1
|
Gai Q, Chu T, Li Q, Guo Y, Ma H, Shi Y, Che K, Zhao F, Dong F, Li Y, Xie H, Mao N. Altered intersubject functional variability of brain white-matter in major depressive disorder and its association with gene expression profiles. Hum Brain Mapp 2024; 45:e26670. [PMID: 38553866 PMCID: PMC10980843 DOI: 10.1002/hbm.26670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Major depressive disorder (MDD) is a clinically heterogeneous disorder. Its mechanism is still unknown. Although the altered intersubject variability in functional connectivity (IVFC) within gray-matter has been reported in MDD, the alterations to IVFC within white-matter (WM-IVFC) remain unknown. Based on the resting-state functional MRI data of discovery (145 MDD patients and 119 healthy controls [HCs]) and validation cohorts (54 MDD patients, and 78 HCs), we compared the WM-IVFC between the two groups. We further assessed the meta-analytic cognitive functions related to the alterations. The discriminant WM-IVFC values were used to classify MDD patients and predict clinical symptoms in patients. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging association analyses were further conducted to investigate gene expression profiles associated with WM-IVFC alterations in MDD, followed by a set of gene functional characteristic analyses. We found extensive WM-IVFC alterations in MDD compared to HCs, which were associated with multiple behavioral domains, including sensorimotor processes and higher-order functions. The discriminant WM-IVFC could not only effectively distinguish MDD patients from HCs with an area under curve ranging from 0.889 to 0.901 across three classifiers, but significantly predict depression severity (r = 0.575, p = 0.002) and suicide risk (r = 0.384, p = 0.040) in patients. Furthermore, the variability-related genes were enriched for synapse, neuronal system, and ion channel, and predominantly expressed in excitatory and inhibitory neurons. Our results obtained good reproducibility in the validation cohort. These findings revealed intersubject functional variability changes of brain WM in MDD and its linkage with gene expression profiles, providing potential implications for understanding the high clinical heterogeneity of MDD.
Collapse
Affiliation(s)
- Qun Gai
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
- Big Data & Artificial Intelligence LaboratoryYantai Yuhuangding HospitalYantaiShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's DiseasesYantai Yuhuangding HospitalYantaiShandongChina
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
- Big Data & Artificial Intelligence LaboratoryYantai Yuhuangding HospitalYantaiShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's DiseasesYantai Yuhuangding HospitalYantaiShandongChina
| | - Qinghe Li
- School of Medical ImagingBinzhou Medical UniversityYantaiShandongChina
| | - Yuting Guo
- School of Medical ImagingBinzhou Medical UniversityYantaiShandongChina
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
| | - Feng Zhao
- School of Computer Science and TechnologyShandong Technology and Business UniversityYantaiShandongChina
| | - Fanghui Dong
- School of Medical ImagingBinzhou Medical UniversityYantaiShandongChina
| | - Yuna Li
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding HospitalQingdao UniversityYantaiShandongChina
- Big Data & Artificial Intelligence LaboratoryYantai Yuhuangding HospitalYantaiShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's DiseasesYantai Yuhuangding HospitalYantaiShandongChina
| |
Collapse
|
2
|
Wong SA, Lebois LAM, Ely TD, van Rooij SJH, Bruce SE, Murty VP, Jovanovic T, House SL, Beaudoin FL, An X, Zeng D, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Miller MW, Pietrzak RH, Joormann J, Barch DM, Pizzagalli DA, Harte SE, Elliott JM, Kessler RC, Koenen KC, McLean SA, Ressler KJ, Stevens JS, Harnett NG. Internal capsule microstructure mediates the relationship between childhood maltreatment and PTSD following adulthood trauma exposure. Mol Psychiatry 2023; 28:5140-5149. [PMID: 36932158 PMCID: PMC10505244 DOI: 10.1038/s41380-023-02012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Childhood trauma is a known risk factor for trauma and stress-related disorders in adulthood. However, limited research has investigated the impact of childhood trauma on brain structure linked to later posttraumatic dysfunction. We investigated the effect of childhood trauma on white matter microstructure after recent trauma and its relationship with future posttraumatic dysfunction among trauma-exposed adult participants (n = 202) recruited from emergency departments as part of the AURORA Study. Participants completed self-report scales assessing prior childhood maltreatment within 2-weeks in addition to assessments of PTSD, depression, anxiety, and dissociation symptoms within 6-months of their traumatic event. Fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI) collected at 2-weeks and 6-months was used to index white matter microstructure. Childhood maltreatment load predicted 6-month PTSD symptoms (b = 1.75, SE = 0.78, 95% CI = [0.20, 3.29]) and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = 0.0238, FDR corrected). We observed a significant indirect effect of childhood maltreatment load on 6-month PTSD symptoms through 2-week IC microstructure (b = 0.37, Boot SE = 0.18, 95% CI = [0.05, 0.76]) that fully mediated the effect of childhood maltreatment load on PCL-5 scores (b = 1.37, SE = 0.79, 95% CI = [-0.18, 2.93]). IC microstructure did not mediate relationships between childhood maltreatment and depressive, anxiety, or dissociative symptomatology. Our findings suggest a unique role for IC microstructure as a stable neural pathway between childhood trauma and future PTSD symptoms following recent trauma. Notably, our work did not support roles of white matter tracts previously found to vary with PTSD symptoms and childhood trauma exposure, including the cingulum bundle, uncinate fasciculus, and corpus callosum. Given the IC contains sensory fibers linked to perception and motor control, childhood maltreatment might impact the neural circuits that relay and process threat-related inputs and responses to trauma.
Collapse
Affiliation(s)
- Samantha A Wong
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Diego A Pizzagalli
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James M Elliott
- Kolling Institute, University of Sydney, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, Camperdown, NSW, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kinno R, Muragaki Y, Maruyama T, Tamura M, Ono K, Tanaka K, Sakai KL. Diffuse glioma-induced structural reorganization in close association with preexisting syntax-related networks. Cortex 2023; 167:283-302. [PMID: 37586138 DOI: 10.1016/j.cortex.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Glioma in the left frontal cortex has been reported to cause agrammatic comprehension and induce global functional connectivity alterations within the syntax-related networks. However, it remains unclear to what extent the structural reorganization is affected by preexisting syntax-related networks. We examined 28 patients with a diffuse glioma in the left hemisphere and 23 healthy participants. Syntactic abilities were assessed by a picture-sentence matching task with various sentence types. The lesion responsible for agrammatic comprehension was identified by region-of-interest-based lesion-symptom mapping (RLSM). Cortical structural alterations were examined by surface-based morphometry (SBM), in which the cortical thickness and fractal dimension were measured with three-dimensional magnetic resonance imaging (MRI). Fiber tracking on the human population-averaged diffusion MRI template was performed to examine whether the cortical structural alterations were associated with the syntax-related networks. The RLSM revealed associations between agrammatic comprehension and a glioma in the posterior limb of the left internal capsule. The SBM demonstrated that decreased cortical thickness and/or increased complexity of the right posterior insula were associated not only with agrammatic comprehension of the patients but also with the syntactic abilities of healthy participants. The fiber tracking revealed that the route between these two regions was anatomically integrated into the preexisting syntax-related networks previously identified. These results suggest a potential association between agrammatic comprehension in patients with diffuse glioma and structural variations in specific tracts and cortical regions, which may be closely related to the syntax-related networks.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kyohei Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Miyawaki Y, Yoneta M, Okawada M, Kawakami M, Liu M, Kaneko F. Neural bases characterizing chronic and severe upper-limb motor deficits after brain lesion. J Neural Transm (Vienna) 2023; 130:663-677. [PMID: 36943506 DOI: 10.1007/s00702-023-02622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Chronic and severe upper-limb motor deficits can result from damage to the corticospinal tract. However, it remains unclear what their characteristics are and whether only corticospinal tract damage determines their characteristics. This study aimed to investigate the clinical characteristics and neural bases of chronic and severe upper-limb motor deficits. Motor deficits, including spasticity, of 45 patients with brain lesions were assessed using clinical scales. Regarding their scores, we conducted a principal component analysis that statistically extracted the clinical characteristics as two principal components. Using these principal components, we investigated the neural bases underlying their characteristics through lesion analyses of lesion volume, lesion sites, corticospinal tract, or other regional white-matter integrity. Principal component analysis showed that the clinical characteristics of chronic and severe upper-limb motor deficits could be described as a comprehensive severity and a trade-off relationship between proximal motor functions and wrist/finger spasticity. Lesion analyses revealed that the comprehensive severity was correlated with corticospinal tract integrity, and the trade-off relationship was associated with the integrity of other regional white matter located anterior to the posterior internal capsule, such as the anterior internal capsule. This study indicates that the severity of chronic and severe upper-limb motor deficits can be determined according to the corticospinal tract integrity, and such motor deficits may be further characterized by the integrity of other white matter, where the corticoreticular pathway can pass through, by forming a trade-off relationship where patients have higher proximal motor functions but more severe wrist/finger spasticity, and vice versa.
