1
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Zhang XF, Peng CG, Guo HJ, Zhang ZM. Development and validation of a prediction model for chronic post-surgical pain risk: a single-center prospective study of video-assisted thoracoscopic lung cancer surgery. J Cardiothorac Surg 2025; 20:85. [PMID: 39849555 PMCID: PMC11756054 DOI: 10.1186/s13019-024-03310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Chronic post-surgical pain (CPSP) is a common complication following video-assisted thoracoscopic surgery (VATS) that significantly impacts the quality of life of patients. Although multiple risk factors have been identified, no systematically validated prediction model exists to guide clinical decision-making. OBJECTIVES This study aimed to develop and validate a risk prediction model for CPSP in patients undergoing VATS for lung cancer. METHODS This prospective cohort study included clinical data from 400 patients with non-small cell lung cancer who underwent VATS from June 2022 to June 2023. Patients were randomly assigned to a training cohort and an internal test cohort and assessed for sleep quality, psychological status, and pain levels. A nomogram prediction model was established based on variables significantly associated with CPSP in the training cohort. The model was internally validated in the internal test cohort to evaluate its discrimination, calibration, and clinical utility. RESULTS Independent risk factors for CPSP included female gender, severe acute pain post-surgery, lymph node dissection, and cold pain sensation, while paravertebral nerve block was identified as a protective factor. The AUC values were 0.878 in training cohort and 0.805 in internal test cohort, respectively, indicating that the model performed well in identifying patients at risk for CPSP. The calibration curves in both cohorts showed a good fit, indicating that the model's predictions were reliable. And the DCA curve showed that using our model to guide decisions resulted in a higher net benefit compared to a strategy of not screening or treating all patients. CONCLUSION An effective risk prediction model for CPSP was successfully developed and validated in this study. This model can aid physicians in conducting more accurate assessments of CPSP risk in patients prior to surgery and in offering personalized strategies for managing CPSP. CLINICAL REGISTRATION NUMBER Registration website: https://www.chictr.org.cn/ . Registration date: 2022/5/21. REGISTRATION NUMBER ChiCTR2200060196.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, China
| | - Chang-Guo Peng
- Department of Anaesthesiology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| | - Hua-Jing Guo
- Department of Anaesthesiology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| | - Zhi-Ming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, Hunan Province, 423000, China.
| |
Collapse
|
3
|
Lin Z, Luo X, Wickman JR, Reddy D, DaCunza JT, Pande R, Tian Y, Kasimoglu EE, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. Brain Behav Immun 2025; 123:422-441. [PMID: 39349284 PMCID: PMC12004123 DOI: 10.1016/j.bbi.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Current treatments for chronic pain have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs), or exosomes, to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can be beneficial or harmful depending on their source and cargo composition. We report a comprehensive multi-modal analysis of different aspects of sEV characterization, miRNAs, and protein markers across sEV sources. To investigate the short- and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model male donor mice were injected intrathecally into naïve male recipient mice. These sEVs transiently increased basal mechanical thresholds, an effect mediated by opioid signaling as this outcome was blocked by naltrexone. Mass spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. sEVs from naïve female mice have higher levels of leu-enkephalin compared to male, matching the analgesic onset of leu-enkephalin in male recipient mice. In investigating the long-term effect of sEVs, we observed that a single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. Our exploratory studies examining immune cell populations in spinal cord and dorsal root ganglion using ChipCytometry suggested alterations in immune cell populations 14 days post-CFA. Flow cytometry confirmed increases in CD206+ macrophages in the spinal cord in sEV-treated mice. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason R Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason T DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Ezgi E Kasimoglu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA.
