1
|
Weissbach A, Moyé J, Takacs A, Verrel J, Chwolka F, Friedrich J, Paulus T, Zittel S, Bäumer T, Frings C, Pastötter B, Beste C, Münchau A. Perception-Action Integration Is Altered in Functional Movement Disorders. Mov Disord 2023; 38:1399-1409. [PMID: 37315159 DOI: 10.1002/mds.29458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Although functional neurological movement disorders (FMD) are characterized by motor symptoms, sensory processing has also been shown to be disturbed. However, how the integration of perception and motor processes, essential for the control of goal-directed behavior, is altered in patients with FMD is less clear. A detailed investigation of these processes is crucial to foster a better understanding of the pathophysiology of FMD and can systematically be achieved in the framework of the theory of event coding (TEC). OBJECTIVE The aim was to investigate perception-action integration processes on a behavioral and neurophysiological level in patients with FMD. METHODS A total of 21 patients and 21 controls were investigated with a TEC-related task, including concomitant electroencephalogram (EEG) recording. We focused on EEG correlates established to reflect perception-action integration processes. Temporal decomposition allowed to distinguish between EEG codes reflecting sensory (S-cluster), motor (R-cluster), and integrated sensory-motor processing (C-cluster). We also applied source localization analyses. RESULTS Behaviorally, patients revealed stronger binding between perception and action, as evidenced by difficulties in reconfiguring previously established stimulus-response associations. Such hyperbinding was paralleled by a modulation of neuronal activity clusters, including reduced C-cluster modulations of the inferior parietal cortex and altered R-cluster modulations in the inferior frontal gyrus. Correlations of these modulations with symptom severity were also evident. CONCLUSIONS Our study shows that FMD is characterized by altered integration of sensory information with motor processes. Relations between clinical severity and both behavioral performance and neurophysiological abnormalities indicate that perception-action integration processes are central and a promising concept for the understanding of FMD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Josephine Moyé
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Fabian Chwolka
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Julia Friedrich
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Theresa Paulus
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christian Frings
- Department of Cognitive Psychology, Trier University Trier, Trier, Germany
| | - Bernhard Pastötter
- Department of Cognitive Psychology, Trier University Trier, Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Liu Y, Masina F, Ridderinkhof KR, Pezzetta R. Addiction as a brain disease? A meta-regression comparison of error-related brain potentials between addiction and neurological diseases. Neurosci Biobehav Rev 2023; 148:105127. [PMID: 36921702 DOI: 10.1016/j.neubiorev.2023.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The notion that addiction is a "brain disorder" is widespread. However, there is a lack of evidence on the degree of disorder in terms of error processing in addiction. The present meta-analysis aimed at shedding light on this by comparing error-processes with populations with well-recognized brain disorders. We included 17 addiction and 32 neurological disorder studies that compared error-related negativity (ERN) or error positivity (Pe) amplitudes/latencies between experimental and healthy-control groups. Meta-regression analyses were performed for the intergroup comparison and other moderators. Both diagnoses were accompanied by a diminished ERN amplitude, although the degree of impairment was marginally larger in neurological disorders. Neurological disorders presented shorter ERN latencies than addiction when compared with controls. The two groups did not differ in Pe amplitude/latency. Except for a reduced ERN amplitude found along with aging, no other moderator contributed significantly to divergent findings about these four ERP indexes. The results support the brain disease model of addiction, while stressing the importance of quantifying the degrees of brain dysfunctions as a next step.
Collapse
Affiliation(s)
- Yang Liu
- Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China.