Collapse
Affiliation(s)
- Yu Miyawaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Oku, Arakawa-ku, Tokyo, 116-8551, Japan
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Chiba, Japan
| | - Masaki Yoneta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Megumi Okawada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Oku, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Oku, Arakawa-ku, Tokyo, 116-8551, Japan.
| |
Collapse
|
5
|
Tsiknia AA, Bergstrom J, Reas ET. Midlife omega-3 fatty acid intake predicts later life white matter microstructure in an age- and APOE-dependent manner. Cereb Cortex 2023; 33:2143-2151. [PMID: 35584792 PMCID: PMC9977375 DOI: 10.1093/cercor/bhac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 intake has been positively associated with healthy brain aging, yet it remains unclear whether high omega-3 intake beginning early in life may optimize its protective effects against brain aging. We examined whether omega-3 intake is associated with brain microstructure over 2 decades later among dementia-free older adults. The 128 participants (62% women; age at magnetic resonance imaging: 76.6 ± 7.9) from the Rancho Bernardo Study of Healthy Aging completed at least 1 dietary assessment between 1984 and 1996 and underwent restriction spectrum imaging (RSI) 22.8 ± 3.1 years later. We evaluated associations between prior omega-3 intake and RSI metrics of gray and white matter (WM) microstructure. Higher prior omega-3 intake was associated with greater restricted diffusion in the superior cortico-striatal fasciculus. A correlation between higher prior omega-3 intake and greater cingulum restricted diffusion was stronger among participants >80 years old. Higher omega-3 intake correlated with greater restricted diffusion in the inferior longitudinal and inferior fronto-occipital fasciculus more strongly for apolipoprotein E (APOE) ε4 carriers than noncarriers. Associations were not modified by adjustment for dietary pattern, health, or lifestyle. High omega-3 intake in midlife may help to maintain WM integrity into older age, particularly in the latest decades of life and among APOE ε4 carriers.
Collapse
Affiliation(s)
- Amaryllis A Tsiknia
- Department of Neurosciences, University of California, San Diego, CA 92093-0841, United States
| | - Jaclyn Bergstrom
- School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, United States
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, CA 92093-0841, United States
| |
Collapse
|
6
|
Torres Y, Celis C, Acurio J, Escudero C. Language Impairment in Children of Mothers with Gestational Diabetes, Preeclampsia, and Preterm Delivery: Current Hypothesis and Potential Underlying Mechanisms : Language Impartment and Pregnancy Complications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:245-267. [PMID: 37466777 DOI: 10.1007/978-3-031-32554-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Many conditions may impair or delay language development, including socioeconomic status, parent's education, or intrauterine environment. Accordingly, increasing evidence has described that pregnancy complications, including gestational diabetes mellitus (GDM), preeclampsia, and preterm delivery, are associated with the offspring's impaired neurodevelopment. Since language is one of the high brain functions, alterations in this function are another sign of neurodevelopment impairment. How these maternal conditions may generate language impairment has yet to be entirely understood. However, since language development requires adequate structural formation and function/connectivity of the brain, these processes must be affected by alterations in maternal conditions. However, the underlying mechanisms of these structural alterations are largely unknown. This manuscript critically analyzes the literature focused on the risk of developing language impairment in children of mothers with GDM, preeclampsia, and preterm delivery. Furthermore, we highlight potential underlying molecular mechanisms associated with these alterations, such as neuroinflammatory and metabolic and cerebrovascular alterations.
Collapse
Affiliation(s)
- Yesenia Torres
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Celis
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Centro terapéutico , ABCfonoaudiologia, Santiago, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
7
|
Association between real-time strategy video game learning outcomes and pre-training brain white matter structure: preliminary study. Sci Rep 2022; 12:20741. [PMID: 36456870 PMCID: PMC9715544 DOI: 10.1038/s41598-022-25099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process.
Collapse
|
8
|
Berger M, Pirpamer L, Hofer E, Ropele S, Duering M, Gesierich B, Pasternak O, Enzinger C, Schmidt R, Koini M. Free water diffusion MRI and executive function with a speed component in healthy aging. Neuroimage 2022; 257:119303. [PMID: 35568345 PMCID: PMC9465649 DOI: 10.1016/j.neuroimage.2022.119303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Extracellular free water (FW) increases are suggested to better provide pathophysiological information in brain aging than conventional biomarkers such as fractional anisotropy. The aim of the present study was to determine the relationship between conventional biomarkers, FW in white matter hyperintensities (WMH), FW in normal appearing white matter (NAWM) and in white matter tracts and executive functions (EF) with a speed component in elderly persons. We examined 226 healthy elderly participants (median age 69.83 years, IQR: 56.99–74.42) who underwent brain MRI and neuropsychological examination. FW in WMH and in NAWM as well as FW corrected diffusion metrics and measures derived from conventional MRI (white matter hyperintensities, brain volume, lacunes) were used in partial correlation (adjusted for age) to assess their correlation with EF with a speed component. Random forest analysis was used to assess the relative importance of these variables as determinants. Lastly, linear regression analyses of FW in white matter tracts corrected for risk factors of cognitive and white matter deterioration, were used to examine the role of specific tracts on EF with a speed component, which were then ranked with random forest regression. Partial correlation analyses revealed that almost all imaging metrics showed a significant association with EF with a speed component (r = −0.213 – 0.266). Random forest regression highlighted FW in WMH and in NAWM as most important among all diffusion and structural MRI metrics. The fornix (R2=0.421, p = 0.018) and the corpus callosum (genu (R2 = 0.418, p = 0.021), prefrontal (R2 = 0.416, p = 0.026), premotor (R2 = 0.418, p = 0.021)) were associated with EF with a speed component in tract based regression analyses and had highest variables importance. In a normal aging population FW in WMH and NAWM is more closely related to EF with a speed component than standard DTI and brain structural measures. Higher amounts of FW in the fornix and the frontal part of the corpus callosum leads to deteriorating EF with a speed component.
Collapse
Affiliation(s)
- Martin Berger
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Lukas Pirpamer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Edith Hofer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, Munich, Germany
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reinhold Schmidt
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Marisa Koini
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| |
Collapse
|
9
|
Hsieh S, Yang MH. Potential Diffusion Tensor Imaging Biomarkers for Elucidating Intra-Individual Age-Related Changes in Cognitive Control and Processing Speed. Front Aging Neurosci 2022; 14:850655. [PMID: 35557836 PMCID: PMC9087335 DOI: 10.3389/fnagi.2022.850655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Cognitive aging, especially cognitive control, and processing speed aging have been well-documented in the literature. Most of the evidence was reported based on cross-sectional data, in which inter-individual age effects were shown. However, there have been some studies pointing out the possibility of overlooking intra-individual changes in cognitive aging. To systematically examine whether age-related differences and age-related changes might yield distinctive patterns, this study directly compared cognitive control function and processing speed between different cohorts versus follow-up changes across the adult lifespan. Moreover, considering that cognitive aging has been attributed to brain disconnection in white matter (WM) integrity, this study focused on WM integrity via acquiring diffusion-weighted imaging data with an MRI instrument that are further fitted to a diffusion tensor model (i.e., DTI) to detect water diffusion directionality (i.e., fractional anisotropy, FA; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity, AxD). Following data preprocessing, 114 participants remained for further analyses in which they completed the two follow-up sessions (with a range of 1-2 years) containing a series of neuropsychology instruments and computerized cognitive control tasks. The results show that many significant correlations between age and cognitive control functions originally shown on cross-sectional data no longer exist on the longitudinal data. The current longitudinal data show that MD, RD, and AxD (especially in the association fibers of anterior thalamic radiation) are more strongly correlated to follow-up aging processes, suggesting that axonal/myelin damage is a more robust phenomenon for observing intra-individual aging processes. Moreover, processing speed appears to be the most prominent cognitive function to reflect DTI-related age (cross-sectional) and aging (longitudinal) effects. Finally, converging the results from regression analyses and mediation models, MD, RD, and AxD appear to be the representative DTI measures to reveal age-related changes in processing speed. To conclude, the current results provide new insights to which indicator of WM integrity and which type of cognitive changes are most representative (i.e., potentially to be neuroimaging biomarkers) to reflect intra-individual cognitive aging processes.