| |
Collapse
|
4
|
Cocea AC, Stoica CI. Interactions and Trends of Interleukins, PAI-1, CRP, and TNF-α in Inflammatory Responses during the Perioperative Period of Joint Arthroplasty: Implications for Pain Management-A Narrative Review. J Pers Med 2024; 14:537. [PMID: 38793119 PMCID: PMC11122505 DOI: 10.3390/jpm14050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation during the perioperative period of joint arthroplasty is a critical aspect of patient outcomes, influencing both the pathophysiology of pain and the healing process. This narrative review comprehensively evaluates the roles of specific cytokines and inflammatory biomarkers in this context and their implications for pain management. Inflammatory responses are initiated and propagated by cytokines, which are pivotal in the development of both acute and chronic postoperative pain. Pro-inflammatory cytokines play essential roles in up-regulating the inflammatory response, which, if not adequately controlled, leads to sustained pain and impaired tissue healing. Anti-inflammatory cytokines work to dampen inflammatory responses and promote resolution. Our discussion extends to the genetic and molecular influences on cytokine production, which influence pain perception and recovery rates post-surgery. Furthermore, the role of PAI-1 in modulating inflammation through its impact on the fibrinolytic system highlights its potential as a therapeutic target. The perioperative modulation of these cytokines through various analgesic and anesthetic techniques, including the fascia iliac compartment block, demonstrates a significant reduction in pain and inflammatory markers, thus underscoring the importance of targeted therapeutic strategies. Our analysis suggests that a nuanced understanding of the interplay between pro-inflammatory and anti-inflammatory cytokines is required. Future research should focus on individualized pain management strategies.
Collapse
Affiliation(s)
- Arabela-Codruta Cocea
- Faculty of Medicine, Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Ioan Stoica
- Orthopedics, Anaesthesia Intensive Care Unit, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
5
|
Sabnis RW. Novel AT2R Antagonists for Treating Chronic Pain. ACS Med Chem Lett 2024; 15:326-327. [PMID: 38505837 PMCID: PMC10945537 DOI: 10.1021/acsmedchemlett.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 03/21/2024] Open
Abstract
Provided herein are novel AT2R antagonists, pharmaceutical compositions, use of such compounds in treating chronic pain, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
6
|
Pandey V, Yadav V, Srivastava A, Gaglani P, Singh R, Subhashini. Blocking μ-opioid receptor by naltrexone exaggerates oxidative stress and airway inflammation via the MAPkinase pathway in a murine model of asthma. Free Radic Biol Med 2024; 212:94-116. [PMID: 38142953 DOI: 10.1016/j.freeradbiomed.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Opioids regulate various physiological and pathophysiological functions, including cell proliferation, immune function, obesity, and neurodegenerative disorders. They have been used for centuries as a treatment for severe pain, binding to opioid receptors a specific G protein-coupled receptor. Common opioids, like β-endorphin, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), and dynorphins, have analgesic effects. The use of a potent antagonist, like naltrexone hydrochloride, to block the effects of mu Opioid Receptor (μOR) may result in the withdrawal of physiological effects and could potentially impact immune responses in many diseases including respiratory disease. Asthma is a respiratory disease characterized by airway hyperresponsiveness, inflammation, bronchoconstriction, chest tightness, stress generation and release of various cytokines. Airway inflammation leads recruitment and activation of immune cells releasing mediators, including opioids, which may modulate inflammatory response by binding to their respective receptors. The study aims to explore the role of μOR antagonist (naltrexone) in regulating asthma pathophysiology, as the regulation of immune and inflammatory responses in asthma remains unclear. Balb/c mice were sensitized intranasally by 1% TDI and challenged with 2.5% TDI. Naltrexone hydrochloride (1 mg/kg body weight) was administered through intraperitoneal route 1 h before TDI induction. Blocking μOR by naltrexone exacerbates airway inflammation by recruiting inflammatory cells (lymphocytes and neutrophils), enhancing intracellular Reactive oxygen species in bronchoalveolar lavage fluid (BALF), and inflammatory mediator (histamine, Eosinophil peroxidase and neutrophil elastase) in lungs. Naltrexone administration modulated inflammatory cytokines (TNF-α, IL-4, IL-5, IL-6, IL-10, and IL-17A), and enhanced IgE and CRP levels. Naltrexone administration also increased the expression of NF-κB, and phosphorylated p-P38, p-Erk, p-JNK and NF-κB by inhibiting the μOR. Docking study revealed good binding affinity of naltrexone with μOR compared to δ and κ receptors. In future it might elucidate potential therapeutic against many respiratory pathological disorders. In conclusion, μOR blocking by naltrexone regulates and implicates inflammation, bronchoconstriction, and lung physiology.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pratikkumar Gaglani
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Lin Z, Luo X, Wickman JR, Reddy D, Pande R, Tian Y, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.578759. [PMID: 38405813 PMCID: PMC10888877 DOI: 10.1101/2024.02.16.578759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta, T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
8
|
Farrell SF, Armfield NR, Cabot PJ, Elphinston RA, Gray P, Minhas G, Collyer MR, Sterling M. C-Reactive Protein (CRP) is Associated With Chronic Pain Independently of Biopsychosocial Factors. THE JOURNAL OF PAIN 2024; 25:476-496. [PMID: 37741522 DOI: 10.1016/j.jpain.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammation is linked with chronic pain but the extent to which this relationship is associated with biopsychosocial factors is not known. We investigated relationships between blood C-reactive protein (CRP) and regional chronic pain conditions adjusting for a large range and number of potential confounders. We performed cross-sectional analyses using the UK Biobank (N = 415,567) comparing CRP in people reporting any of 9 types of regional chronic pain with pain-free controls. Using logistic regression modelling, we explored relationships between CRP and the presence of chronic pain, with demographic, socioeconomic, psychological/lifestyle factors, and medical comorbidities as covariates. CRP was higher in chronic pain at any site compared with controls (Females: median [interquartile range] 1.60 mg/L [2.74] vs 1.17 mg/L [1.87], P < .001; Males: 1.44 mg/L [2.12] vs 1.15 mg/L [1.65], P < .001). In males, associations between CRP and all types of chronic pain were attenuated but remained significant after adjustment for biopsychosocial covariates (OR range 1.08-1.49, P ≤ .001). For females, adjusted associations between CRP and pain remained significant for most chronic pain types (OR range 1.07-1.34, P < .001) except for facial pain (OR 1.04, P = .17) and headache (OR 1.02, P = .07)-although these non-significant findings may reflect reduced sample size. The significant association between CRP and chronic pain after adjustment for key biopsychosocial confounders implicates an independent underlying biological mechanism of inflammation in chronic pain. The presence of yet unknown or unmeasured confounding factors cannot be ruled out. Our findings may inform better-targeted treatments for chronic pain. PERSPECTIVE: Using a large-scale dataset, this article investigates associations between chronic pain conditions and blood C-reactive protein (CRP), to evaluate the confounding effects of a range of biopsychosocial factors. CRP levels were higher in those with chronic pain versus controls after adjusting for confounders-suggesting a possible independent biological mechanism.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia; Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Nigel R Armfield
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia; Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel A Elphinston
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia
| | - Paul Gray
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gunjeet Minhas
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Martin R Collyer
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia
| |
Collapse
|
9
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
10
|
van der Heijden RA, Biswal S. Up-and-coming Radiotracers for Imaging Pain Generators. Semin Musculoskelet Radiol 2023; 27:661-675. [PMID: 37935213 PMCID: PMC10629993 DOI: 10.1055/s-0043-1775745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.