| | | | | | | |
Collapse
|
3
|
Lenzoni S, Baker J, Sumich AL, Mograbi DC. New insights into neural networks of error monitoring and clinical implications: a systematic review of ERP studies in neurological diseases. Rev Neurosci 2021; 33:161-179. [PMID: 34214387 DOI: 10.1515/revneuro-2021-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
Error monitoring allows for the efficient performance of goal-directed behaviors and successful learning. Furthermore, error monitoring as a metacognitive ability may play a crucial role for neuropsychological interventions, such as rehabilitation. In the past decades, research has suggested two electrophysiological markers for error monitoring: the error-related negativity (ERN) and the error positivity (Pe), thought to reflect, respectively, error detection and error awareness. Studies on several neurological diseases have investigated the alteration of the ERN and the Pe, but these findings have not been summarized. Accordingly, a systematic review was conducted to understand what neurological conditions present alterations of error monitoring event-related potentials and their relation with clinical measures. Overall, ERN tended to be reduced in most neurological conditions while results related to Pe integrity are less clear. ERN and Pe were found to be associated with several measures of clinical severity. Additionally, we explored the contribution of different brain structures to neural networks underlying error monitoring, further elaborating on the domain-specificity of error processing and clinical implications of findings. In conclusion, electrophysiological signatures of error monitoring could be reliable measures of neurological dysfunction and a robust tool in neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Sabrina Lenzoni
- Department of Psychology, Pontifical University of Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil.,Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK
| | - Joshua Baker
- Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK.,Institute for Systems Neuroscience, University Hospital Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Alexander L Sumich
- Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK.,Department of Psychology, Auckland University of Technology, 1010, Auckland, New Zealand
| | - Daniel C Mograbi
- Department of Psychology, Pontifical University of Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| |
Collapse
|
4
|
Pezzetta R, Wokke ME, Aglioti SM, Ridderinkhof KR. Doing it Wrong: A Systematic Review on Electrocortical and Behavioral Correlates of Error Monitoring in Patients with Neurological Disorders. Neuroscience 2021; 486:103-125. [PMID: 33516775 DOI: 10.1016/j.neuroscience.2021.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Detecting errors in one's own and other's actions is a crucial ability for learning and adapting behavior to everchanging, highly volatile environments. Studies in healthy people demonstrate that monitoring errors in one's own and others' actions are underpinned by specific neural systems that are dysfunctional in a variety of neurological disorders. In this review, we first briefly discuss the main findings concerning error detection and error awareness in healthy subjects, the current theoretical models, and the tasks usually applied to investigate these processes. Then, we report a systematic search for evidence of dysfunctional error monitoring among neurological populations (basal ganglia, neurodegenerative, white-matter diseases and acquired brain injury). In particular, we examine electrophysiological and behavioral evidence for specific alterations of error processing in neurological disorders. Error-related negativity (ERN) amplitude were reduced in most (although not all) neurological patient groups, whereas Positivity Error (Pe) amplitude appeared not to be affected in most patient groups. Also theta activity was reduced in some neurological groups, but consistent evidence on the oscillatory activity has not been provided thus far. Behaviorally, we did not observe relevant patterns of pronounced dysfunctional (post-) error processing. Finally, we discuss limitations of the existing literature, conclusive points, open questions and new possible methodological approaches for clinical studies.
Collapse
Affiliation(s)
- R Pezzetta
- IRCCS San Camillo Hospital, Venice, Italy.
| | - M E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, The University of Cambridge, Cambridge, UK
| | - S M Aglioti
- Sapienza University of Rome and CNLS@Sapienza at Istituto Italiano di Tecnologia, Via Regina Elena 295, 00161 Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - K R Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018, WS, Amsterdam, The Netherlands; Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Kleimaker A, Kleimaker M, Bäumer T, Beste C, Münchau A. Gilles de la Tourette Syndrome-A Disorder of Action-Perception Integration. Front Neurol 2020; 11:597898. [PMID: 33324336 PMCID: PMC7726237 DOI: 10.3389/fneur.2020.597898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Gilles de la Tourette syndrome is a multifaceted and complex neuropsychiatric disorder. Given that tics as motor phenomena are the defining and cardinal feature of Tourette syndrome, it has long been conceptualized as a motor/movement disorder. However, considering premonitory urges preceding tics, hypersensitivity to external stimuli and abnormalities in sensorimotor integration perceptual processes also seem to be relevant in the pathophysiology of Tourette syndrome. In addition, tic expression depends on attention and tics can, at least partly and transiently, be controlled, so that cognitive processes need to be considered as well. Against this background, explanatory concepts should encompass not only the motor phenomenon tic but also perceptual and cognitive processes. Representing a comprehensive theory of the processing of perceptions and actions paying particular attention to their interdependency and the role of cognitive control, the Theory of Event Coding seems to be a suitable conceptual framework for the understanding of Tourette syndrome. In fact, recent data suggests that addressing the relation between actions (i.e., tics) and perceptions (i.e., sensory phenomena like premonitory urges) in the context of event coding allows to gaining relevant insights into perception-action coding in Tourette syndrome indicating that perception action binding is abnormally strong in this disorder.