Collapse
Affiliation(s)
- Shulan Hsieh
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion, Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Heng Yang
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion, Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Kritzer MD, Buch K, Mukerji SS, Biffi A, Chemali Z. Cases of Neuroinfectious Disease Highlighting Frontotemporal Neurocircuitry in Cognitive and Affective Processing. Prim Care Companion CNS Disord 2021; 23:20cr02894. [PMID: 34738354 PMCID: PMC9121741 DOI: 10.4088/pcc.20cr02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Michael D Kritzer
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Corresponding author: Michael D. Kritzer, MD, PhD, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachuetts
| | - Shibani S Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, Massachuetts
| | - Alessandro Biffi
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Division of Behavioral and Cognitive Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachuetts
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachuetts
| | - Zeina Chemali
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Boston, Massachuetts
- Division of Behavioral and Cognitive Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachuetts
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachuetts
| |
Collapse
|
11
|
Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.904035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Coelho A, Fernandes HM, Magalhães R, Moreira PS, Marques P, Soares JM, Amorim L, Portugal-Nunes C, Castanho T, Santos NC, Sousa N. Signatures of white-matter microstructure degradation during aging and its association with cognitive status. Sci Rep 2021; 11:4517. [PMID: 33633204 PMCID: PMC7907273 DOI: 10.1038/s41598-021-83983-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown an association between cognitive decline and white matter integrity in aging. This led to the formulation of a "disconnection hypothesis" in the aging-brain, which states that the disruption in cortical network communication may explain the cognitive decline during aging. Although some longitudinal studies have already investigated the changes occurring in white matter microstructure, most focused on specific white matter tracts. Our study aims to characterize the longitudinal whole-brain signatures of white matter microstructural change during aging. Furthermore, we assessed the relationship between distinct longitudinal alterations in white matter integrity and cognition. White matter microstructural properties were estimated from diffusion magnetic resonance imaging, and cognitive status characterized from extensive neurocognitive testing. The same individuals were evaluated at two timepoints, with a mean interval time of 52.8 months (SD = 7.24) between first and last assessment. Our results show that age is associated with a decline in cognitive performance and a degradation in white matter integrity. Additionally, significant associations were found between diffusion measures and different cognitive dimensions (memory, executive function and general cognition). Overall, these results suggest that age-related cognitive decline is related to white matter alterations, and thus give support to the "disconnected hypothesis" of the aging brain.
Collapse
Affiliation(s)
- Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Henrique M Fernandes
- Center for Music in the Brain (MIB), Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - José M Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Teresa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Clinical Academic Center-Braga, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Relationship between the disrupted topological efficiency of the structural brain connectome and glucose hypometabolism in normal aging. Neuroimage 2020; 226:117591. [PMID: 33248254 DOI: 10.1016/j.neuroimage.2020.117591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Normal aging is accompanied by structural degeneration and glucose hypometabolism in the human brain. However, the relationship between structural network disconnections and hypometabolism in normal aging remains largely unknown. In the present study, by combining MRI and PET techniques, we investigated the metabolic mechanism of the structural brain connectome and its relationship with normal aging in a cross-sectional, community-based cohort of 42 cognitively normal elderly individuals aged 57-84 years. The structural connectome was constructed based on diffusion MRI tractography, and the network efficiency metrics were quantified using graph theory analyses. FDG-PET scanning was performed to evaluate the glucose metabolic level in the cortical regions of the individuals. The results of this study demonstrated that both network efficiency and cortical metabolism decrease with age (both p < 0.05). In the subregions of the bilateral thalamus, significant correlations between nodal efficiency and cortical metabolism could be observed across subjects. Individual-level analyses indicated that brain regions with higher nodal efficiency tend to exhibit higher metabolic levels, implying a tight coupling between nodal efficiency and glucose metabolism (r = 0.56, p = 1.15 × 10-21). Moreover, efficiency-metabolism coupling coefficient significantly increased with age (r = 0.44, p = 0.0046). Finally, the main findings were also reproducible in the ADNI dataset. Together, our results demonstrate a close coupling between structural brain connectivity and cortical metabolism in normal elderly individuals and provide new insight that improve the present understanding of the metabolic mechanisms of structural brain disconnections in normal aging.
Collapse
|
14
|
Gravelle MNK, Vandewouw MM, Young JM, Dunkley BT, Shroff MM, Taylor MJ. More than meets the eye: Longitudinal visual system neurodevelopment in very preterm children and anophthalmia. NEUROIMAGE-CLINICAL 2020; 28:102373. [PMID: 32798909 PMCID: PMC7451448 DOI: 10.1016/j.nicl.2020.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 10/25/2022]
Abstract
Anophthalmia, characterized by the absence of an eye(s), is a rare major birth defect with a relatively unexplored neuroanatomy. Longitudinal comparison of white matter development in an anophthalmic (AC) very preterm (VPT) child with both binocular VPT and full-term (FT) children provides unique insights into early neurodevelopment of the visual system. VPT-born neonates (<32wks gestational age), including the infant with unilateral anophthalmia, underwent neuroimaging every two years from birth until 8 years. DTI images (N = 168) of the optic radiation (OR) and a control track, the posterior limb of the internal capsule (PLIC), were analysed. The diameter of the optic nerves (ON) were analysed using T1-weighted images. Significant group differences in FA and AD were found bilaterally in the OR and PLIC. This extends the literature on altered white matter development in VPT children, being the first longitudinal study showing stable group differences across the 4, 6 and 8 year timepoints. AC showed greater deficits in FA and AD bilaterally, but recovered towards VPT group means from 4 to 8 years-of-age. Complete lack of binocular input would be responsible for these early deficits; compensatory mechanisms may facilitate structural improvement over time. AC's ON exhibited significant atrophy ipsilateral to the anophthalmic eye. Functionally, AC displayed normal visual acuity and form perception, but naso-temporal bias in motion perception. Following these groups and AC longitudinally enabled novel understanding of the joint influence of monocular vision and VPT birth on neurodevelopment.
