1
|
Yoshioka T, Yamada D, Hagiwara A, Kajino K, Iio K, Saitoh T, Nagase H, Saitoh A. Delta opioid receptor agonists activate PI3K-mTORC1 signaling in parvalbumin-positive interneurons in mouse infralimbic prefrontal cortex to exert acute antidepressant-lie effects. Mol Psychiatry 2025; 30:2038-2048. [PMID: 39643691 PMCID: PMC12015109 DOI: 10.1038/s41380-024-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/09/2024]
Abstract
The delta opioid receptor (DOP) is a promising target for novel antidepressants due to its potential for rapid action with minimal adverse effects; however, the functional mechanism underlying acute antidepressant actions remains elusive. We report that subcutaneous injection of the selective DOP agonist KNT-127 reduced immobility in the forced swimming test, and that this antidepressant-like response was reversed by intracerebroventricular injection of the selective mechanistic (or mammalian) target of rapamycin (mTOR) inhibitor rapamycin or the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. KNT-127 also alleviated social avoidance and reduced sucrose consumption (anhedonia) among chronic vicarious social defeat stress model mice, which were similarly reversed by PI3K and mTOR inhibitors. In addition, KNT-127 increased phosphorylation levels of the mTOR signaling-related proteins Akt and p70S6 kinase in medial prefrontal cortex as revealed by immunoblotting. In the forced swimming test, a microinfusion of KNT-127 and another DOP agonist SNC80 in the infralimbic prefrontal cortex (IL-PFC) attenuated the immobility, which were blocked by rapamycin and LY294002. Perfusion of KNT-127 onto IL-PFC slices increased miniature excitatory postsynaptic current frequency and reduced miniature inhibitory postsynaptic current frequency in pyramidal neurons as measured by whole-cell patch-clamping, and both responses were reversed by rapamycin. Imaging of brain slices from transgenic mice with DOP-promoter-driven green fluorescent protein revealed that most DOPs were expressed in parvalbumin-positive interneurons in the IL-PFC. These findings suggest that DOP agonists exert antidepressant-like actions by suppressing GABA release from parvalbumin-positive interneurons via the PI3K-Akt-mTORC1-p70S6 kinase pathway, thereby enhancing IL-PFC pyramidal neuron excitation.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
2
|
Yoshioka T, Kimiki S, Yamazaki M, Hamano T, Ou M, Ode Y, Ehara R, Kajino K, Kasai S, Yoshizawa K, Saitoh T, Yamada D, Nagase H, Saitoh A. Agonists of the opioid δ-receptor improve irritable bowel syndrome-like symptoms via the central nervous system. Br J Pharmacol 2025; 182:1599-1609. [PMID: 39721072 DOI: 10.1111/bph.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Irritable bowel syndrome (IBS) is a common condition that is challenging to treat, and novel drugs are needed for this condition. Previously, a chronic vicarious social defeat stress (cVSDS) mouse model exhibits IBS-like symptoms. Also agonists of the opioid δ-receptor exert anti-stress effects in rodents with minimal adverse effects. Here, we evaluated the effects of δ-receptor agonists on the IBS-like symptoms in cVSDS mice. EXPERIMENTAL APPROACH cVSDS mice (male C57BL/6J mice) were prepared following a 10-day exposure to witness of social defeat stress. Subsequently, intestinal peristaltic motility and abdominal hyperalgesia were evaluated using the charcoal meal test (CMT) and capsaicin-induced hyperalgesia test (CHT), respectively. Extracellular glutamate levels were measured using in vivo brain microdialysis. The drug was singly administrated 30 min before testing. KEY RESULTS In cVSDS mice, systemic (10 mg kg-1) and intracerebroventricular (30 nmol) administration of a δ-receptor agonist regulated intestinal peristalsis in the CMT and relieved abdominal pain in the CHT. Effects of systemic administration were blocked by intracerebroventricular injection of a δ-receptor inhibitor. Local infusion of the δ-receptor agonist (0.6 nmol) into the insular cortex improved cVSDS-induced intestinal hypermotility. The in vivo brain microdialysis study showed that re-exposure to VSDS elevated the extracellular glutamate levels in the IC, which was restored by the δ-receptor agonist. CONCLUSIONS AND IMPLICATIONS We propose that agonists of opioid δ-receptors are potential drugs for the radical treatment of IBS because they can ameliorate IBS-like symptoms via the CNS, specifically the insular cortex.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sayaka Kimiki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takumi Hamano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mizuki Ou