Collapse
Affiliation(s)
- Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Giada A, Giulia G, Paola S, Silvia F. Characterization of prokineticin system in Crohn's disease pathophysiology and pain, and its modulation by alcohol abuse: A preclinical study. Biochim Biophys Acta Mol Basis Dis 2023:166791. [PMID: 37336367 DOI: 10.1016/j.bbadis.2023.166791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Crohn's disease-(CD) pathogenesis is still unknown and chronic pain is a frequent symptom in CD-patients. Identifying novel therapeutic targets and predisposing factors is a primary goal. In this regard, prokineticin system-(PKS) appears a promising target. AIMS AND METHODS TNBS-model was used. DAI, abdominal and visceral pain, and muscle strength were monitored. CD-mice were sacrificed at two times (day 7 and 14 after TNBS) in order to identify PKS involvement in CD pathophysiology and pain. PKS characterization was performed in mesenteric lymph nodes-(MLN), colon, myenteric plexus-(MP), dorsal root ganglia-(DRGs) and spinal cord-(SC). Inflammation/neuroinflammation was also assessed in the same tissues. In order to evaluate alcohol abuse as a possible trigger for CD and its effect on PKS activation, naïve mice were administered (oral-gavage) with ethanol for 10 consecutive days. PKS as well as inflammation/neuroinflammation were evaluated in MLN, colon and MP. RESULTS TNBS treated-mice showed a rapid increase in DAI, abdominal/visceral hypersensitivity and a progressive strength loss. In all tissue analysed of CD-mice, a quick and significant increase of mRNA of PKs and PKRs was observed, associated with an increase of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) and macrophage/glia markers (iba1, CD11b and GFAP) levels. In alcohol abuse model, ethanol induced in colon and MP a significant PKS activation accompanied by inflammation/neuroinflammation. CONCLUSIONS We can assume that PKS may be involved in CD development and pain. Furthermore, alcohol appears to activate PKS and may be a trigger factor for CD.
Collapse
Affiliation(s)
- Amodeo Giada
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Galimberti Giulia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Sacerdote Paola
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Franchi Silvia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
12
|
Farrell SF, Sterling M, Klyne DM, Mustafa S, Campos AI, Kho PF, Lundberg M, Rentería ME, Ngo TT, Cuéllar-Partida G. Genetic impact of blood C-reactive protein levels on chronic spinal & widespread pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:2078-2085. [PMID: 37069442 DOI: 10.1007/s00586-023-07711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/27/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Causal mechanisms underlying systemic inflammation in spinal & widespread pain remain an intractable experimental challenge. Here we examined whether: (i) associations between blood C-reactive protein (CRP) and chronic back, neck/shoulder & widespread pain can be explained by shared underlying genetic variants; and (ii) higher CRP levels causally contribute to these conditions. METHODS Using genome-wide association studies (GWAS) of chronic back, neck/shoulder & widespread pain (N = 6063-79,089 cases; N = 239,125 controls) and GWAS summary statistics for blood CRP (Pan-UK Biobank N = 400,094 & PAGE consortium N = 28,520), we employed cross-trait bivariate linkage disequilibrium score regression to determine genetic correlations (rG) between these chronic pain phenotypes and CRP levels (FDR < 5%). Latent causal variable (LCV) and generalised summary data-based Mendelian randomisation (GSMR) analyses examined putative causal associations between chronic pain & CRP (FDR < 5%). RESULTS Higher CRP levels were genetically correlated with chronic back, neck/shoulder & widespread pain (rG range 0.26-0.36; P ≤ 8.07E-9; 3/6 trait pairs). Although genetic causal proportions (GCP) did not explain this finding (GCP range - 0.32-0.08; P ≥ 0.02), GSMR demonstrated putative causal effects of higher CRP levels contributing to each pain type (beta range 0.027-0.166; P ≤ 9.82E-03; 3 trait pairs) as well as neck/shoulder pain effects on CRP levels (beta [S.E.] 0.030 [0.021]; P = 6.97E-04). CONCLUSION This genetic evidence for higher CRP levels in chronic spinal (back, neck/shoulder) & widespread pain warrants further large-scale multimodal & prospective longitudinal studies to accelerate the identification of novel translational targets and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia.
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia.
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health; School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sanam Mustafa
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Adrián I Campos
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Pik-Fang Kho
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Cancer Epidemiology Laboratory, Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mischa Lundberg
- Institute of Biological Psychiatry, Boserupvej 2, 4000, Roskilde, Denmark
- Transformational Bioinformatics, CSIRO Health & Biosecurity, North Ryde, NSW, Australia
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, QLD, Australia
| | - Miguel E Rentería
- Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Trung Thanh Ngo
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia
| | - Gabriel Cuéllar-Partida
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, QLD, Australia
- Gilead Sciences, Foster City, CA, USA
| |
Collapse
|