Collapse
Affiliation(s)
- Madelaine N K Gravelle
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia M Young
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Manohar M Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
16
|
Gozt A, Licari M, Halstrom A, Milbourn H, Lydiard S, Black A, Arendts G, Macdonald S, Song S, MacDonald E, Vlaskovsky P, Burrows S, Bynevelt M, Pestell C, Fatovich D, Fitzgerald M. Towards the Development of an Integrative, Evidence-Based Suite of Indicators for the Prediction of Outcome Following Mild Traumatic Brain Injury: Results from a Pilot Study. Brain Sci 2020; 10:brainsci10010023. [PMID: 31906443 PMCID: PMC7017246 DOI: 10.3390/brainsci10010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Persisting post-concussion symptoms (PPCS) is a complex, multifaceted condition in which individuals continue to experience the symptoms of mild traumatic brain injury (mTBI; concussion) beyond the timeframe that it typically takes to recover. Currently, there is no way of knowing which individuals may develop this condition. Method: Patients presenting to a hospital emergency department (ED) within 48 h of sustaining a mTBI underwent neuropsychological assessment and demographic, injury-related information and blood samples were collected. Concentrations of blood-based biomarkers neuron specific enolase, neurofilament protein-light, and glial fibrillary acidic protein were assessed, and a subset of patients also underwent diffusion tensor–magnetic resonance imaging; both relative to healthy controls. Individuals were classified as having PPCS if they reported a score of 25 or higher on the Rivermead Postconcussion Symptoms Questionnaire at ~28 days post-injury. Univariate exact logistic regression was performed to identify measures that may be predictive of PPCS. Neuroimaging data were examined for differences in fractional anisotropy (FA) and mean diffusivity in regions of interest. Results: Of n = 36 individuals, three (8.33%) were classified as having PPCS. Increased performance on the Repeatable Battery for the Assessment of Neuropsychological Status Update Total Score (OR = 0.81, 95% CI: 0.61–0.95, p = 0.004), Immediate Memory (OR = 0.79, 95% CI: 0.56–0.94, p = 0.001), and Attention (OR = 0.86, 95% CI: 0.71–0.97, p = 0.007) indices, as well as faster completion of the Trails Making Test B (OR = 1.06, 95% CI: 1.00–1.12, p = 0.032) at ED presentation were associated with a statistically significant decreased odds of an individual being classified as having PPCS. There was no significant association between blood-based biomarkers and PPCS in this small sample, although glial fibrillary acidic protein (GFAP) was significantly increased in individuals with mTBI relative to healthy controls. Furthermore, relative to healthy age and sex-matched controls (n = 8), individuals with mTBI (n = 14) had higher levels of FA within the left inferior frontal occipital fasciculus (t (18.06) = −3.01, p = 0.008). Conclusion: Performance on neuropsychological measures may be useful for predicting PPCS, but further investigation is required to elucidate the utility of this and other potential predictors.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Melissa Licari
- Telethon Kids Institute, West Perth, WA 6005, Australia;
| | - Alison Halstrom
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Hannah Milbourn
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Stephen Lydiard
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Anna Black
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Glenn Arendts
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
| | - Stephen Macdonald
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Swithin Song
- Radiology Department, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Ellen MacDonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Philip Vlaskovsky
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Sally Burrows
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Michael Bynevelt
- School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia;
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gardener Hospital, Nedlands, WA 6009, Australia
| | - Carmela Pestell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- School of Psychological Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel Fatovich
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
- Correspondence: ; Tel.: +61-467-729-300
| |
Collapse
|
17
|
Linking the impact of aging on visual short-term memory capacity with changes in the structural connectivity of posterior thalamus to occipital cortices. Neuroimage 2019; 208:116440. [PMID: 31841682 DOI: 10.1016/j.neuroimage.2019.116440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Aging impacts both visual short-term memory (vSTM) capacity and thalamo-cortical connectivity. According to the Neural Theory of Visual Attention, vSTM depends on the structural connectivity between posterior thalamus and visual occipital cortices (PT-OC). We tested whether aging modifies the association between vSTM capacity and PT-OC structural connectivity. To do so, 66 individuals aged 20-77 years were assessed by diffusion-weighted imaging used for probabilistic tractography and performed a psychophysical whole-report task of briefly presented letter arrays, from which vSTM capacity estimates were derived. We found reduced vSTM capacity, and aberrant PT-OC connection probability in aging. Critically, age modified the relationship between vSTM capacity and PT-OC connection probability: in younger adults, vSTM capacity was negatively correlated with PT-OC connection probability while in older adults, this association was positive. Furthermore, age modified the microstructure of PT-OC tracts suggesting that the inversion of the association between PT-OC connection probability and vSTM capacity with aging might reflect age-related changes in white-matter properties. Accordingly, our results demonstrate that age-related differences in vSTM capacity links with the microstructure and connectivity of PT-OC tracts.
Collapse
|
18
|
Sabisz A, Naumczyk P, Marcinkowska A, Graff B, Gąsecki D, Glińska A, Witkowska M, Jankowska A, Konarzewska A, Kwela J, Jodzio K, Szurowska E, Narkiewicz K. Aging and Hypertension - Independent or Intertwined White Matter Impairing Factors? Insights From the Quantitative Diffusion Tensor Imaging. Front Aging Neurosci 2019; 11:35. [PMID: 30837864 PMCID: PMC6389787 DOI: 10.3389/fnagi.2019.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/05/2019] [Indexed: 01/17/2023] Open
Abstract
Aging disrupts white matter integrity, and so does continuous elevated blood pressure that accompanies hypertension (HTN). Yet, our understanding of the interrelationship between these factors is still limited. The study aimed at evaluating patterns of changes in diffusion parameters (as assessed by quantitative diffusion fiber tracking - qDTI) following both aging, and hypertension, as well as the nature of their linkage. 146 participants took part in the study: the control group (N = 61) and the patients with hypertension (N = 85), and were divided into three age subgroups (25-47, 48-56, 57-71 years). qDTI was used to calculate the values of fractional anisotropy, mean, radial and axial diffusivity in 20 main tracts of the brain. The effects of factors (aging and hypertension) on diffusion parameters of tracts were tested with a two-way ANOVA. In the right hemisphere there was no clear effect of the HTN, nor an interaction between the factors, though some age-related effects were observed. Contrary, in the left hemisphere both aging and hypertension contributed to the white matter decline, following a functional pattern. In the projection pathways and the fornix, HTN and aging played part independent of each other, whereas in association fibers and the corpus callosum if the hypertension effect was significant, an interaction was observed. HTN patients manifested faster decline of diffusion parameters but also reached a plateau earlier, with highest between-group differences noted in the middle-aged subgroup. Healthy and hypertensive participants have different brain aging patterns. The HTN is associated with acceleration of white matter integrity decline, observed mainly in association fibers of the left hemisphere.
Collapse
Affiliation(s)
- Agnieszka Sabisz
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna Marcinkowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Gąsecki
- Department of Neurology of Adults, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Glińska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Witkowska
- Institute of Psychology, University of Gdańsk, Gdańsk, Poland
| | - Anna Jankowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Kwela
- Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
| | | | - Edyta Szurowska
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Corpus callosum microstructure is associated with motor function in preschool children. Neuroimage 2018; 183:828-835. [DOI: 10.1016/j.neuroimage.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022] Open
|
20
|
Matsuda-Abedini M, Fitzpatrick K, Harrell WR, Gipson DS, Hooper SR, Belger A, Poskitt K, Miller SP, Bjornson BH. Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr Res 2018; 84:387-392. [PMID: 29967532 PMCID: PMC6258313 DOI: 10.1038/s41390-018-0037-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a risk factor for vascular disease and stroke. The spectrum of brain injury and microstructural white matter abnormalities in children with CKD is largely unknown. METHODS Cross sectional study at two North American pediatric hospitals. A cohort of 49 children, 29 with CKD, including renal transplant (mean age 14.4 ± 2.9 years; range 9-18), and 20 healthy controls (mean age 13.7 ± 3.1 years; range 9-18) had their conventional brain magnetic resonance images (MRIs) reviewed by one neuroradiologist to determine the prevalence of brain injury. Fractional anisotropy (FA) maps calculated from diffusion tensor imaging (DTI) were generated to compare white matter microstructure in CKD compared to controls, using tract-based spatial statistics (TBSS). RESULTS Focal and multifocal white matter injury was seen on brain MRI in 6 children with CKD (21%). Relative to controls, CKD subjects showed reduced white matter fractional anisotropy and increased mean diffusivity and radial diffusivity in the anterior limb of the internal capsule, suggestive of abnormal myelination. CONCLUSION Cerebral white matter abnormalities, including white matter injury, are under-recognized in pediatric CKD patients. Brain imaging studies through progression of CKD are needed to determine the timing of white matter injury and any potentially modifiable risk factors.
Collapse
Affiliation(s)
- Mina Matsuda-Abedini
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Kevin Fitzpatrick
- Division of Neurology, University of North Carolina, Chapel Hill, North Carolina,British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Waverly R Harrell
- School of Education, University of North Carolina, Chapel Hill, North Carolina
| | - Debbie S Gipson
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Stephen R Hooper
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ken Poskitt
- Department of Radiology, Vancouver, British Columbia, Canada,British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Steven P Miller
- Division of Neurology, University of North Carolina, Chapel Hill, North Carolina,British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Bruce H Bjornson
- Division of Neurology, University of North Carolina, Chapel Hill, North Carolina,British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
McLaughlin K, Travers BG, Dadalko OI, Dean DC, Tromp D, Adluru N, Destiche D, Freeman A, Prigge MD, Froehlich A, Duffield T, Zielinski BA, Bigler ED, Lange N, Anderson JS, Alexander AL, Lainhart JE. Longitudinal development of thalamic and internal capsule microstructure in autism spectrum disorder. Autism Res 2018; 11:450-462. [PMID: 29251836 PMCID: PMC5867209 DOI: 10.1002/aur.1909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
The thalamus is a key sensorimotor relay area that is implicated in autism spectrum disorder (ASD). However, it is unknown how the thalamus and white-matter structures that contain thalamo-cortical fiber connections (e.g., the internal capsule) develop from childhood into adulthood and whether this microstructure relates to basic motor challenges in ASD. We used diffusion weighted imaging in a cohort-sequential design to assess longitudinal development of the thalamus, and posterior- and anterior-limbs of the internal capsule (PLIC and ALIC, respectively) in 89 males with ASD and 56 males with typical development (3-41 years; all verbal). Our results showed that the group with ASD exhibited different developmental trajectories of microstructure in all regions, demonstrating childhood group differences that appeared to approach and, in some cases, surpass the typically developing group in adolescence and adulthood. The PLIC (but not ALIC nor thalamus) mediated the relation between age and finger-tapping speed in both groups. Yet, the gap in finger-tapping speed appeared to widen at the same time that the between-group gap in the PLIC appeared to narrow. Overall, these results suggest that childhood group differences in microstructure of the thalamus and PLIC become less robust in adolescence and adulthood. Further, finger-tapping speed appears to be mediated by the PLIC in both groups, but group differences in motor speed that widen during adolescence and adulthood suggest that factors beyond the microstructure of the thalamus and internal capsule may contribute to atypical motor profiles in ASD. Autism Res 2018, 11: 450-462. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Microstructure of the thalamus, a key sensory and motor brain area, appears to develop differently in individuals with autism spectrum disorder (ASD). Microstructure is important because it informs us of the density and organization of different brain tissues. During childhood, thalamic microstructure was distinct in the ASD group compared to the typically developing group. However, these group differences appeared to narrow with age, suggesting that the thalamus continues to dynamically change in ASD into adulthood.