Collapse
Affiliation(s)
- Alexander Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maximilian Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Tobias Bäumer
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Kóbor A, Horváth K, Kardos Z, Takács Á, Janacsek K, Csépe V, Nemeth D. Tracking the implicit acquisition of nonadjacent transitional probabilities by ERPs. Mem Cognit 2019; 47:1546-1566. [PMID: 31236822 PMCID: PMC6823303 DOI: 10.3758/s13421-019-00949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The implicit acquisition of complex probabilistic regularities has been found to be crucial in numerous automatized cognitive abilities, including language processing and associative learning. However, it has not been completely elucidated how the implicit extraction of second-order nonadjacent transitional probabilities is reflected by neurophysiological processes. Therefore, this study investigated the sensitivity of event-related brain potentials (ERPs) to these probabilistic regularities embedded in a sequence of visual stimuli without providing explicit information on the structure of the stimulus stream. Healthy young adults (N = 32) performed a four-choice RT task that included a sequential regularity between nonadjacent trials yielding a complex transitional probability structure. ERPs were measured relative to both stimulus and response onset. RTs indicated the rapid acquisition of the sequential regularity and the transitional probabilities. The acquisition process was also tracked by the stimulus-locked and response-locked P3 component: The P3 peak was larger for the sequence than for the random stimuli, while the late P3 was larger for less probable than for more probable short-range relations among the random stimuli. According to the RT and P3 effects, sensitivity to the sequential regularity is assumed to be supported by the initial sensitivity to the transitional probabilities. These results suggest that stimulus-response contingencies on the probabilistic regularities of the ongoing stimulus context are implicitly mapped and constantly revised. Overall, this study (1) highlights the role of predictive processes during implicit memory formation, and (2) delineates a potential to gain further insight into the dynamics of implicit acquisition processes.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Ádám Takács
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université de Lyon, Centre Hospitalier Le Vinatier–Bâtiment 462–Neurocampus 95 Boulevard Pinel, 69675 Bron, Lyon France
| |
Collapse
|
7
|
Stock AK, Rädle M, Beste C. Methamphetamine-associated difficulties in cognitive control allocation may normalize after prolonged abstinence. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:41-52. [PMID: 29953935 DOI: 10.1016/j.pnpbp.2018.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/24/2022]
Abstract
Chronic heavy methamphetamine use likely causes dopaminergic neurotoxicity, which is commonly thought to result in cognitive control deficits. Both of these alterations may persist even after the use is discontinued, but tend to (partly) improve with increasing duration of abstinence. While several studies have demonstrated that the reinstatement of comparatively normal dopaminergic signaling may take months, if not years, the amelioration of cognitive deficits has predominantly been investigated in much shorter intervals of several weeks to less than half a year. Against this background, we set out to investigate the effects on prolonged abstinence in n = 27 abstinent former methamphetamine users in a cross-sectional design using behavioral and neurophysiological measures of cognitive control. Our behavioral results suggest that former users struggled to identify and adapt to different degrees of cognitive control requirements, which made their behavioral performance less expedient than that of healthy controls. On the neurophysiological level, this was reflected by reduced modulations of the N2-N450 amplitude in response to high vs. low cognitive control requirements. Yet, those effects could only be observed in methamphetamine users who had been abstinent for a relatively short time (mean 9.9; max. 18 months), but not in former users who had been abstinent two years or longer. While this finding alone does not allow for causal inferences, it suggests that the amelioration of control deficits may take longer than what is commonly investigated (1-6 months). Hence, some of the statements about permanent/irreversible dopamine-dependent executive dysfunctions in former methamphetamine users should be interpreted with caution.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Marion Rädle
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
8
|
Brandt VC, Stock AK, Münchau A, Beste C. Evidence for enhanced multi-component behaviour in Tourette syndrome - an EEG study. Sci Rep 2017; 7:7722. [PMID: 28798371 PMCID: PMC5552788 DOI: 10.1038/s41598-017-08158-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
Evidence suggests that Tourette syndrome is characterized by an increase in dopamine transmission and structural as well as functional changes in fronto-striatal circuits that might lead to enhanced multi-component behaviour integration. Behavioural and neurophysiological data regarding multi-component behaviour was collected from 15 patients with Tourette syndrome (mean age = 30.40 ± 11.10) and 15 healthy controls (27.07 ± 5.44), using the stop-change task. In this task, participants are asked to sometimes withhold responses to a Go stimulus (stop cue) and change hands to respond to an alternative Go stimulus (change cue). Different onset asynchronies between stop and change cues were implemented (0 and 300 ms) in order to vary task difficulty. Tourette patients responded more accurately than healthy controls when there was no delay between stop and change stimulus, while there was no difference in the 300 ms delay condition. This performance advantage was reflected in a smaller P3 event related potential. Enhanced multi-component behaviour in Tourette syndrome is likely based on an enhanced ability to integrate information from multiple sources and translate it into an appropriate response sequence. This may be a consequence of chronic tic control in these patients, or a known fronto-striatal networks hyperconnectivity in Tourette syndrome.