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yumi Ode
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rui Ehara
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
3
|
Spodnick MB, McElderry SC, Diaz MR. Opioid receptor signaling throughout ontogeny: Shaping neural and behavioral trajectories. Neurosci Biobehav Rev 2025; 170:106033. [PMID: 39894419 PMCID: PMC11851333 DOI: 10.1016/j.neubiorev.2025.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Due to the recent and ongoing opioid crisis in the United States, exposure to opioid drugs in utero is becoming more common, including during medication-assisted therapy used to treat opioid use disorder. As such, careful consideration of opioidergic signaling in utero and beyond, as well as alterations to this signaling via introduction of exogenous opioids, is warranted. This review explores the ontogeny and function of the Mu, Kappa and Delta opioid receptor systems throughout the lifespan, highlighting their importance in guiding neurobehavioral development. We argue for a paradigm shift in conceptualization of opioids as not only contributors within their own system, but also vital regulators of a multitude of downstream neurodevelopmental processes.
Collapse
Affiliation(s)
- Mary B Spodnick
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | | | - Marvin R Diaz
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| |
Collapse
|
4
|
Liu X, Liu R, Sun YX, Wang HL, Wang H, Wang T, Ma YN, Li XX, Wang Q, Su YA, Li JT, Si TM. Dorsal CA3 overactivation mediates witnessing stress-induced recognition memory deficits in adolescent male mice. Neuropsychopharmacology 2024; 49:1666-1677. [PMID: 38504012 PMCID: PMC11399124 DOI: 10.1038/s41386-024-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.
Collapse
Affiliation(s)
- Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Rui Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
5
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
6
|
Iwai T, Mishima R, Hirayama S, Nakajima H, Oyama M, Watanabe S, Fujii H, Tanabe M. SYK-623, a δ Opioid Receptor Inverse Agonist, Mitigates Chronic Stress-Induced Behavioral Abnormalities and Disrupted Neurogenesis. J Clin Med 2024; 13:608. [PMID: 38276114 PMCID: PMC10817044 DOI: 10.3390/jcm13020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Rei Mishima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shigeto Hirayama
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Honoka Nakajima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Hideaki Fujii
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| |
Collapse
|
7
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Nakamoto K, Tokuyama S. Stress-Induced Changes in the Endogenous Opioid System Cause Dysfunction of Pain and Emotion Regulation. Int J Mol Sci 2023; 24:11713. [PMID: 37511469 PMCID: PMC10380691 DOI: 10.3390/ijms241411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Early life stress, such as child abuse and neglect, and psychosocial stress in adulthood are risk factors for psychiatric disorders, including depression and anxiety. Furthermore, exposure to these stresses affects the sensitivity to pain stimuli and is associated with the development of chronic pain. However, the mechanisms underlying the pathogenesis of stress-induced depression, anxiety, and pain control remain unclear. Endogenous opioid signaling is reportedly associated with analgesia, reward, addiction, and the regulation of stress responses and anxiety. Stress alters the expression of various opioid receptors in the central nervous system and sensitivity to opioid receptor agonists and antagonists. μ-opioid receptor-deficient mice exhibit attachment disorders and autism-like behavioral expression patterns, while those with δ-opioid receptor deficiency exhibit anxiety-like behavior. In contrast, deficiency and antagonists of the κ-opioid receptor suppress the stress response. These findings strongly suggest that the expression and dysfunction of the endogenous opioid signaling pathways are involved in the pathogenesis of stress-induced psychiatric disorders and chronic pain. In this review, we summarize the latest basic and clinical research studies on the effects of endogenous opioid signaling on early-life stress, psychosocial stress-induced psychiatric disorders, and chronic pain.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|