Collapse
Affiliation(s)
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison
- Occupational Therapy Program in Kinesiology, University of Wisconsin-Madison
| | | | | | - Do Tromp
- Waisman Center, University of Wisconsin-Madison
| | | | | | | | - Molly D. Prigge
- Waisman Center, University of Wisconsin-Madison
- Pediatrics, University of Utah
| | | | - Tyler Duffield
- Psychology/Neuroscience Center, Brigham Young University
| | | | - Erin D. Bigler
- Psychology/Neuroscience Center, Brigham Young University
| | | | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison
- Psychiatry, University of Wisconsin-Madison
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison
- Psychiatry, University of Wisconsin-Madison
| |
Collapse
|
22
|
Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Yoshida S, Noda T, Sato N, Teraishi T, Hattori K, Kunugi H. Association of obesity with cognitive function and brain structure in patients with major depressive disorder. J Affect Disord 2018; 225:188-194. [PMID: 28837952 DOI: 10.1016/j.jad.2017.08.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. METHODS Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. RESULTS Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p < 0.05). Among the patient group, working memory, motor speed, executive function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p < 0.05, corrected). MRI determined frontal, temporal, thalamic, and hippocampal volumes, and white matter fractional anisotropy values in the internal capsule and left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p < 0.05, corrected). LIMITATIONS Sample size for obese population was not very large. CONCLUSIONS Obesity is associated with decreased cognitive function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Moeko Hiraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
23
|
Koutsarnakis C, Liakos F, Kalyvas AV, Skandalakis GP, Komaitis S, Christidi F, Karavasilis E, Liouta E, Stranjalis G. The Superior Frontal Transsulcal Approach to the Anterior Ventricular System: Exploring the Sulcal and Subcortical Anatomy Using Anatomic Dissections and Diffusion Tensor Imaging Tractography. World Neurosurg 2017; 106:339-354. [DOI: 10.1016/j.wneu.2017.06.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
24
|
Warbrick T, Rosenberg J, Shah NJ. The relationship between BOLD fMRI response and the underlying white matter as measured by fractional anisotropy (FA): A systematic review. Neuroimage 2017; 153:369-381. [PMID: 28082105 DOI: 10.1016/j.neuroimage.2016.12.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022] Open
Abstract
Despite the relationship between brain structure and function being of fundamental interest in cognitive neuroscience, the relationship between the brain's white matter, measured using fractional anisotropy (FA), and the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) response is poorly understood. A systematic review of literature investigating the association between FA and fMRI BOLD response was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed and Web of Knowledge databases were searched up until 22.04.2016 using a predetermined set of search criteria. The search identified 363 papers, 28 of which met the specified inclusion criteria. Positive relationships were mainly observed in studies investigating the primary sensory and motor systems and in resting state data. Both positive and negative relationships were seen in studies using cognitive tasks. This systematic review suggests that there is a relationship between FA and the fMRI BOLD response and that the relationship is task and region dependent. Behavioural and/or clinical variables were shown to be essential in interpreting the relationships between imaging measures. The results highlight the heterogeneity in the methods used across papers in terms of fMRI task, population investigated and data analysis techniques. Further investigation and replication of current findings are required before definitive conclusions can be drawn.
Collapse
Affiliation(s)
- Tracy Warbrick
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA - BRAIN - Translational Medicine, Germany.
| | - N J Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA - BRAIN - Translational Medicine, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Reginold W, Itorralba J, Tam A, Luedke AC, Fernandez-Ruiz J, Reginold J, Islam O, Garcia A. Correlating quantitative tractography at 3T MRI and cognitive tests in healthy older adults. Brain Imaging Behav 2016; 10:1223-1230. [PMID: 26650629 DOI: 10.1007/s11682-015-9495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study used diffusion tensor imaging tractography at 3 T MRI to relate cognitive function to white matter tracts in the brain. Brain T2 fluid attenuated inversion recovery-weighted and diffusion tensor 3 T MRI scans were acquired in thirty-three healthy participants without mild cognitive impairment or dementia. They completed a battery of neuropsychological tests including the Montreal Cognitive Assessment, Stroop test, Trail Making Test B, Wechsler Memory Scale-III Longest span forward, Wechsler Memory Scale-III Longest span backward, Mattis Dementia Rating Scale, California Verbal Learning Test Version II Long Delay Free Recall, and Letter Number Sequencing. Tractography was generated by the Fiber Assignment by Continuous Tracking method. The corpus callosum, cingulum, long association fibers, corticospinal/bulbar tracts, thalamic projection fibers, superior cerebellar peduncle, middle cerebellar peduncle and inferior cerebellar peduncle were manually segmented. The fractional anisotropy (FA) and mean diffusivity (MD) of these tracts were quantified. We studied the association between cognitive test scores and the MD and FA of tracts while controlling for age and total white matter hyperintensities volume. Worse scores on the Stroop test was associated with decreased FA of the corpus callosum, corticospinal/bulbar tract, and thalamic projection tracts. Scores on the other cognitive tests were not associated with either the FA or MD of measured tracts. In healthy persons the Stroop test appears to be a better predictor of the microstructural integrity of white matter tracts measured by DTI tractography than other cognitive tests.
Collapse
Affiliation(s)
- William Reginold
- Department of Medical Imaging, University of Toronto, 4th floor, 263 McCaul St, Toronto, ON, M5T 1W7, Canada.
- Memory Clinics, Division of Geriatric Medicine, Department of Medicine, Queen's University, Kingston, ON, Canada.
| | - Justine Itorralba
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Angela Tam
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Angela C Luedke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Distrito Federal, CP, 04510, Mexico
| | | | - Omar Islam
- Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Angeles Garcia
- Memory Clinics, Division of Geriatric Medicine, Department of Medicine, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
26
|
Storsve AB, Fjell AM, Yendiki A, Walhovd KB. Longitudinal Changes in White Matter Tract Integrity across the Adult Lifespan and Its Relation to Cortical Thinning. PLoS One 2016; 11:e0156770. [PMID: 27253393 PMCID: PMC4890742 DOI: 10.1371/journal.pone.0156770] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/19/2016] [Indexed: 02/02/2023] Open
Abstract
A causal link between decreases in white matter (WM) integrity and cortical degeneration is assumed, but there is scarce knowledge on the relationship between these changes across the adult human lifespan. We investigated changes in thickness throughout the cortical mantle and WM tract integrity derived from T1 and diffusion weighted magnetic resonance imaging (MRI) scans in 201 healthy adults aged 23-87 years over a mean interval of 3.6 years. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivity changes were calculated for forceps minor and major and eight major white matter tracts in each hemisphere by use of a novel automated longitudinal tractography constrained by underlying anatomy (TRACULA) approach. We hypothesized that increasing MD and decreasing FA across tracts would relate to cortical thinning, with some anatomical specificity. WM integrity decreased across tracts non-uniformly, with mean annual percentage decreases ranging from 0.20 in the Inferior Longitudinal Fasciculus to 0.65 in the Superior Longitudinal Fasciculus. For most tracts, greater MD increases and FA decreases related to more cortical thinning, in areas in part overlapping with but also outside the projected tract endings. The findings indicate a combination of global and tract-specific relationships between WM integrity and cortical thinning.