Collapse
Affiliation(s)
- Valerie C Brandt
- Department of Psychology, Centre for Innovation in Mental Health, University of Southampton, Southampton, UK.
- Department of Paediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Department of Paediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
9
|
Attenuated error-related potentials in amyotrophic lateral sclerosis with executive dysfunctions. Clin Neurophysiol 2017. [DOI: 10.1016/j.clinph.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Butler JS, Fearon C, Killane I, Waechter SM, Reilly RB, Lynch T. Motor preparation rather than decision-making differentiates Parkinson’s disease patients with and without freezing of gait. Clin Neurophysiol 2017; 128:463-471. [DOI: 10.1016/j.clinph.2016.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/04/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
|
11
|
Dopaminergic modulation of performance monitoring in Parkinson's disease: An event-related potential study. Sci Rep 2017; 7:41222. [PMID: 28117420 PMCID: PMC5259704 DOI: 10.1038/srep41222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Monitoring one’s actions is essential for goal-directed performance. In the event-related potential (ERP), errors are followed by fronto-centrally distributed negativities. These error(-related) negativity (Ne/ERN) amplitudes are often found to be attenuated in patients with Parkinson’s disease (PD) compared to healthy controls (HC). Although Ne/ERN has been proposed to be related to dopaminergic neuronal activity, previous research did not find evidence for effects of dopaminergic medication on Ne/ERN amplitudes in PD. We examined 13 PD patients “on” and “off” dopaminergic medication. Their response-locked ERP amplitudes (obtained on correct [Nc/CRN] and error [Ne/ERN] trials of a flanker task) were compared to those of 13 HC who were tested twice as well, without receiving dopaminergic medication. While PD patients committed more errors than HC, error rates were not significantly modulated by dopaminergic medication. PD patients showed reduced Ne/ERN amplitudes relative to HC; however, this attenuation of response-locked ERP amplitudes was not specific to errors in this study. PD-related attenuation of response-locked ERP amplitudes was most pronounced when PD patients were on medication. These results suggest overdosing of dopaminergic pathways that are relatively spared in PD, but that are related to the generation of the Ne/ERN, notably pathways targeted on the medial prefrontal cortex.
Collapse
|
12
|
Event-related potentials and cognition in Parkinson’s disease: An integrative review. Neurosci Biobehav Rev 2016; 71:691-714. [DOI: 10.1016/j.neubiorev.2016.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
|
13
|
Is P3 a strategic or a tactical component? Relationships of P3 sub-components to response times in oddball tasks with go, no-go and choice responses. Neuroimage 2016; 143:223-234. [DOI: 10.1016/j.neuroimage.2016.08.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
|
14
|
Verleger R, Grauhan N, Śmigasiewicz K. Effects of response delays and of unknown stimulus-response mappings on the oddball effect on P3. Psychophysiology 2016; 53:1858-1869. [PMID: 27593167 DOI: 10.1111/psyp.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022]
Abstract
P3b is a prominent component of human event-related EEG potentials. P3b has been related to consciousness, encoding into memory, and updating of strategic schemata, among others, yet evidence has also been provided for its close relationship with deciding how to respond to the presented stimuli. P3b is large with rarely occurring stimuli and small with frequent ones. Here, we investigate the extent to which this oddball effect depends on selecting and executing responses. Participants pressed one of two keys in response to one of two letters, one of which was presented rarely and one frequently. Information about letter-key mapping was provided by a second stimulus. In different blocks, this mapping stimulus was either constant across trials or varied randomly, and either preceded or followed the letter. The oddball effect was reduced when responses were delayed (by waiting for the constant mapping stimulus following the letter) and was further reduced when responses could not be assigned to the letters (because letters were followed by varying mapping stimuli). This evidence suggests that P3b is closely related to decision processes, possibly reflecting reactivation of stimulus-response links.
Collapse
Affiliation(s)
- Rolf Verleger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Nils Grauhan
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
15
|
Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex. Neuropsychologia 2016; 91:268-281. [PMID: 27542318 DOI: 10.1016/j.neuropsychologia.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/19/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying of signals to prefrontal cortex. Such a failure to prioritize and filter signals to the prefrontal cortex could result in the pervasive impairments in cognitive flexibility and executive functioning that characterize autism spectrum disorder, and may offer a mechanistic explanation of some of the observed abnormalities in patterns of cortical synchronization in ASD.
