rACC is associated with pain-related aversion in rats with NP. These data may provide a new approach for the development of drugs that modulate cognitive and emotional pain aspects.
Collapse
Affiliation(s)
- Xueqi Gao
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Jinhai Lin
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, Weifang 261053, China
| | - Jun Hu
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Wenjie Gao
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Jianfeng Yu
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
15
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
16
|
Moore SJ, Cazares VA, Temme SJ, Murphy GG. Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, Ca V 1.3. Aging Cell 2023; 22:e13781. [PMID: 36703244 PMCID: PMC10014069 DOI: 10.1111/acel.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV 1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV 1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV 1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.
Collapse
Affiliation(s)
- Shannon J. Moore
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Victor A. Cazares
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyWilliams CollegeWilliamstownMassachusettsUSA
| | | | - Geoffrey G. Murphy
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
17
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
18
|
Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation. Int J Mol Sci 2022; 23:ijms232315169. [PMID: 36499491 PMCID: PMC9740806 DOI: 10.3390/ijms232315169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by the presence of extracellular amyloid plaques in the brain. They are composed of aggregated amyloid beta-peptide (Aβ) misfolded into beta-sheets which are the cause of the AD memory impairment and dementia. Memory depends on the hippocampal formation and maintenance of synapses by long-term potentiation (LTP), whose main steps are the activation of NMDA receptors, the phosphorylation of CaMKIIα and the nuclear translocation of the transcription factor CREB. It is known that Aβ oligomers (oAβ) induce synaptic loss and impair the formation of new synapses. Here, we have studied the effects of oAβ on CaMKIIα. We found that oAβ produce reactive oxygen species (ROS), that induce CaMKIIα oxidation in human neuroblastoma cells as we assayed by western blot and immunofluorescence. Moreover, this oxidized isoform is significantly present in brain samples from AD patients. We found that the oxidized CaMKIIα is active independently of the binding to calcium/calmodulin, and that CaMKIIα phosphorylation is mutually exclusive with CaMKIIα oxidation as revealed by immunoprecipitation and western blot. An in silico modelling of the enzyme was also performed to demonstrate that oxidation induces an activated state of CaMKIIα. In brains from AD transgenic models of mice and in primary cultures of murine hippocampal neurons, we demonstrated that the oxidation of CaMKIIα induces the phosphorylation of CREB and its translocation to the nucleus to promote the transcription of ARC and BDNF. Our data suggests that CaMKIIα oxidation would be a pro-survival mechanism that is triggered when a noxious stimulus challenges neurons as do oAβ.
Collapse
|
19
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
20
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
21
|
Kim S, Sohn S, Choe ES. Phosphorylation of GluA1-Ser831 by CaMKII Activation in the Caudate and Putamen Is Required for Behavioral Sensitization After Challenge Nicotine in Rats. Int J Neuropsychopharmacol 2022; 25:678-687. [PMID: 35678163 PMCID: PMC9380710 DOI: 10.1093/ijnp/pyac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phosphorylation of the glutamate receptor (GluA1) subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor plays a crucial role in behavioral sensitization after exposure to psychostimulants. The present study determined the potential role of serine 831 (Ser831) phosphorylation in the GluA1 subunit of the caudate and putamen (CPu) in behavioral sensitization after challenge nicotine. METHODS Challenge nicotine (0.4 mg/kg) was administered subcutaneously (s.c.) after 7 days of repeated exposure to nicotine (0.4 mg/kg, s.c.) followed by 3 days of withdrawal in rats. Bilateral intra-CPu infusions of drugs were mainly performed to test this hypothesis. RESULTS Challenge nicotine increased both phosphorylated (p)Ser831 immunoreactivity (IR) and pCa2+/calmodulin-dependentprotein kinases II (pCaMKII)-IR in the medium spiny neurons (MSNs) of the CPu. These increases were prevented by bilateral intra-CPu infusion of the metabotropic glutamate receptor 5 (mGluR5) antagonist MPEP (0.5 nmol/side) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (2 nmol/side). However, the dopamine D1 receptor (D1R) antagonist SCH23390 (7.5 nmol/side) prevented only pSer831-IR alone. Bilateral intra-CPu infusion of the Tat-GluA1D peptide (25 pmol/side), which interferes with the binding of pCaMKII to GluA1-Ser831, decreased the challenge nicotine-induced increase in locomotor activity. CONCLUSIONS These findings suggest that the GluA1-Ser831 phosphorylation in the MSNs of the CPu is required for the challenge nicotine-induced behavioral sensitization in rats. CaMKII activation linked to mGluR5 and NMDA receptors, but not to D1R, is essential for inducing the CaMKII-Ser831 interaction.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Eun Sang Choe
- Correspondence: Eun Sang Choe, PhD, Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea ()
| |
Collapse
|
22
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
23
|
Abstract
The formation of new memories appears to require alterations in the shape and strength of synapses within the hippocampus, yet our knowledge of the molecular mechanisms underlying these changes remains incomplete. Zhang and colleagues provide new understanding of memory formation by uncovering the lysine acetyltransferase SRC3 as the key driver of the novel posttranslational modification of calmodulin (CaM) acetylation, which regulates CaM's activity and subsequent activation of CaMKII. This new pathway is demonstrated to be both necessary and sufficient for CA3→CA1 synapse long-term potentiation (LTP) and fear memory formation, and this approach may act as a blueprint for future investigation of the role of acetylation of other proteins in neuronal functions.
Collapse
Affiliation(s)
- Chiho Sugimoto
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|