Collapse
Affiliation(s)
- Andreas B. Storsve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Anders M. Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
27
|
Liu P, Wang G, Liu Y, Yu Q, Yang F, Jin L, Sun J, Yang X, Qin W, Calhoun VD. White matter microstructure alterations in primary dysmenorrhea assessed by diffusion tensor imaging. Sci Rep 2016; 6:25836. [PMID: 27161845 PMCID: PMC4861968 DOI: 10.1038/srep25836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/22/2016] [Indexed: 11/12/2022] Open
Abstract
Primary dysmenorrhea (PDM), a significant public health problem for adolescents and young women, is characterized by painful menstrual cramps. Recent neuroimaging studies have revealed that brain functional and structural abnormalities are related to the pathomechanism of PDM. However, it is not clear whether there are white matter (WM) alterations in PDM. We analyzed diffusion tensor imaging data from 35 patients and 35 healthy controls (HCs) matched for age and handedness. Tract-based spatial statistics and probabilistic tractography were used to measure integrity of WM microstructure. Compared to HCs, patients had increased fractional anisotropy (FA) along with decreased mean diffusivity (MD) and radial diffusivity (RD) in the corpus callosum (CC), superior longitudinal fasciculus (LF), corona radiata (CR), internal capsule (IC) and external capsule (EC). The FA of the splenium CC and right IC positively correlated with PDM duration while FA of the right anterior CR positively correlated with PDM severity in patient group. These WM tracts were found to show connections to other brain regions implicated in sensoimotor, affective, cognitive and pain processing functions through tractography. These findings provide preliminary evidence for WM microstructure alterations in PDM, which is potentially valuable for understanding pathomechanism of PDM.
Collapse
Affiliation(s)
- Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Geliang Wang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Yanfei Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Qingbao Yu
- The Mind Research Network, Albuquerque, New Mexico 87106, USA
| | - Fan Yang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Lingmin Jin
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Jinbo Sun
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Xuejuan Yang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Wei Qin
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico 87106, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
28
|
Warbrick T, Fegers-Stollenwerk V, Maximov II, Grinberg F, Shah NJ. Using Structural and Functional Brain Imaging to Investigate Responses to Acute Thermal Pain. THE JOURNAL OF PAIN 2016; 17:836-44. [PMID: 27102895 DOI: 10.1016/j.jpain.2016.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/21/2016] [Accepted: 03/05/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Despite a fundamental interest in the relationship between structure and function, the relationships between measures of white matter microstructural coherence and functional brain responses to pain are poorly understood. We investigated whether fractional anisotropy (FA) in 2 white matter regions in pathways associated with pain is related to the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to thermal stimulation. BOLD fMRI was measured from 16 healthy male subjects during painful thermal stimulation of the right arm. Diffusion-weighted images were acquired for each subject and FA estimates were extracted from the posterior internal capsule and the cingulum (cingulate gyrus). These values were then included as covariates in the fMRI data analysis. We found BOLD response in the midcingulate cortex (MCC) to be positively related to FA in the posterior internal capsule and negatively related to FA in the cingulum. Our results suggest that the MCC's involvement in processing pain can be further delineated by considering how the magnitude of the BOLD response is related to white matter microstructural coherence and to subjective perception of pain. Considering relationships to white matter microstructural coherence in tracts involved in transmitting information to different parts of the pain network can help interpretation of MCC BOLD activation. PERSPECTIVE Relationships between functional brain responses, white matter microstructural coherence, and subjective ratings are crucial for understanding the role of the MCC in pain. These findings provide a basis for investigating the effect of the reduced white matter microstructural coherence observed in some pain disorders on the functional responses to pain.
Collapse
Affiliation(s)
- Tracy Warbrick
- Institute of Neuroscience and Medicine, Jülich, Germany.
| | | | | | - Farida Grinberg
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| |
Collapse
|
29
|
Neurological and Psychosocial Development in Adolescence. CONGENITAL HEART DISEASE AND ADOLESCENCE 2016. [DOI: 10.1007/978-3-319-31139-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Koutsarnakis C, Liakos F, Liouta E, Themistoklis K, Sakas D, Stranjalis G. The cerebral isthmus: fiber tract anatomy, functional significance, and surgical considerations. J Neurosurg 2015; 124:450-62. [PMID: 26361277 DOI: 10.3171/2015.3.jns142680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The cerebral isthmus is the white matter area located between the periinsular sulcus and the lateral ventricle. Studies demonstrating the fiber tract and topographic anatomy of this entity are lacking in current neurosurgical literature. Hence, the authors' primary aim was to describe the microsurgical white matter anatomy of the cerebral isthmus by using the fiber dissection technique, and they discuss its functional significance. In addition, they sought to investigate its possible surgical utility in approaching lesions located in or adjacent to the lateral ventricle. METHODS This study was divided into 2 parts and included 30 formalin-fixed cerebral hemispheres, 5 of which were injected with colored silicone. In the first part, 15 uncolored specimens underwent the Klinger's procedure and were dissected in a lateromedial direction at the level of the superior, inferior, and anterior isthmuses, and 10 were used for coronal and axial cuts. In the second part, the injected specimens were used to investigate the surgical significance of the superior isthmus in accessing the frontal horn of the lateral ventricle. RESULTS The microsurgical anatomy of the anterior, superior, and inferior cerebral isthmuses was carefully studied and recorded both in terms of topographic and fiber tract anatomy. In addition, the potential role of the proximal part of the superior isthmus as an alternative safe surgical corridor to the anterior part of the lateral ventricle was investigated. CONCLUSIONS Using the fiber dissection technique along with coronal and axial cuts in cadaveric brain specimens remains a cornerstone in the acquisition of thorough anatomical knowledge of narrow white matter areas such as the cerebral isthmus. The surgical significance of the superior isthmus in approaching the frontal horn of the lateral ventricle is stressed, but further studies must be carried out to elucidate its role in ventricular surgery.
Collapse
Affiliation(s)
- Christos Koutsarnakis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Faidon Liakos
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - Konstantinos Themistoklis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Damianos Sakas
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - George Stranjalis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and.,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
31
|
Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci 2015; 34:15425-36. [PMID: 25392509 DOI: 10.1523/jneurosci.0203-14.2014] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well established that human brain white matter structure changes with aging, but the timescale and spatial distribution of this change remain uncertain. Cross-sectional diffusion tensor imaging (DTI) studies indicate that, after a period of relative stability during adulthood, there is an accelerated decline in anisotropy and increase in diffusivity values during senescence; and, spatially, results have been discussed within the context of several anatomical frameworks. However, inferring trajectories of change from cross-sectional data can be challenging; and, as yet, there have been no longitudinal reports of the timescale and spatial distribution of age-related white matter change in healthy adults across the adult lifespan. In a longitudinal DTI study of 203 adults between 20 and 84 years of age, we used tract-based spatial statistics to characterize the pattern of annual change in fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity and examined whether there was an acceleration of change with age. We found extensive and overlapping significant annual decreases in fractional anisotropy, and increases in axial diffusivity, radial diffusivity, and mean diffusivity. Spatially, results were consistent with inferior-to-superior gradients of lesser-to-greater vulnerability. Annual change increased with age, particularly within superior regions, with age-related decline estimated to begin in the fifth decade. Charting white matter microstructural changes in healthy aging provides essential context to clinical studies, and future studies should compare age trajectories between healthy participants and at-risk populations and also explore the relationship between DTI rates of change and cognitive decline.
Collapse
|
32
|
Sex-specific association between infant diet and white matter integrity in 8-y-old children. Pediatr Res 2014; 76:535-43. [PMID: 25167204 DOI: 10.1038/pr.2014.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/30/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND The American Academy of Pediatrics recommends breastfeeding, which is well known to promote cognitive and behavioral development. The evidence for why this occurs is not well understood. METHODS Fifty-six 7.5- to 8.5-y-old healthy children were breastfed (BF; n = 22, 10 males) or formula-fed (FF; n = 34, 16 males) as infants. All children were administered: the Reynolds Intellectual Assessment Scale (RIAS); the Clinical Evaluation of Language Fundamentals (CELF-4) tests; and magnetic resonance imaging of the brain. Diffusion tensor imaging (DTI) measured fractional anisotropy (FA) values were correlated with RIAS and CELF-4 scores. RESULTS DTI tract-based spatial statistics (TBSS) analyses showed multiple white matter regions in the left hemisphere with significantly higher FA (P < 0.05, corrected) values in BF than FF males, but no significant group differences in females. Males who were exclusively BF for at least 1 y appeared to have the greatest differences in FA. Mean FA values positively correlated with composite scores of RIAS (P = 0.03) and CELF-4 (P = 0.02). CONCLUSION Breastfeeding during infancy was associated with better white matter development at 8 y of age in boys. A similar association was not observed in girls.