Collapse
|
16
|
A neural analogue of the worst performance rule: Insights from single-trial event-related potentials. INTELLIGENCE 2016. [DOI: 10.1016/j.intell.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Elevated P3b latency variability in carriers of ZNF804A risk allele for psychosis. Neuroimage 2015; 116:207-13. [DOI: 10.1016/j.neuroimage.2015.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
|
18
|
Saville CWN, Feige B, Kluckert C, Bender S, Biscaldi M, Berger A, Fleischhaker C, Henighausen K, Klein C. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials. J Child Psychol Psychiatry 2015; 56:801-813. [PMID: 25388413 DOI: 10.1111/jcpp.12348] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. METHODS We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). RESULTS ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. CONCLUSIONS These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon.
Collapse
Affiliation(s)
- Christopher W N Saville
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany.,School of Psychology, Bangor University, Bangor, UK
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, University of Freiburg, Freiburg, Germany
| | - Christian Kluckert
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, University of Frankfurt, Frankfurt, Germany
| | - Monica Biscaldi
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany
| | - Andrea Berger
- Department of Psychology, Ben Gurion University of the Negev, Negev, Israel
| | - Christian Fleischhaker
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany
| | - Klaus Henighausen
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Freiburg, Germany.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
19
|
Twomey DM, Murphy PR, Kelly SP, O'Connell RG. The classic P300 encodes a build-to-threshold decision variable. Eur J Neurosci 2015; 42:1636-43. [PMID: 25925534 DOI: 10.1111/ejn.12936] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/03/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The P300 component of the human event-related potential has been the subject of intensive experimental investigation across a five-decade period, owing to its apparent relevance to a wide range of cognitive functions and its sensitivity to numerous brain disorders, yet its exact contribution to cognition remains unresolved. Here, we carry out key analyses of the P300 elicited by transient auditory and visual targets to examine its potential role as a 'decision variable' signal that accumulates evidence to a decision bound. Consistent with the latter, we find that the P300 reaches a stereotyped amplitude immediately prior to response execution and that its rate of rise scales with target detection difficulty and accounts for trial-to-trial variance in RT. Computational simulations of an accumulation-to-bound decision process faithfully captured P300 dynamics when its parameters were set by model fits to the RT distributions. Thus, where the dominant explanatory accounts have conceived of the P300 as a unitary neural event, our data reveal it to be a dynamically evolving neural signature of decision formation. These findings place the P300 at the heart of a mechanistically principled framework for understanding decision-making in both the typical and atypical human brain.
Collapse
Affiliation(s)
- Deirdre M Twomey
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Peter R Murphy
- Department of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Simon P Kelly
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
20
|
Testing the S–R link hypothesis of P3b: The oddball effect on S1-evoked P3 gets reduced by increased task relevance of S2. Biol Psychol 2015; 108:25-35. [DOI: 10.1016/j.biopsycho.2015.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022]
|
21
|
Schroll H, Beste C, Hamker FH. Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease. Eur J Neurosci 2015; 41:1227-44. [DOI: 10.1111/ejn.12868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/17/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Henning Schroll
- Neurology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Psychology; Humboldt Universität zu Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 09111 Chemnitz Germany
| | - Christian Beste
- Cognitive Neurophysiology; Department of Child and Adolescent Psychiatry; Faculty of Medicine of the TU Dresden; Dresden Germany
| | - Fred H. Hamker
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 09111 Chemnitz Germany
| |
Collapse
|
22
|
The neural processes underlying perceptual decision making in humans: Recent progress and future directions. ACTA ACUST UNITED AC 2015; 109:27-37. [DOI: 10.1016/j.jphysparis.2014.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022]
|
23
|
Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). Neuroimage 2014; 100:271-80. [DOI: 10.1016/j.neuroimage.2014.06.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022] Open
|
24
|
Verleger R, Koerbs A, Graf J, Śmigasiewicz K, Schroll H, Hamker FH. Patients with Parkinson׳s disease are less affected than healthy persons by relevant response-unrelated features in visual search. Neuropsychologia 2014; 62:38-47. [DOI: 10.1016/j.neuropsychologia.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022]
|
25
|
Verleger R, Baur N, Metzner MF, Śmigasiewicz K. The hard oddball: Effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology 2014; 51:1089-100. [DOI: 10.1111/psyp.12262] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Rolf Verleger
- Department of Neurology; University of Lübeck; Lübeck Germany
| | - Nikolas Baur
- Department of Neurology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
26
|
Schroll H, Vitay J, Hamker FH. Dysfunctional and compensatory synaptic plasticity in Parkinson's disease. Eur J Neurosci 2013; 39:688-702. [DOI: 10.1111/ejn.12434] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Henning Schroll
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Psychology; Humboldt Universität zu Berlin; Berlin Germany
- Neurology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| | - Julien Vitay
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| | - Fred H. Hamker
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| |
Collapse
|