Collapse
|
33
|
Rollins CK, Watson CG, Asaro LA, Wypij D, Vajapeyam S, Bellinger DC, DeMaso DR, Robertson RL, Newburger JW, Rivkin MJ. White matter microstructure and cognition in adolescents with congenital heart disease. J Pediatr 2014; 165:936-44.e1-2. [PMID: 25217200 PMCID: PMC4258111 DOI: 10.1016/j.jpeds.2014.07.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/19/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To describe the relationship between altered white matter microstructure and neurodevelopment in children with dextro-transposition of the great arteries (d-TGA). STUDY DESIGN We report correlations between regional white matter microstructure as measured by fractional anisotropy (FA) and cognitive outcome in a homogeneous group of adolescents with d-TGA. Subjects with d-TGA (n = 49) and controls (n = 29) underwent diffusion tensor imaging and neurocognitive testing. In the group with d-TGA, we correlated neurocognitive scores with FA in 14 composite regions of interest in which subjects with d-TGA had lower FA than controls. RESULTS Among the patients with d-TGA, mathematics achievement correlated with left parietal FA (r = 0.39; P = .006), inattention/hyperactivity symptoms correlated with right precentral FA (r = -0.39; P = .006) and left parietal FA (r = -0.30; P = .04), executive function correlated with right precentral FA (r = -0.30; P = .04), and visual-spatial skills correlated with right frontal FA (r = 0.30; P = .04). We also found an unanticipated correlation between memory and right posterior limb of the internal capsule FA (r = 0.29; P = .047). CONCLUSION Within the group with d-TGA, regions of reduced white matter microstructure are associated with cognitive performance in a pattern similar to that seen in healthy adolescents and adults. Diminished white matter microstructure may contribute to cognitive compromise in adolescents who underwent open-heart surgery in infancy.
Collapse
|
34
|
Johnson MA, Diaz MT, Madden DJ. Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed. Brain Struct Funct 2014; 220:2705-20. [PMID: 24972959 DOI: 10.1007/s00429-014-0822-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/08/2014] [Indexed: 11/30/2022]
Abstract
Although age-related differences in white matter have been well documented, the degree to which regional, tract-specific effects can be distinguished from global, brain-general effects is not yet clear. Similarly, the manner in which global and regional differences in white matter integrity contribute to age-related differences in cognition has not been well established. To address these issues, we analyzed diffusion tensor imaging measures from 52 younger adults (18-28) and 64 older adults (60-85). We conducted principal component analysis on each diffusion measure, using data from eight individual tracts. Two components were observed for fractional anisotropy: the first comprised high loadings from the superior longitudinal fasciculi and corticospinal tracts, and the second comprised high loadings from the optic radiations. In contrast, variation in axial, radial, and mean diffusivities yielded a single-component solution in each case, with high loadings from most or all tracts. For fractional anisotropy, the complementary results of multiple components and variability in component loadings across tracts suggest regional variation. However, for the diffusivity indices, the single component with high loadings from most or all of the tracts suggests primarily global, brain-general variation. Further analyses indicated that age was a significant mediator of the relation between each component and perceptual-motor speed. These data suggest that individual differences in white matter integrity and their relation to age-related differences in perceptual-motor speed represent influences that are beyond the level of individual tracts, but the extent to which regional or global effects predominate may differ between anisotropy and diffusivity measures.
Collapse
Affiliation(s)
- Micah A Johnson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | |
Collapse
|
35
|
Domin M, Langner S, Hosten N, Lotze M. Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS One 2014; 9:e98211. [PMID: 24853163 PMCID: PMC4031143 DOI: 10.1371/journal.pone.0098211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/30/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although quantitative evaluation of diffusion tensor imaging (DTI) data seemed to be extremely important for clinical research its application is under debate. Besides fractional anisotropy (FA) the quantitative comparison between hemispheres of the number of fibers reconstructed by means of diffusion tensor tractography (DTT) is commonly used. However, the tractography-related parameters FA, minimum tract length (LENGTH) and the angle between two contiguous tracking steps (ANGLE) are inconsistently applied. Using 18 combinations we tested for the influence of parameter thresholds on the amount of reconstructed fibers for the posterior pyramidal tract in both hemispheres in order to obtain meaningful thresholds for DTT. RESULTS In 14 chronic stroke patients with unilateral lesions of the pyramidal tract around the height of the internal capsule and considerable motor deficits a 3-way repeated-measures ANOVA showed a significant interaction between the effects of FA and ANGLE level on reconstructed fiber lateralization, F (2.9, 37.67) = 3.01, p = 0.044, and a significant main effect FA, F (1.4, 18.1) = 11.58, p = 0.001. Post-hoc pairwise comparisons showed that this interaction was completely driven by FA. In 22 right-handed healthy subjects no significant interactions or main effects could be found. CONCLUSION The parameter threshold combinations with highest FA showed highest effect. ANGLE and LENGTH insofar influenced the lateralization effect when selected as liberal as possible, short LENGTH and large ANGLE thresholds. The DTT approach should be used with great care since results are highly dependent on the thresholds applied.
Collapse
Affiliation(s)
- Martin Domin
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Sönke Langner
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Norbert Hosten
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| |
Collapse
|
36
|
Linke J, King AV, Poupon C, Hennerici MG, Gass A, Wessa M. Impaired anatomical connectivity and related executive functions: differentiating vulnerability and disease marker in bipolar disorder. Biol Psychiatry 2013; 74:908-16. [PMID: 23684382 DOI: 10.1016/j.biopsych.2013.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bipolar 1 disorder (BD1) has been associated with impaired set shifting, increased risk taking, and impaired integrity of frontolimbic white matter. However, it remains unknown to what extent these findings are related to each other and whether these abnormalities represent risk factors or consequences of the illness. METHODS We addressed the first question by comparing 19 patients with BD1 and 19 healthy control subjects (sample 1) with diffusion tensor imaging, the Intra-Extra Dimensional Set Shift Task, and the Cambridge Gambling Task. The second question we approached by applying the same protocol to 22 healthy first-degree relatives of patients with BD1 and 22 persons without a family history of mental disorders (sample 2). RESULTS In comparison with their control groups, BD1 patients and healthy first-degree relatives of patients with BD1 showed significantly reduced fractional anisotropy (FA) in the right anterior limb of the internal capsule and right uncinate fasciculus. White matter integrity in corpus callosum was reduced in BD1 patients only. In addition, reduced FA in anterior limb of the internal capsule correlated significantly with an increased number of errors during set shifting and increased risk taking and reduced FA in uncinate fasciculus correlated significantly with increased risk taking. CONCLUSIONS Similar white matter alterations in BD1 patients and healthy relatives of BD1 patients are associated with comparable behavioral abnormalities. Further, results indicate that altered frontolimbic and frontothalamic connectivity and corresponding behavioral abnormalities might be a trait and vulnerability marker of BD1, whereas interhemispheric connectivity appears to be a disease marker.
Collapse
Affiliation(s)
- Julia Linke
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg; Department of Clinical Psychology and Neuropsychology, Psychological Institute, Johannes-Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res 2013; 1540:64-73. [DOI: 10.1016/j.brainres.2013.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/18/2023]
|
38
|
Bennett IJ, Madden DJ. Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 2013; 276:187-205. [PMID: 24280637 DOI: 10.1016/j.neuroscience.2013.11.026] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging.
Collapse
Affiliation(s)
- I J Bennett
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States
| | - D J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, United States.
| |
Collapse
|
39
|
Lebel C, Warner T, Colby J, Soderberg L, Roussotte F, Behnke M, Davis Eyler F, Sowell ER. White matter microstructure abnormalities and executive function in adolescents with prenatal cocaine exposure. Psychiatry Res 2013; 213:161-8. [PMID: 23769420 PMCID: PMC3812806 DOI: 10.1016/j.pscychresns.2013.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/24/2022]
Abstract
Children with prenatal exposure to cocaine are at higher risk for negative behavioral function and attention difficulties, and have demonstrated brain diffusion abnormalities in frontal white matter regions. However, brain regions beyond frontal and callosal areas have not been investigated using diffusion tensor imaging (DTI). DTI data were collected on 42 youth aged 14-16 years; subjects were divided into three groups based on detailed exposure histories: those with prenatal exposure to cocaine but not alcohol (prenatal cocaine exposure (PCE), n=12), prenatal exposure to cocaine and alcohol (cocaine and alcohol exposure (CAE), n=17), and controls (n=13). Tractography was performed and along-tract diffusion parameters were examined for group differences and correlations with executive function measures. In the right arcuate fasciculus and cingulum, the CAE group had higher fractional anisotropy (FA) and/or lower mean diffusivity (MD) than the other two groups. The PCE group demonstrated lower FA in the right arcuate and higher MD in the splenium of the corpus callosum than controls. Diffusion parameters in tracts with group differences correlated with measures of executive function. In conclusion, these diffusion differences in adolescents with prenatal cocaine exposure suggest localized, long-term structural brain alterations that may underlie attention and response-inhibition difficulties.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Neurology, University of California, Los Angeles, CA
| | - Tamara Warner
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - John Colby
- Department of Neurology, University of California, Los Angeles, CA
| | - Lindsay Soderberg
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Marylou Behnke
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Elizabeth R. Sowell
- Department of Neurology, University of California, Los Angeles, CA,Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA,Corresponding Author: Elizabeth Sowell, PhD, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #130, Los Angeles, California, 90027,
| |
Collapse
|
40
|
Seizeur R, Magro E, Prima S, Wiest-Daesslé N, Maumet C, Morandi X. Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg Radiol Anat 2013; 36:111-24. [PMID: 23807198 DOI: 10.1007/s00276-013-1156-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Cerebral hemispheres represent both structural and functional asymmetry, which differs among right- and left-handers. The left hemisphere is specialised for language and task execution of the right hand in right-handers. We studied the corticospinal tract in right- and left-handers by diffusion tensor imaging and tractography. The present study aimed at revealing a morphological difference resulting from a region of interest (ROI) obtained by functional MRI (fMRI). METHODS Twenty-five healthy participants (right-handed: 15, left-handed: 10) were enrolled in our assessment of morphological, functional and diffusion tensor MRI. Assessment of brain fibre reconstruction (tractography) was done using a deterministic algorithm. Fractional anisotropy (FA) and mean diffusivity (MD) were studied on the tractography traces of the reference slices. RESULTS We observed a significant difference in number of leftward fibres based on laterality. The significant difference in regard to FA and MD was based on the slices obtained at different levels and the laterality index. We found left-hand asymmetry and right-hand asymmetry, respectively, for the MD and FA. CONCLUSIONS Our study showed the presence of hemispheric asymmetry based on laterality index in right- and left-handers. These results are inconsistent with some studies and consistent with others. The reported difference in hemispheric asymmetry could be related to dexterity (manual skill).
Collapse
Affiliation(s)
- Romuald Seizeur
- INSERM UMR 1101, LaTIM, Université de Brest, Brest, 29200, France,
| | | | | | | | | | | |
Collapse
|
41
|
Lebel C, Shaywitz B, Holahan J, Shaywitz S, Marchione K, Beaulieu C. Diffusion tensor imaging correlates of reading ability in dysfluent and non-impaired readers. BRAIN AND LANGUAGE 2013; 125:215-222. [PMID: 23290366 DOI: 10.1016/j.bandl.2012.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and voxel-based analysis were used to examine correlations between reading ability and tissue structure in healthy adolescents and young adults (n=136) with a range of reading ability. Three complementary reading scores (word reading, decoding, and reading fluency) yielded positive correlations with fractional anisotropy (FA) that spanned bilateral brain regions, particularly in the frontal lobes, but also included the thalamus and parietal and temporal areas. An analysis of the unique effects of each reading assessment revealed that most of the variance in FA values could be attributed to sight word reading ability.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V2
| | | | | | | | | | | |
Collapse
|
42
|
Deniz Can D, Richards T, Kuhl PK. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study. BRAIN AND LANGUAGE 2013; 124:34-44. [PMID: 23274797 PMCID: PMC3551987 DOI: 10.1016/j.bandl.2012.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/23/2012] [Accepted: 10/27/2012] [Indexed: 05/05/2023]
Abstract
Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed.
Collapse
Affiliation(s)
- Dilara Deniz Can
- Institute for Learning & Brain Sciences, University of Washington, USA.
| | | | | |
Collapse
|
43
|
Hazlett EA, Collazo T, Zelmanova Y, Entis JJ, Chu KW, Goldstein KE, Roussos P, Haznedar MM, Koenigsberg HW, New AS, Buchsbaum MS, Hershowitz JP, Siever LJ, Byne W. Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and anisotropy. Schizophr Res 2012; 141:119-27. [PMID: 22995934 PMCID: PMC3742803 DOI: 10.1016/j.schres.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
Abstract
Mounting evidence suggests that white matter abnormalities and altered subcortical-cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant's MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC-DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kafri M, Sasson E, Assaf Y, Balash Y, Aiznstein O, Hausdorff JM, Giladi N. High-level gait disorder: associations with specific white matter changes observed on advanced diffusion imaging. J Neuroimaging 2012; 23:39-46. [PMID: 22928624 DOI: 10.1111/j.1552-6569.2012.00734.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE High-level gait disorder (HLGD) is a debilitating disorder causing mobility decline in the elderly. Although its clinical characteristics are well described, its anatomical and pathophysiological underpinnings are poorly understood. This study examined the anatomical distribution of white matter (WM) changes in patients with mild to moderate HLGD of the cautious/disequilibrium type, using advanced magnetic resonance imaging (MRI) methods. METHODS Thirteen patients with HLGD, 9 elderly and 13 middle-aged healthy controls were scanned using diffusion tensor imaging, Q-space imaging, and conventional MRI. The regions of significant differences between the HLGD group and the elderly control group were defined, and the mean fractional anisotropy and displacement values of these areas were extracted. RESULTS The HLGD patients had lower fractional anisotropy and higher displacement values in regions related to the motor system, including those along the corticospinal tract and the superior cerebellar peduncles, as well as in cognitive and affective-related areas, including the anterior limbs of the internal capsule and the genu of the corpus callosum. CONCLUSIONS The anatomical distribution associated with HLGD of the cautious/disequilibrium type involves WM pathways that convey motor-related, cognitive and affective-related functions. The underlying pathological process leading to these changes most probably includes demyelination.
Collapse
Affiliation(s)
- Michal Kafri
- Functional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Carretié L, Ríos M, Periáñez JA, Kessel D, Alvarez-Linera J. The role of low and high spatial frequencies in exogenous attention to biologically salient stimuli. PLoS One 2012; 7:e37082. [PMID: 22590649 PMCID: PMC3349642 DOI: 10.1371/journal.pone.0037082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Exogenous attention can be understood as an adaptive tool that permits the detection and processing of biologically salient events even when the individual is engaged in a resource-consuming task. Indirect data suggest that the spatial frequency of stimulation may be a crucial element in this process. Behavioral and neural data (both functional and structural) were analyzed for 36 participants engaged in a digit categorization task in which distracters were presented. Distracters were biologically salient or anodyne images, and had three spatial frequency formats: intact, low spatial frequencies only, and high spatial frequencies only. Behavior confirmed enhanced exogenous attention to biologically salient distracters. The activity in the right and left intraparietal sulci and the right middle frontal gyrus was associated with this behavioral pattern and was greater in response to salient than to neutral distracters, the three areas presenting strong correlations to each other. Importantly, the enhanced response of this network to biologically salient distracters with respect to neutral distracters relied on low spatial frequencies to a significantly greater extent than on high spatial frequencies. Structural analyses suggested the involvement of internal capsule, superior longitudinal fasciculus and corpus callosum in this network. Results confirm that exogenous attention is preferentially captured by biologically salient information, and suggest that the architecture and function underlying this process are low spatial frequency-biased.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
46
|
Linke J, Witt SH, King AV, Nieratschker V, Poupon C, Gass A, Hennerici MG, Rietschel M, Wessa M. Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. Neuroimage 2012; 59:3288-96. [DOI: 10.1016/j.neuroimage.2011.10.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
|
47
|
Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:386-400. [PMID: 21871957 DOI: 10.1016/j.bbadis.2011.08.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
In this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Taljan K, McIntyre C, Sakaie K. Anatomical connectivity between subcortical structures. Brain Connect 2011; 1:111-8. [PMID: 22433007 DOI: 10.1089/brain.2011.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding anatomical connectivity is crucial for improving outcomes of deep brain stimulation surgery. Tractography is a promising method for noninvasively investigating anatomical connectivity, but connections between subcortical regions have not been closely examined by this method. As many connections to subcortical regions converge at the internal capsule (IC), we investigate the connectivity through the IC to three subcortical nuclei (caudate, lentiform nucleus, and thalamus) in six macaques. We show that a statistical correction for a known distance-related artifact in tractography results in large changes in connectivity patterns. Our results suggest that care should be taken in using tractography to assess anatomical connectivity between subcortical structures.
Collapse
Affiliation(s)
- Kyle Taljan
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|